1
|
Choudhury D, Biswas S. Structure-guided protein engineering of human cathepsin L for efficient collagenolytic activity. Protein Eng Des Sel 2021; 34:6213762. [PMID: 33825882 DOI: 10.1093/protein/gzab005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/21/2021] [Accepted: 02/15/2021] [Indexed: 11/14/2022] Open
Abstract
Engineering precise substrate specificity of proteases advances the potential to use them in biotechnological and therapeutic applications. Collagen degradation, a physiological process mediated by collagenases, is an integral part of extracellular matrix remodeling and when uncontrolled, implicated in different pathological conditions. Lysosomal cathepsin-K cleaves triple helical collagen fiber, whereas cathepsin-L cannot do so. In this study, we have imparted collagenolytic property to cathepsin-L, by systematically engineering proline-specificity and glycosaminoglycans (GAG)-binding surface in the protease. The proline-specific mutant shows high specificity for prolyl-peptidic substrate but is incapable of cleaving collagen. Engineering a GAG-binding surface on the proline-specific mutant enabled it to degrade type-I collagen in the presence of chondroitin-4-sulfate (C4-S). We also present the crystal structures of proline-specific (1.4 Å) and collagen-specific (1.8 Å) mutants. Finally docking studies with prolyl-peptidic substrate (Ala-Gly-Pro-Arg-Ala) at the active site and a C4-S molecule at the GAG-binding site enable us to identify key structural features responsible for collagenolytic activity of cysteine cathepsins.
Collapse
Affiliation(s)
- Debi Choudhury
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064, India
| | - Sampa Biswas
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064, India.,Homi Bhaba National Institute, Anushaktinagar, Mumbai 400 094, India
| |
Collapse
|
2
|
Rečnik LM, Kandioller W, Mindt TL. 1,4-Disubstituted 1,2,3-Triazoles as Amide Bond Surrogates for the Stabilisation of Linear Peptides with Biological Activity. Molecules 2020; 25:E3576. [PMID: 32781656 PMCID: PMC7465391 DOI: 10.3390/molecules25163576] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/20/2022] Open
Abstract
Peptides represent an important class of biologically active molecules with high potential for the development of diagnostic and therapeutic agents due to their structural diversity, favourable pharmacokinetic properties, and synthetic availability. However, the widespread use of peptides and conjugates thereof in clinical applications can be hampered by their low stability in vivo due to rapid degradation by endogenous proteases. A promising approach to circumvent this potential limitation includes the substitution of metabolically labile amide bonds in the peptide backbone by stable isosteric amide bond mimetics. In this review, we focus on the incorporation of 1,4-disubstituted 1,2,3-triazoles as amide bond surrogates in linear peptides with the aim to increase their stability without impacting their biological function(s). We highlight the properties of this heterocycle as a trans-amide bond surrogate and summarise approaches for the synthesis of triazole-containing peptidomimetics via the Cu(I)-catalysed azide-alkyne cycloaddition (CuAAC). The impacts of the incorporation of triazoles in the backbone of diverse peptides on their biological properties such as, e.g., blood serum stability and affinity as well as selectivity towards their respective molecular target(s) are discussed.
Collapse
Affiliation(s)
- Lisa-Maria Rečnik
- Ludwig Boltzmann Institute Applied Diagnostics, General Hospital Vienna, 1090 Vienna, Austria;
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria;
- Department of Biomedical Imaging and Image Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Wolfgang Kandioller
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria;
| | - Thomas L. Mindt
- Ludwig Boltzmann Institute Applied Diagnostics, General Hospital Vienna, 1090 Vienna, Austria;
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria;
- Department of Biomedical Imaging and Image Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
3
|
Galibert M, Wartenberg M, Lecaille F, Saidi A, Mavel S, Joulin-Giet A, Korkmaz B, Brömme D, Aucagne V, Delmas AF, Lalmanach G. Substrate-derived triazolo- and azapeptides as inhibitors of cathepsins K and S. Eur J Med Chem 2018; 144:201-210. [DOI: 10.1016/j.ejmech.2017.12.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/15/2017] [Accepted: 12/03/2017] [Indexed: 12/17/2022]
|
4
|
Andrault PM, Samsonov SA, Weber G, Coquet L, Nazmi K, Bolscher JGM, Lalmanach AC, Jouenne T, Brömme D, Pisabarro MT, Lalmanach G, Lecaille F. Antimicrobial Peptide LL-37 Is Both a Substrate of Cathepsins S and K and a Selective Inhibitor of Cathepsin L. Biochemistry 2015; 54:2785-98. [PMID: 25884905 DOI: 10.1021/acs.biochem.5b00231] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lung cysteine cathepsins B, K, L, and S contribute to physiological and pathological processes including degradation of antimicrobial peptides/proteins (AMPs) such as surfactant protein SP-A, lactoferrin, secretory leukocyte peptidase inhibitor, and beta-defensins-2 and -3. Substantial amounts of uncleaved LL-37, a 37-mer cationic AMP, were observed in the sputum of patients with cystic fibrosis (CF). Nevertheless LL-37 was degraded after prolonged incubation in CF sputum, and the hydrolysis was blocked by E-64, a selective inhibitor of cysteine proteases. Cathepsins K and S, expressed in human alveolar macrophages, thoroughly hydrolyzed LL-37 in vitro, whereas it competitively inhibited cathepsin L (Ki = 150 nM). Cleavage of LL-37 by cathepsins S and K impaired its antimicrobial activity against Pseudomonas aeruginosa and Staphylococcus aureus, in a time- and concentration-dependent manner. The exchange of residues 67 and 205 in the S2 pockets of cathepsins L (Leu67Tyr/Ala205Leu) and K (Tyr67Leu/Leu205Ala) switched the specificity of these mutants toward LL-37. Molecular modeling suggested that LL-37 interacted with the active site of cathepsin L in both forward (i.e., substrate-like) and reverse orientations with similar binding energies. Our data support the hypothesis that cysteine cathepsins modulate the innate immunity response by degrading distinct and representative members of the AMP family.
Collapse
Affiliation(s)
- Pierre-Marie Andrault
- †INSERM, UMR 1100, Pathologies Respiratoires: protéolyse et aérosolthérapie, Centre d'Etude des Pathologies Respiratoires, Equipe 2: "Mécanismes Protéolytiques dans l'Inflammation", Université François Rabelais, F-37032 Tours cedex, France
| | - Sergey A Samsonov
- ‡Structural Bioinformatics, BIOTEC TU Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - Gunther Weber
- §INSERM, UMR 1069, Nutrition Croissance et Cancer, Université François Rabelais, F-37032 Tours cedex, France
| | - Laurent Coquet
- ∥CNRS UMR 6270, Plate-forme de Protéomique "PISSARO" de l'IRIB, Université de Rouen, F-76821 Mont-Saint Aignan, France
| | - Kamran Nazmi
- ⊥Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU Universiteit Amsterdam, 1081 LA, Amsterdam, The Netherlands
| | - Jan G M Bolscher
- ⊥Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU Universiteit Amsterdam, 1081 LA, Amsterdam, The Netherlands
| | - Anne-Christine Lalmanach
- #INRA, UMR 1282 Infectiologie et Santé Publique, Université François Rabelais, F-37380 Nouzilly, France
| | - Thierry Jouenne
- ∥CNRS UMR 6270, Plate-forme de Protéomique "PISSARO" de l'IRIB, Université de Rouen, F-76821 Mont-Saint Aignan, France
| | - Dieter Brömme
- ○Department of Oral Biological and Medical Sciences, The University of British Columbia, Vancouver, British Columbia V6T1Z3, Canada
| | - M Teresa Pisabarro
- ‡Structural Bioinformatics, BIOTEC TU Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - Gilles Lalmanach
- †INSERM, UMR 1100, Pathologies Respiratoires: protéolyse et aérosolthérapie, Centre d'Etude des Pathologies Respiratoires, Equipe 2: "Mécanismes Protéolytiques dans l'Inflammation", Université François Rabelais, F-37032 Tours cedex, France
| | - Fabien Lecaille
- †INSERM, UMR 1100, Pathologies Respiratoires: protéolyse et aérosolthérapie, Centre d'Etude des Pathologies Respiratoires, Equipe 2: "Mécanismes Protéolytiques dans l'Inflammation", Université François Rabelais, F-37032 Tours cedex, France
| |
Collapse
|
5
|
Knaapi J, Kiviranta R, Laine J, Kääpä P, Lukkarinen H. Cathepsin K overexpression modifies lung development in newborn mice. Pediatr Pulmonol 2015; 50:164-72. [PMID: 24574176 DOI: 10.1002/ppul.23011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 01/20/2014] [Indexed: 12/23/2022]
Abstract
Cathepsin K (CatK), contributes to the development of chronic lung disease in newborn infants, but the impact of CatK for the lungs may be multifaceted. We have previously demonstrated that low level of CatK is associated with newborn lung injury and CatK deficiency aggravates lung injury in hyperoxia-exposed newborn mice. Thus, we hypothesized that sustained/higher expression of CatK could ameliorate hyperoxia-induced injury and restrain the development of pulmonary fibrosis. We studied the lungs of newborn wild-type (WT) and CatK overexpressing transgenic mice (TG) that were exposed to hyperoxia or room air for 7 or 14 days after birth. Fourfold pulmonary overexpression of CatK did not affect the growth or lung weight in room-air bred TG mice. The distal airspaces in TG mice were, however, enlarged on postnatal days (PN) 7 and 14, the latter together with increased apoptosis, compared with WT controls. Survival rate was normal and no respiratory distress was observed in air-bred TG mice. Hyperoxia inhibited alveolarization and increased collagen accumulation in WT mice. In TG mice, hyperoxia for 1 week did not aggravate the lung injury, and the lung morphology and already enlarged alveoli remained unchanged in TG mice at PN7. Prolonged hyperoxic exposure caused significant lung injury and mortality similarly in both group of mice, and only few mice survived until PN14. In summary, CatK overexpression slightly enlarges distal airways in infant mice, but hyperoxic environment is initially better tolerated when compared to WT mice. These findings suggest multifaceted role for CatK in lung development and newborn lung injury.
Collapse
Affiliation(s)
- Jonni Knaapi
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | | | | | | | | |
Collapse
|
6
|
Cysteine cathepsins: from structure, function and regulation to new frontiers. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1824:68-88. [PMID: 22024571 PMCID: PMC7105208 DOI: 10.1016/j.bbapap.2011.10.002] [Citation(s) in RCA: 889] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 10/03/2011] [Accepted: 10/04/2011] [Indexed: 02/06/2023]
Abstract
It is more than 50 years since the lysosome was discovered. Since then its hydrolytic machinery, including proteases and other hydrolases, has been fairly well identified and characterized. Among these are the cysteine cathepsins, members of the family of papain-like cysteine proteases. They have unique reactive-site properties and an uneven tissue-specific expression pattern. In living organisms their activity is a delicate balance of expression, targeting, zymogen activation, inhibition by protein inhibitors and degradation. The specificity of their substrate binding sites, small-molecule inhibitor repertoire and crystal structures are providing new tools for research and development. Their unique reactive-site properties have made it possible to confine the targets simply by the use of appropriate reactive groups. The epoxysuccinyls still dominate the field, but now nitriles seem to be the most appropriate “warhead”. The view of cysteine cathepsins as lysosomal proteases is changing as there is now clear evidence of their localization in other cellular compartments. Besides being involved in protein turnover, they build an important part of the endosomal antigen presentation. Together with the growing number of non-endosomal roles of cysteine cathepsins is growing also the knowledge of their involvement in diseases such as cancer and rheumatoid arthritis, among others. Finally, cysteine cathepsins are important regulators and signaling molecules of an unimaginable number of biological processes. The current challenge is to identify their endogenous substrates, in order to gain an insight into the mechanisms of substrate degradation and processing. In this review, some of the remarkable advances that have taken place in the past decade are presented. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.
Collapse
|
7
|
Lafarge JC, Clément K, Guerre-Millo M. Cathepsins S, L, and K and Their Pathophysiological Relevance in Obesity. Clin Rev Bone Miner Metab 2011. [DOI: 10.1007/s12018-011-9096-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Kasabova M, Saidi A, Naudin C, Sage J, Lecaille F, Lalmanach G. Cysteine Cathepsins: Markers and Therapy Targets in Lung Disorders. Clin Rev Bone Miner Metab 2011. [DOI: 10.1007/s12018-011-9094-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
9
|
Kininogens: More than cysteine protease inhibitors and kinin precursors. Biochimie 2010; 92:1568-79. [PMID: 20346387 DOI: 10.1016/j.biochi.2010.03.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 03/10/2010] [Indexed: 12/13/2022]
Abstract
Two kininogens are found in mammalian sera: HK (high molecular weight kininogen) and LK (low molecular weight kininogen) with the exception of the rat which encompasses a third kininogen, T-Kininogen (TK). Kininogens are multifunctional glycosylated molecules related to cystatins (clan IH, family I25). They harbor three cystatin domains but only two of them are tight-binding inhibitors of cysteine cathepsins. HK and LK, but not TK, are precursors of potent peptide hormones, the kinins, which are released proteolytically by tissue and plasma kallikreins. Besides these classical features novel functions of kininogens have been recently discovered; they are described in the second part of this review. HKa, which corresponds to the kinin-free two-chain HK and its isolated domain D5 (kininostatin), possesses angiostatic and pro-apoptotic properties, inhibits the proliferation of endothelial cells and participates in the regulation of angiogenesis. Moreover, some HK-derived peptides display potent and broad-spectrum microbicidal properties against both Gram-positive and Gram-negative bacteria, and thus may offer a promising alternative to conventional antibiotic therapy. Of seminal interest, a kininogen-derived peptide inhibits activation of the contact phase system of coagulation and protects mice with invasive Streptococcus pyogenes infection from pulmonary lesions. On the other hand, TK is a biomarker of aging at the end of lifespan of elderly rats. However, although TK has been initially identified as an acute phase reactant, and earlier known as alpha-l-acute phase globulin, the increase of TK in liver and plasma is not known to relate to any inflammatory event during the senescence process.
Collapse
|
10
|
Nägler DK, Kraus S, Feierler J, Mentele R, Lottspeich F, Jochum M, Faussner A. A cysteine-type carboxypeptidase, cathepsin X, generates peptide receptor agonists. Int Immunopharmacol 2009; 10:134-9. [PMID: 19800993 DOI: 10.1016/j.intimp.2009.09.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 09/17/2009] [Accepted: 09/24/2009] [Indexed: 01/06/2023]
Abstract
The kallikrein-kinin system and the renin-angiotensin system interact at different levels and are linked by various molecules such as angiotensin-converting enzyme which degrades bradykinin into inactive peptides. Here we report that a cysteine-type carboxypeptidase, cathepsin X, is able to modulate the kallikrein-kinin system through carboxyterminal processing of the small peptide hormones bradykinin and kallidin. Both peptides are thereby converted from bradykinin B(2) receptor ligands to bradykinin B(1) receptor specific ligands. Cathepsin X, which has previously been recognized as an inflammatory marker may therefore act as a type I kininase. In addition, we have identified cathepsin X as an alternative possible link between the kallikrein-kinin system and the renin-angiotensin system in that it not only cleaves kinins C-terminally, but also converts angiotensin I to angiotensin II.
Collapse
Affiliation(s)
- Dorit K Nägler
- Division of Clinical Chemistry and Clinical Biochemistry, Surgical Department, Ludwig-Maximilians-University, Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
11
|
Cardiac pathways distinguish two epistatic modules enacting BP quantitative trait loci and candidate gene analysis. Hypertens Res 2009; 32:631-7. [DOI: 10.1038/hr.2009.70] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Brömme D, Lecaille F. Cathepsin K inhibitors for osteoporosis and potential off-target effects. Expert Opin Investig Drugs 2009; 18:585-600. [PMID: 19388876 PMCID: PMC3110777 DOI: 10.1517/13543780902832661] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cathepsin K is a highly potent collagenase and the predominant papain-like cysteine protease expressed in osteoclasts. Cathepsin K deficiencies in humans and mice have underlined the central role of this protease in bone resorption and, thus, have rendered the enzyme as an attractive target for anti-resorptive osteoporosis therapy. In the past decade, a lot of efforts have been made in developing highly potent, selective and orally applicable cathepsin K inhibitors. Some of these inhibitors have passed preclinical studies and are presently in clinical trials at different stages of advancement. The development of the inhibitors and preliminary results of the clinical trials revealed problems and lessons concerning the in situ specificity of the compounds and their tissue targeting. In this review, we briefly summarize the history of cathepsin K research and discuss the current development of cathepsin K inhibitors as novel anti-resorptives for the treatment of osteoporosis. We also discuss potential off-target effects of cathepsin K inhibition and alternative applications of cathepsin K inhibitors in arthritis, atherosclerosis, blood pressure regulation, obesity and cancer.
Collapse
Affiliation(s)
- Dieter Brömme
- University of British Columbia, Department of Oral Biological and Medical Sciences, Vancouver, BC V6T1Z3, Canada.
| | | |
Collapse
|
13
|
Lecaille F, Brömme D, Lalmanach G. Biochemical properties and regulation of cathepsin K activity. Biochimie 2007; 90:208-26. [PMID: 17935853 DOI: 10.1016/j.biochi.2007.08.011] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 08/24/2007] [Indexed: 02/02/2023]
Abstract
Cysteine cathepsins (11 in humans) are mostly located in the acidic compartments of cells. They have been known for decades to be involved in intracellular protein degradation as housekeeping proteases. However, the discovery of new cathepsins, including cathepsins K, V and F, has provided strong evidence that they also participate in specific biological events. This review focuses on the current knowledge of cathepsin K, the major bone cysteine protease, which is a drug target of clinical interest. Nevertheless, we will not discuss recent developments in cathepsin K inhibitor design since they have been extensively detailed elsewhere. We will cover features of cathepsin K structure, cellular and tissue distribution, substrate specificity, and regulation (pH, propeptide, glycosaminoglycans, oxidants), and its putative roles in physiological or pathophysiological processes. Finally, we will review the kinetic data of its inhibition by natural endogenous inhibitors (stefin B, cystatin C, H- and L-kininogens).
Collapse
Affiliation(s)
- Fabien Lecaille
- INSERM, U618, Protéases et Vectorisation Pulmonaires, Equipe Protéases et Pathologies Pulmonaires, Faculté de Médecine, Université François Rabelais, 10 Boulevard Tonnellé, F-37032 Tours Cedex, France.
| | | | | |
Collapse
|
14
|
Lecaille F, Chowdhury S, Purisima E, Brömme D, Lalmanach G. The S2 subsites of cathepsins K and L and their contribution to collagen degradation. Protein Sci 2007; 16:662-70. [PMID: 17384231 PMCID: PMC2203344 DOI: 10.1110/ps.062666607] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The exchange of residues 67 and 205 of the S2 pocket of human cysteine cathepsins K and L induces a permutation of their substrate specificity toward fluorogenic peptide substrates. While the cathepsin L-like cathepsin K (Tyr67Leu/Leu205Ala) mutant has a marked preference for Phe, the Leu67Tyr/Ala205Leu cathepsin L variant shows an effective cathepsin K-like preference for Leu and Pro. A similar turnaround of inhibition was observed by using specific inhibitors of cathepsin K [1-(N-Benzyloxycarbonyl-leucyl)-5-(N-Boc-phenylalanyl-leucyl)carbohydrazide] and cathepsin L [N-(4-biphenylacetyl)-S-methylcysteine-(D)-Arg-Phe-beta-phenethylamide]. Molecular modeling studies indicated that mutations alter the character of both S2 and S3 subsites, while docking calculations were consistent with kinetics data. The cathepsin K-like cathepsin L was unable to mimic the collagen-degrading activity of cathepsin K against collagens I and II, DQ-collagens I and IV, and elastin-Congo Red. In summary, double mutations of the S2 pocket of cathepsins K (Y67L/L205A) and L (L67Y/A205L) induce a switch of their enzymatic specificity toward small selective inhibitors and peptidyl substrates, confirming the key role of residues 67 and 205. However, mutations in the S2 subsite pocket of cathepsin L alone without engineering of binding sites to chondroitin sulfate are not sufficient to generate a cathepsin K-like collagenase, emphasizing the pivotal role of the complex formation between glycosaminoglycans and cathepsin K for its unique collagenolytic activity.
Collapse
|