1
|
Zhu Y, Shigeyoshi K, Hayakawa Y, Fujiwara S, Kishida M, Ohki H, Horibe T, Shionyu M, Mizukami T, Hasegawa M. Acceleration of Protein Degradation by 20S Proteasome-Binding Peptides Generated by In Vitro Artificial Evolution. Int J Mol Sci 2023; 24:17486. [PMID: 38139315 PMCID: PMC10743564 DOI: 10.3390/ijms242417486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Although the 20S core particle (CP) of the proteasome is an important component of the 26S holoenzyme, the stand-alone 20S CP acts directly on intrinsically disordered and oxidized/damaged proteins to degrade them in a ubiquitin-independent manner. It has been postulated that some structural features of substrate proteins are recognized by the 20S CP to promote substrate uptake, but the mechanism of substrate recognition has not been fully elucidated. In this study, we screened peptides that bind to the 20S CP from a random eight-residue pool of amino acid sequences using complementary DNA display an in vitro molecular evolution technique. The identified 20S CP-binding amino acid sequence was chemically synthesized and its effects on the 20S CP were investigated. The 20S CP-binding peptide stimulated the proteolytic activity of the inactive form of 20S CP. The peptide bound directly to one of the α-subunits, opening a gate for substrate entry on the α-ring. Furthermore, the attachment of this peptide sequence to α-synuclein enhanced its degradation by the 20S CP in vitro. In addition to these results, docking simulations indicated that this peptide binds to the top surface of the α-ring. These peptides could function as a key to control the opening of the α-ring gate.
Collapse
Affiliation(s)
- Yunhao Zhu
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama 526-0829, Japan
| | - Kaishin Shigeyoshi
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama 526-0829, Japan
| | - Yumiko Hayakawa
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama 526-0829, Japan
| | - Sae Fujiwara
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama 526-0829, Japan
| | - Masamichi Kishida
- Modality Research Laboratories, Biologics Division, Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Hitoshi Ohki
- Modality Research Laboratories, Biologics Division, Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Tomohisa Horibe
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama 526-0829, Japan
| | - Masafumi Shionyu
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama 526-0829, Japan
| | - Tamio Mizukami
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama 526-0829, Japan
- Frontier Pharma Inc., 1281-8 Tamura, Nagahama 526-0829, Japan
| | - Makoto Hasegawa
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama 526-0829, Japan
| |
Collapse
|
2
|
Moretto E, Stuart S, Surana S, Vargas JNS, Schiavo G. The Role of Extracellular Matrix Components in the Spreading of Pathological Protein Aggregates. Front Cell Neurosci 2022; 16:844211. [PMID: 35573838 PMCID: PMC9100790 DOI: 10.3389/fncel.2022.844211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/08/2022] [Indexed: 11/23/2022] Open
Abstract
Several neurodegenerative diseases are characterized by the accumulation of aggregated misfolded proteins. These pathological agents have been suggested to propagate in the brain via mechanisms similar to that observed for the prion protein, where a misfolded variant is transferred from an affected brain region to a healthy one, thereby inducing the misfolding and/or aggregation of correctly folded copies. This process has been characterized for several proteins, such as α-synuclein, tau, amyloid beta (Aβ) and less extensively for huntingtin and TDP-43. α-synuclein, tau, TDP-43 and huntingtin are intracellular proteins, and their aggregates are located in the cytosol or nucleus of neurons. They have been shown to spread between cells and this event occurs, at least partially, via secretion of these protein aggregates in the extracellular space followed by re-uptake. Conversely, Aβ aggregates are found mainly extracellularly, and their spreading occurs in the extracellular space between brain regions. Due to the inherent nature of their spreading modalities, these proteins are exposed to components of the extracellular matrix (ECM), including glycans, proteases and core matrix proteins. These ECM components can interact with or process pathological misfolded proteins, potentially changing their properties and thus regulating their spreading capabilities. Here, we present an overview of the documented roles of ECM components in the spreading of pathological protein aggregates in neurodegenerative diseases with the objective of identifying the current gaps in knowledge and stimulating further research in the field. This could potentially lead to the identification of druggable targets to slow down the spreading and/or progression of these pathologies.
Collapse
Affiliation(s)
- Edoardo Moretto
- Institute of Neuroscience, National Research Council, CNR, Milan, Italy
- UK Dementia Research Institute, University College London, London, United Kingdom
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, United Kingdom
- *Correspondence: Edoardo Moretto,
| | - Skye Stuart
- UK Dementia Research Institute, University College London, London, United Kingdom
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Sunaina Surana
- UK Dementia Research Institute, University College London, London, United Kingdom
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, United Kingdom
- UCL Queen Square Motor Neuron Disease Centre, University College London, London, United Kingdom
| | - Jose Norberto S. Vargas
- UK Dementia Research Institute, University College London, London, United Kingdom
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, United Kingdom
- UCL Queen Square Motor Neuron Disease Centre, University College London, London, United Kingdom
| | - Giampietro Schiavo
- UK Dementia Research Institute, University College London, London, United Kingdom
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, United Kingdom
- UCL Queen Square Motor Neuron Disease Centre, University College London, London, United Kingdom
- Giampietro Schiavo,
| |
Collapse
|
3
|
Hartlage-Rübsamen M, Bluhm A, Moceri S, Machner L, Köppen J, Schenk M, Hilbrich I, Holzer M, Weidenfeller M, Richter F, Coras R, Serrano GE, Beach TG, Schilling S, von Hörsten S, Xiang W, Schulze A, Roßner S. A glutaminyl cyclase-catalyzed α-synuclein modification identified in human synucleinopathies. Acta Neuropathol 2021; 142:399-421. [PMID: 34309760 PMCID: PMC8357657 DOI: 10.1007/s00401-021-02349-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 12/22/2022]
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disorder that is neuropathologically characterized by degeneration of dopaminergic neurons of the substantia nigra (SN) and formation of Lewy bodies and Lewy neurites composed of aggregated α-synuclein. Proteolysis of α-synuclein by matrix metalloproteinases was shown to facilitate its aggregation and to affect cell viability. One of the proteolysed fragments, Gln79-α-synuclein, possesses a glutamine residue at its N-terminus. We argue that glutaminyl cyclase (QC) may catalyze the pyroglutamate (pGlu)79-α-synuclein formation and, thereby, contribute to enhanced aggregation and compromised degradation of α-synuclein in human synucleinopathies. Here, the kinetic characteristics of Gln79-α-synuclein conversion into the pGlu-form by QC are shown using enzymatic assays and mass spectrometry. Thioflavin T assays and electron microscopy demonstrated a decreased potential of pGlu79-α-synuclein to form fibrils. However, size exclusion chromatography and cell viability assays revealed an increased propensity of pGlu79-α-synuclein to form oligomeric aggregates with high neurotoxicity. In brains of wild-type mice, QC and α-synuclein were co-expressed by dopaminergic SN neurons. Using a specific antibody against the pGlu-modified neo-epitope of α-synuclein, pGlu79-α-synuclein aggregates were detected in association with QC in brains of two transgenic mouse lines with human α-synuclein overexpression. In human brain samples of PD and dementia with Lewy body subjects, pGlu79-α-synuclein was shown to be present in SN neurons, in a number of Lewy bodies and in dystrophic neurites. Importantly, there was a spatial co-occurrence of pGlu79-α-synuclein with the enzyme QC in the human SN complex and a defined association of QC with neuropathological structures. We conclude that QC catalyzes the formation of oligomer-prone pGlu79-α-synuclein in human synucleinopathies, which may—in analogy to pGlu-Aβ peptides in Alzheimer’s disease—act as a seed for pathogenic protein aggregation.
Collapse
|
4
|
Bluhm A, Schrempel S, von Hörsten S, Schulze A, Roßner S. Proteolytic α-Synuclein Cleavage in Health and Disease. Int J Mol Sci 2021; 22:5450. [PMID: 34064208 PMCID: PMC8196865 DOI: 10.3390/ijms22115450] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
In Parkinson's disease, aggregates of α-synuclein within Lewy bodies and Lewy neurites represent neuropathological hallmarks. However, the cellular and molecular mechanisms triggering oligomeric and fibrillary α-synuclein aggregation are not fully understood. Recent evidence indicates that oxidative stress induced by metal ions and post-translational modifications such as phosphorylation, ubiquitination, nitration, glycation, and SUMOylation affect α-synuclein conformation along with its aggregation propensity and neurotoxic profiles. In addition, proteolytic cleavage of α-synuclein by specific proteases results in the formation of a broad spectrum of fragments with consecutively altered and not fully understood physiological and/or pathological properties. In the present review, we summarize the current knowledge on proteolytical α-synuclein cleavage by neurosin, calpain-1, cathepsin D, and matrix metalloproteinase-3 in health and disease. We also shed light on the contribution of the same enzymes to proteolytical processing of pathogenic proteins in Alzheimer's disease and report potential cross-disease mechanisms of pathogenic protein aggregation.
Collapse
Affiliation(s)
- Alexandra Bluhm
- Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany; (A.B.); (S.S.)
| | - Sarah Schrempel
- Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany; (A.B.); (S.S.)
| | - Stephan von Hörsten
- Department for Experimental Therapy, University Clinics Erlangen and Preclinical Experimental Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Anja Schulze
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120 Halle/Saale, Germany;
| | - Steffen Roßner
- Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany; (A.B.); (S.S.)
| |
Collapse
|
5
|
Oueslati A, Ximerakis M, Vekrellis K. Protein Transmission, Seeding and Degradation: Key Steps for α-Synuclein Prion-Like Propagation. Exp Neurobiol 2014; 23:324-36. [PMID: 25548532 PMCID: PMC4276803 DOI: 10.5607/en.2014.23.4.324] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 11/20/2014] [Accepted: 11/21/2014] [Indexed: 01/22/2023] Open
Abstract
Converging lines of evidence suggest that cell-to-cell transmission and the self-propagation of pathogenic amyloidogenic proteins play a central role in the initiation and the progression of several neurodegenerative disorders. This "prion-like" hypothesis has been recently reported for α-synuclein, a presynaptic protein implicated in the pathogenesis of Parkinson's disease (PD) and related disorders. This review summarizes recent findings on α-synuclein prion-like propagation, focusing on its transmission, seeding and degradation and discusses some key questions that remain to be explored. Understanding how α-synuclein exits cells and propagates from one brain region to another will lead to the development of new therapeutic strategies for the treatment of PD, aiming at slowing or stopping the disease progression.
Collapse
Affiliation(s)
- Abid Oueslati
- Centre de Recherche du Centre Hospitalier de Québec, Axe Neuroscience et Département de Médecine Moléculaire de l'Université Laval, Québec G1V4G2, Canada
| | - Methodios Ximerakis
- Center for Neurosciences, Biomedical Research Foundation, Academy of Athens, Athens 11526, Greece
| | - Kostas Vekrellis
- Center for Neurosciences, Biomedical Research Foundation, Academy of Athens, Athens 11526, Greece
| |
Collapse
|
6
|
The clearance of misfolded proteins in neurodegenerative diseases by zinc metalloproteases: An inorganic perspective. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2013.10.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Jadhav S, Zilka N, Novak M. Protein truncation as a common denominator of human neurodegenerative foldopathies. Mol Neurobiol 2013; 48:516-32. [PMID: 23516100 DOI: 10.1007/s12035-013-8440-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 03/05/2013] [Indexed: 12/13/2022]
Abstract
Neurodegenerative foldopathies are characterized by aberrant folding of diseased modified proteins, which are major constituents of the intracellular and extracellular lesions. These lesions correlate with the cognitive and/or motor impairment seen in these diseases. The majority of the disease modified proteins in neurodegenerative foldopathies belongs to the group of proteins termed as intrinsically disordered proteins (IDPs). Several independent studies have showed that abnormal protein processing constitutes the key pathological feature of these disorders. The current review focuses on protein truncation as a common denominator of neurodegenerative foldopathies, which is considered to be the major driving force behind the pathological metamorphosis of brain IDPs. The aim of the review is to emphasize the key role of the protein truncation in the pathogenic pathways of neurodegenerative diseases. A deeper understanding of the complex downstream processing of the IDPs, resulting in the generation of pathologically modified proteins might be a prerequisite for the successful therapeutic strategies of several fatal neurodegenerative diseases.
Collapse
Affiliation(s)
- Santosh Jadhav
- Institute of Neuroimmunology, Slovak Academy of Sciences, Centre of Excellence for Alzheimer's Disease and Related Disorders, Dubravska cesta 9, 845 10, Bratislava, Slovak Republic
| | | | | |
Collapse
|
8
|
|
9
|
Cookson MR. alpha-Synuclein and neuronal cell death. Mol Neurodegener 2009; 4:9. [PMID: 19193223 PMCID: PMC2646729 DOI: 10.1186/1750-1326-4-9] [Citation(s) in RCA: 261] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 02/04/2009] [Indexed: 11/16/2022] Open
Abstract
α-Synuclein is a small protein that has special relevance for understanding Parkinson disease and related disorders. Not only is α-synuclein found in Lewy bodies characteristic of Parkinson disease, but also mutations in the gene for α-synuclein can cause an inherited form of Parkinson disease and expression of normal α-synuclein can increase the risk of developing Parkinson disease in sporadic, or non-familial, cases. Both sporadic and familial Parkinson disease are characterized by substantial loss of several groups of neurons, including the dopaminergic cells of the substantia nigra that are the target of most current symptomatic therapies. Therefore, it is predicted that α-synuclein, especially in its mutant forms or under conditions where its expression levels are increased, is a toxic protein in the sense that it is associated with an increased rate of neuronal cell death. This review will discuss the experimental contexts in which α-synuclein has been demonstrated to be toxic. I will also outline what is known about the mechanisms by which α-synuclein triggers neuronal damage, and identify some of the current gaps in our knowledge about this subject. Finally, the therapeutic implications of toxicity of α-synuclein will be discussed.
Collapse
Affiliation(s)
- Mark R Cookson
- Laboratory of Neurogenetics, National Institute on Aging, NIH, Building 35, Room 1A116, MSC 3707, 35 Convent Drive, Bethesda, MD 20982-3707, USA.
| |
Collapse
|
10
|
Cook C, Petrucelli L. A critical evaluation of the ubiquitin-proteasome system in Parkinson's disease. Biochim Biophys Acta Mol Basis Dis 2009; 1792:664-75. [PMID: 19419700 DOI: 10.1016/j.bbadis.2009.01.012] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 01/12/2009] [Accepted: 01/27/2009] [Indexed: 01/04/2023]
Abstract
The evidence for impairment in the ubiquitin proteasome system (UPS) in Parkinson's disease (PD) is mounting and becoming increasingly more convincing. However, it is presently unclear whether UPS dysfunction is a cause or result of PD pathology, a crucial distinction which impedes both the understanding of disease pathogenesis and the development of effectual therapeutic approaches. Recent findings discussed within this review offer new insight and provide direction for future research to conclusively resolve this debate.
Collapse
Affiliation(s)
- Casey Cook
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | |
Collapse
|
11
|
Guttmann R. Recent developments in the therapeutic targeting of calpains in neurodegeneration. Expert Opin Ther Pat 2007. [DOI: 10.1517/13543776.17.10.1203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|