1
|
Pei JL, Wei W, Wang DR, Liu CY, Zhou HP, Xu CL, Zhang YW. Cloning, Expression, and Characterization of a Highly Stable Heparinase I from Bacteroides xylanisolvens. Polymers (Basel) 2023; 15:polym15071776. [PMID: 37050390 PMCID: PMC10097318 DOI: 10.3390/polym15071776] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/17/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Heparinase I (Hep I), which specifically degrades heparin to oligosaccharide or unsaturated disaccharide, has an important role in the production of low molecular weight heparin (LMWH). However, low productivity and stability of heparinase I hinders its applications. Here, a novel heparinase I (BxHep-I) was cloned from Bacteroides xylanisolvens and overexpressed in soluble form in Escherichia coli. The expression conditions of BxHep-I were optimized for an activity of 7144 U/L. BxHep-I had a specific activity of 57.6 U/mg at the optimal temperature and pH of 30 °C and pH 7.5, with the Km and Vmax of 0.79 mg/mL and 124.58 U/mg, respectively. BxHep-I catalytic activity could be enhanced by Ca2+ and Mg2+, while strongly inhibited by Zn2+ and Co2+. Purified BxHep-I displayed an outstanding thermostability with half-lives of 597 and 158 min at 30 and 37 °C, respectively, which are the highest half-lives ever reported for heparinases I. After storage at 4 °C for one week, BxHep-I retained 73% of its initial activity. Molecular docking revealed that the amino acids Asn25, Gln27, Arg88, Lys116, His156, Arg161, Gln228, Tyr356, Lys358, and Tyr362 form 13 hydrogen bonds with the substrate heparin disaccharides in the substrate binding domain and are mainly involved in the substrate binding of BxHep-I. These results suggest that the BxHep-I with high stability could be a candidate catalyst for the industrial production of LMWH.
Collapse
Affiliation(s)
- Jia-Lu Pei
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Wei Wei
- Zhongshiduqing Biotechnology Co., Ltd., Heze 274100, China
| | - Ding-Ran Wang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Cai-Yun Liu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Hua-Ping Zhou
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Chen-Lu Xu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Ye-Wang Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
2
|
Cloning and Expression of Heparinase Gene from a Novel Strain Raoultella NX-TZ-3-15. Appl Biochem Biotechnol 2022; 194:4971-4984. [PMID: 35679015 DOI: 10.1007/s12010-022-03917-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2022] [Indexed: 11/02/2022]
Abstract
Heparin is a class of highly sulfated, acidic, linear, and complex polysaccharide that belongs to the heparin/heparan sulfate (HS) glycosaminoglycans family. Enzymatic depolymerization of heparin by heparinases is a promising strategy for the production of ultra-low molecular weight heparins (ULMWHs) as anticoagulants. In the present study, a novel heparinase-producing strain Raoultella NX-TZ-3-15 was isolated and identified from soil samples. Herein, the heparinase gene MBP-H1 was cloned to the pBENT vector to enable expression in Escherichia coli. The optimized conditions made the activity of recombinant heparinase reach the highest level (2140 U/L). The overexpressed MBP-H1 was purified by affinity chromatography and a purity of more than 90% was obtained. The condition for biocatalysis was also optimized and three metal ions Ca2+, Co2+, and Mg2+ were utilized to activate the reaction. In addition, the kinetics regarding the new fusion heparinase was also determined with a Vm value of 11.29 μmol/min and a Km value of 31.2 μmol/L. In short, due to excellent Km and Vmax, the recombinant enzyme has great potential to be used in the clinic in medicine and industrial production of low or ultra-low molecule weight heparin.
Collapse
|
3
|
Production, characteristics and applications of microbial heparinases. Biochimie 2022; 198:109-140. [DOI: 10.1016/j.biochi.2022.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/03/2022] [Accepted: 03/28/2022] [Indexed: 12/26/2022]
|
4
|
Gao M, Liu Q, Xue Y, Li B, Liu X, Shi Z, Liu N, Zou X. Facile synthesis of peanut-like Sn-doped silica nano-adsorbent for affinity separation of proteins. RSC Adv 2022; 12:4697-4702. [PMID: 35425506 PMCID: PMC8981230 DOI: 10.1039/d1ra08362g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/25/2022] [Indexed: 12/03/2022] Open
Abstract
A peanut-like hollow silica (denoted as p-l-hSiO2) adsorbent is prepared in a facile method, which is composed of several silica nanospheres and has an average diameter of 22 nm, with thickness of 5 nm. Its Brunauer-Emmett-Teller (BET) surface area, pore volume and pore size are 258.9 m2 g-1, 1.56 cm3 g-1 and 3.9 nm, respectively. Then the afforded p-l-hSiO2/GSH adsorbent is applied to purify glutathione S-transferases-tagged (denoted as GST-tagged) proteins. It is found that the p-l-hSiO2 adsorbent exhibits a specific adsorption, a high binding capacity (6.80 mg g-1), good recycling performance and high recovery (90.1%) to the target proteins, showing promising potential for the affinity separation of GST-tagged proteins.
Collapse
Affiliation(s)
- Mochou Gao
- Engineering Research Center for Nanomaterials, Henan University Kaifeng 475004 China
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials Kaifeng 475004 China
| | - Qin Liu
- College of Chemistry and Chemical Engineering, Henan University Kaifeng 475004 China
- State Key Laboratory of Cotton Biology Kaifeng 475004 China
- Key Laboratory for Monitor and Remediation of Heavy Metal Polluted Soils of Henan Province Jiyuan 459000 China
| | - Yuanyuan Xue
- College of Chemistry and Chemical Engineering, Henan University Kaifeng 475004 China
- State Key Laboratory of Cotton Biology Kaifeng 475004 China
- Key Laboratory for Monitor and Remediation of Heavy Metal Polluted Soils of Henan Province Jiyuan 459000 China
| | - Bao Li
- Engineering Research Center for Nanomaterials, Henan University Kaifeng 475004 China
- College of Chemistry and Chemical Engineering, Henan University Kaifeng 475004 China
- State Key Laboratory of Cotton Biology Kaifeng 475004 China
| | - Xingchi Liu
- Engineering Research Center for Nanomaterials, Henan University Kaifeng 475004 China
- College of Chemistry and Chemical Engineering, Henan University Kaifeng 475004 China
- State Key Laboratory of Cotton Biology Kaifeng 475004 China
| | - Zhenzhu Shi
- College of Chemistry and Chemical Engineering, Henan University Kaifeng 475004 China
- State Key Laboratory of Cotton Biology Kaifeng 475004 China
- Key Laboratory for Monitor and Remediation of Heavy Metal Polluted Soils of Henan Province Jiyuan 459000 China
| | - Nan Liu
- Key Laboratory for Monitor and Remediation of Heavy Metal Polluted Soils of Henan Province Jiyuan 459000 China
| | - Xueyan Zou
- Engineering Research Center for Nanomaterials, Henan University Kaifeng 475004 China
- Henan Ding You Agriculture Science and Technology Co., LTD. Zhengzhou 450047 China
- State Key Laboratory of Cotton Biology Kaifeng 475004 China
| |
Collapse
|
5
|
Yang X, Yang X, Yu H, Na L, Ghosh T, McArthur JB, Chou TF, Dickson P, Chen X. A GH89 human α-N-acetylglucosaminidase (hNAGLU) homologue from gut microbe Bacteroides thetaiotaomicron capable of hydrolyzing heparosan oligosaccharides. AMB Express 2021; 11:94. [PMID: 34165649 PMCID: PMC8225759 DOI: 10.1186/s13568-021-01253-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 11/10/2022] Open
Abstract
Carbohydrate-Active enZYme (CAZY) GH89 family enzymes catalyze the cleavage of terminal α-N-acetylglucosamine from glycans and glycoconjugates. Although structurally and mechanistically similar to the human lysosomal α-N-acetylglucosaminidase (hNAGLU) in GH89 which is involved in the degradation of heparan sulfate in the lysosome, the reported bacterial GH89 enzymes characterized so far have no or low activity toward α-N-acetylglucosamine-terminated heparosan oligosaccharides, the preferred substrates of hNAGLU. We cloned and expressed several soluble and active recombinant bacterial GH89 enzymes in Escherichia coli. Among these enzymes, a truncated recombinant α-N-acetylglucosaminidase from gut symbiotic bacterium Bacteroides thetaiotaomicron ∆22Bt3590 was found to catalyze the cleavage of the terminal α1-4-linked N-acetylglucosamine (GlcNAc) from a heparosan disaccharide with high efficiency. Heparosan oligosaccharides with lengths up to decasaccharide were also suitable substrates. This bacterial α-N-acetylglucosaminidase could be a useful catalyst for heparan sulfate analysis.
Collapse
Affiliation(s)
- Xiaohong Yang
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Xiaoxiao Yang
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Hai Yu
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Lan Na
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA, 95616, USA
- Rosalind Franklin Institute and University of Oxford, Harwell Campus, Didcot, OX11 0FA, UK
| | - Tamashree Ghosh
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - John B McArthur
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA, 95616, USA
- Integrated Micro-Chromatography Systems, Inc, Irmo, SC, 20963, USA
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Patricia Dickson
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xi Chen
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
6
|
Gao LW, Zhu HT, Liu CY, Lv ZX, Fan XM, Zhang YW. A highly active heparinase I from Bacteroides cellulosilyticus: Cloning, high level expression, and molecular characterization. PLoS One 2020; 15:e0240920. [PMID: 33079966 PMCID: PMC7575093 DOI: 10.1371/journal.pone.0240920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 10/05/2020] [Indexed: 11/19/2022] Open
Abstract
As one of the most extensively studied glycosaminoglycan lyases, heparinase I has been used in producing low or ultra-low molecular weight heparin. Its' important applications are to neutralize the heparin in human blood and analyze heparin structure in the clinic. However, the low productivity and activity of the enzyme have greatly hindered its applications. In this study, a novel Hep-I from Bacteroides cellulosilyticus (BcHep-I) was successfully cloned and heterologously expressed in E. coli BL21 (DE3) as a soluble protein. The molecular mass and isoelectric point (pI) of the enzyme are 44.42 kDa and 9.02, respectively. And the characterization of BcHep-I after purified with Ni-NTA affinity chromatography suggested that it is a mesophilic enzyme. BcHep-I can be activated by 1 mM Ca2+, Mg2+, and Mn2+, while severely inhibited by Zn2+, Co2+, and EDTA. The specific activity of the enzyme was 738.3 U·mg-1 which is the highest activity ever reported. The Km and Vmax were calculated as 0.17 mg·mL-1 and 740.58 U·mg-1, respectively. Besides, the half-life of 300 min at 30°C showed BcHep-I has practical applications. Homology modeling and substrate docking revealed that Gln15, Lys74, Arg76, Lys104, Arg149, Gln208, Tyr336, Tyr342, and Lys338 were mainly involved in the substrate binding of Hep-I, and 11 hydrogen bonds were formed between heparin and the enzyme. These results indicated that BcHep-I with high activity has great potential applications in the industrial production of heparin, especially in the clinic to neutralize heparin.
Collapse
Affiliation(s)
- Li-Wei Gao
- The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, Jiangsu Province, China
| | - Hong-Tao Zhu
- The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, Jiangsu Province, China
| | - Cai-Yun Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Zhi-Xiang Lv
- The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, Jiangsu Province, China
| | - Xiao-Man Fan
- School of Pharmacy, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Ye-Wang Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, People’s Republic of China
- * E-mail:
| |
Collapse
|
7
|
Wang H, Zhang L, Wang Y, Li J, Du G, Kang Z. Engineering the heparin-binding pocket to enhance the catalytic efficiency of a thermostable heparinase III from Bacteroides thetaiotaomicron. Enzyme Microb Technol 2020; 137:109549. [DOI: 10.1016/j.enzmictec.2020.109549] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/26/2020] [Accepted: 03/08/2020] [Indexed: 02/06/2023]
|
8
|
Liu CY, Su WB, Guo LB, Zhang YW. Cloning, expression, and characterization of a novel heparinase I from Bacteroides eggerthii. Prep Biochem Biotechnol 2020; 50:477-485. [PMID: 31900079 DOI: 10.1080/10826068.2019.1709977] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Heparinase I (Hep I) specifically degrades heparin to oligosaccharide or unsaturated disaccharide and has been widely used in preparation of low molecular weight heparin (LMWH). In this work, a novel Hep I from Bacteroides eggerthii VPI T5-42B-1 was cloned and overexpressed in Escherichia coli BL21 (DE3). The enzyme has specific activity of 480 IU·mg-1 at the optimal temperature and pH of 30 °C and pH 7.5, and the Km and Vmax were 3.6 mg·mL-1 and 647.93 U·mg-1, respectively. The Hep I has good stability with t1/2 values of 350 and 60 min at 30 and 37 °C, respectively. And it showed a residual relative activity of 70.8% after 21 days incubation at 4 °C. Substrate docking study revealed that Lys99, Arg101, Gln241, Lys270, Asn275, and Lys292 were mainly involved in the substrate binding of Hep I. The shorter hydrogen bonds formed between heparin and these residues suggested the higher specific activity of BeHep I. And the minimum conformational entropy value of 756 J·K-1 provides an evidence for the improved stability of this enzyme. This Hep I could be of interest in the industrial preparation of LMWH for its high specific activity and good stability.
Collapse
Affiliation(s)
- Cai-Yun Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, People's Republic of China
| | - Wen-Bin Su
- School of Pharmacy, Jiangsu University, Zhenjiang, People's Republic of China
| | - Li-Bin Guo
- School of Pharmacy, Jiangsu University, Zhenjiang, People's Republic of China
| | - Ye-Wang Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, People's Republic of China
| |
Collapse
|
9
|
Zhang C, Yang BC, Liu WT, Li ZY, Song YJ, Zhang TC, Luo XG. Structure-based engineering of heparinase I with improved specific activity for degrading heparin. BMC Biotechnol 2019; 19:59. [PMID: 31399136 PMCID: PMC6688311 DOI: 10.1186/s12896-019-0553-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 07/31/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Heparinase I from Pedobacter heparinus (Ph-HepI), which specifically cleaves heparin and heparan sulfate, is one of the most extensively studied glycosaminoglycan lyases. Enzymatic degradation of heparin by heparin lyases not only largely facilitates heparin structural analysis but also showed great potential to produce low-molecular-weight heparin (LMWH) in an environmentally friendly way. However, industrial applications of Ph-HepI have been limited by their poor yield and enzyme activity. In this work, we improve the specific enzyme activity of Ph-HepI based on homology modeling, multiple sequence alignment, molecular docking and site-directed mutagenesis. RESULTS Three mutations (S169D, A259D, S169D/A259D) exhibited a 50.18, 40.43, and 122.05% increase in the specific enzyme activity and a 91.67, 108.33, and 75% increase in the yield, respectively. The catalytic efficiencies (kcat/Km) of the mutanted enzymes S169D, A259D, and S169D/A259D were higher than those of the wild-type enzyme by 275, 164, and 406%, respectively. Mass spectrometry and activity detection showed the enzyme degradation products were in line with the standards of the European Pharmacopoeia. Protein structure analysis showed that hydrogen bonds and ionic bonds were important factors for improving specific enzyme activity and yield. CONCLUSIONS We found that the mutant S169D/A259D had more industrial application value than the wild-type enzyme due to molecular modifications. Our results provide a new strategy to increase the catalytic efficiency of other heparinases.
Collapse
Affiliation(s)
- Chuan Zhang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education & Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.,State Key Laboratory of Food Nutrition and Safety, Tianjin, 300457, China
| | - Bao-Cheng Yang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education & Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.,State Key Laboratory of Food Nutrition and Safety, Tianjin, 300457, China
| | - Wen-Ting Liu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education & Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.,State Key Laboratory of Food Nutrition and Safety, Tianjin, 300457, China
| | - Zhong-Yuan Li
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education & Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.,State Key Laboratory of Food Nutrition and Safety, Tianjin, 300457, China
| | - Ya-Jian Song
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education & Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.,State Key Laboratory of Food Nutrition and Safety, Tianjin, 300457, China
| | - Tong-Cun Zhang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education & Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.,State Key Laboratory of Food Nutrition and Safety, Tianjin, 300457, China
| | - Xue-Gang Luo
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education & Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China. .,State Key Laboratory of Food Nutrition and Safety, Tianjin, 300457, China.
| |
Collapse
|
10
|
Balasubramaniam K, Sharma K, Goyal A. Structure and dynamics analysis of a new member heparinase II/III of family 12 polysaccharide lyase from Pseudopedobacter saltans by computational modeling and small-angle X-ray scattering. J Biomol Struct Dyn 2019; 38:2007-2020. [DOI: 10.1080/07391102.2019.1622453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Karthika Balasubramaniam
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Kedar Sharma
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Arun Goyal
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
11
|
Zhang Q, Zhao X, Xu X, Tang B, Zha Z, Zhang M, Yao D, Chen X, Wu X, Cao L, Guo H. Expression and purification of soluble human cystatin C in Escherichia coli with maltose-binding protein as a soluble partner. Protein Expr Purif 2014; 104:14-9. [DOI: 10.1016/j.pep.2014.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/14/2014] [Accepted: 09/15/2014] [Indexed: 11/25/2022]
|
12
|
Nakamichi Y, Mikami B, Murata K, Hashimoto W. Crystal structure of a bacterial unsaturated glucuronyl hydrolase with specificity for heparin. J Biol Chem 2014; 289:4787-97. [PMID: 24403065 DOI: 10.1074/jbc.m113.522573] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Extracellular matrix molecules such as glycosaminoglycans (GAGs) are typical targets for some pathogenic bacteria, which allow adherence to host cells. Bacterial polysaccharide lyases depolymerize GAGs in β-elimination reactions, and the resulting unsaturated disaccharides are subsequently degraded to constituent monosaccharides by unsaturated glucuronyl hydrolases (UGLs). UGL substrates are classified as 1,3- and 1,4-types based on the glycoside bonds. Unsaturated chondroitin and heparin disaccharides are typical members of 1,3- and 1,4-types, respectively. Here we show the reaction modes of bacterial UGLs with unsaturated heparin disaccharides by x-ray crystallography, docking simulation, and site-directed mutagenesis. Although streptococcal and Bacillus UGLs were active on unsaturated heparin disaccharides, those preferred 1,3- rather than 1,4-type substrates. The genome of GAG-degrading Pedobacter heparinus encodes 13 UGLs. Of these, Phep_2830 is known to be specific for unsaturated heparin disaccharides. The crystal structure of Phep_2830 was determined at 1.35-Å resolution. In comparison with structures of streptococcal and Bacillus UGLs, a pocket-like structure and lid loop at subsite +1 are characteristic of Phep_2830. Docking simulations of Phep_2830 with unsaturated heparin disaccharides demonstrated that the direction of substrate pyranose rings differs from that in unsaturated chondroitin disaccharides. Acetyl groups of unsaturated heparin disaccharides are well accommodated in the pocket at subsite +1, and aromatic residues of the lid loop are required for stacking interactions with substrates. Thus, site-directed mutations of the pocket and lid loop led to significantly reduced enzyme activity, suggesting that the pocket-like structure and lid loop are involved in the recognition of 1,4-type substrates by UGLs.
Collapse
Affiliation(s)
- Yusuke Nakamichi
- From the Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, and
| | | | | | | |
Collapse
|
13
|
Structural basis of heparan sulfate-specific degradation by heparinase III. Protein Cell 2012; 3:950-61. [PMID: 23011846 PMCID: PMC4875378 DOI: 10.1007/s13238-012-2056-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 06/17/2012] [Indexed: 01/07/2023] Open
Abstract
Heparinase III (HepIII) is a 73-kDa polysaccharide lyase (PL) that degrades the heparan sulfate (HS) polysaccharides at sulfate-rare regions, which are important co-factors for a vast array of functional distinct proteins including the well-characterized antithrombin and the FGF/FGFR signal transduction system. It functions in cleaving metazoan heparan sulfate (HS) and providing carbon, nitrogen and sulfate sources for host microorganisms. It has long been used to deduce the structure of HS and heparin motifs; however, the structure of its own is unknown. Here we report the crystal structure of the HepIII from Bacteroides thetaiotaomicron at a resolution of 1.6 Å. The overall architecture of HepIII belongs to the (α/α)₅ toroid subclass with an N-terminal toroid-like domain and a C-terminal β-sandwich domain. Analysis of this high-resolution structure allows us to identify a potential HS substrate binding site in a tunnel between the two domains. A tetrasaccharide substrate bound model suggests an elimination mechanism in the HS degradation. Asn260 and His464 neutralize the carboxylic group, whereas Tyr314 serves both as a general base in C-5 proton abstraction, and a general acid in a proton donation to reconstitute the terminal hydroxyl group, respectively. The structure of HepIII and the proposed reaction model provide a molecular basis for its potential practical utilization and the mechanism of its eliminative degradation for HS polysaccarides.
Collapse
|
14
|
Fusion Protein Strategy to Increase Expression and Solubility of Hypervariable Region of VP2 Protein of Infectious Bursal Disease Virus in Escherichia coli. Protein J 2012; 31:580-4. [DOI: 10.1007/s10930-012-9437-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
15
|
Hyun YJ, Jung IH, Kim DH. Expression of heparinase I of Bacteroides stercoris HJ-15 and its degradation tendency toward heparin-like glycosaminoglycans. Carbohydr Res 2012; 359:37-43. [PMID: 22925762 DOI: 10.1016/j.carres.2012.05.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 05/22/2012] [Accepted: 05/28/2012] [Indexed: 10/28/2022]
Abstract
Recombinant heparinase I was cloned from Bacteroides stercoris HJ-15 (BSrhepI), overexpressed in Escherichia coli, and intensively characterized. The complete gene of BSrhepI was identified by Southern blotting, and was overexpressed as an inclusion body. The inclusion body was solubilized with 4 M guanidine-HCl, and the denatured BSrhepI was easily purified using Ni(2+)-affinity column chromatography. The purified but denatured enzyme was then successfully refolded by dialysis against 50 mM Tris-HCl (pH 7.0) containing 1mM DTT and CaCl(2). BSrhepI was most active in 50mM Tris-HCl buffer containing 300 mM NaCl, 10 mM CaCl(2), and 1 mM DTT (pH 7.0) at 37°C. This enzyme digested not only heparin, but also heparan sulfate. Through comparative HPLC-analysis of each degraded product of heparin and heparan sulfate by digestion with BSrhepI or flavobacterial heparinase I, we verified that BSrhepI has a broader spectrum of substrate specificities than other reported heparinases.
Collapse
Affiliation(s)
- Yang-Jin Hyun
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Dongdaemun-ku, Seoul 130-701, Republic of Korea
| | | | | |
Collapse
|
16
|
Huang J, Cao L, Guo W, Yuan R, Jia Z, Huang K. Enhanced soluble expression of recombinant Flavobacterium heparinum heparinase I in Escherichia coli by fusing it with various soluble partners. Protein Expr Purif 2012; 83:169-76. [PMID: 22503820 DOI: 10.1016/j.pep.2012.03.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 03/26/2012] [Accepted: 03/27/2012] [Indexed: 12/01/2022]
Abstract
Heparinase I (HepA) was originally isolated from Flavobacterium heparinum (F. heparinum) and specifically cleaves heparin/heparan sulfate in a site-dependent manner, showing great promise for producing low molecular weight heparin (LMWH). However, expressing recombinant HepA is extremely difficult in Escherichia coli because it suffers from low yields, insufficient purity and insolubility. In this paper, we systematically cloned and fused the HepA gene to the C-terminus of five soluble partners, including translation initiation factor 2 domain I (IF2), glutathione S-transferase (GST), maltose-binding protein (MBP), small ubiquitin modifying protein (SUMO) and N-utilization substance A (NusA), to screen for their abilities to improve the solubility of recombinant HepA when expressed in E. coli. A convenient two-step immobilized metal affinity chromatography (IMAC) method was utilized to purify these fused HepA hybrids. We show that, except for NusA, the fusion partners dramatically improved the soluble expression of recombinant HepA, with IF2-HepA and SUMO-HepA creating almost completely soluble HepA (98% and 94% of expressed HepA fusions are soluble, respectively), which is the highest yield rate published to the best of our knowledge. Moreover, all of the fusion proteins show comparable biological activity to their unfused counterparts and could be used directly without removing the fusion tags. Together, our results provide a viable option to produce large amounts of soluble and active recombinant HepA for manufacturing.
Collapse
Affiliation(s)
- Jing Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | | | | | | | | | | |
Collapse
|
17
|
Sankian M, Talebi F, Moghadam M, Vahedi F, Azad FJ, Varasteh AR. Molecular cloning and expression of Cucumisin (Cuc m 1), a subtilisin-like protease of Cucumis melo in Escherichia coli. Allergol Int 2011; 60:61-7. [PMID: 21173569 DOI: 10.2332/allergolint.10-oa-0195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Accepted: 08/24/2010] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Oral allergy syndrome resulted from plant-derived foods is frequent among adults. Allergy to melon (cucumis melo) is one of the most frequent fruit allergies in Iran. Three different major allergens have been found in Cucumis melo that Cuc m 1 (cucumisin) has been identified as the major allergen of melon. Cucumisin is an alkaline serine protease that it is found as a 78kDa protein in precursor form. The aim of this study was production of recombinant Cuc m 1 in Escherichia coli (E. coli) cells and characterization of its allergenicity property. METHODS Production of recombinant Cuc m 1 was carried out by cDNA cloning technique into the pET32b(+) vector using specific primers designed based on cucumisin nucleotide sequence available in Genebank database, cucumisin encoding gene and directional cloning method. Cloned plasmid into E. coli TOP10 was transformed into E. coli BL21 and expression of the protein was induced by IPTG. The recombinant protein was purified via Ni-NTA affinity chromatography using histidine tag in recombinant protein. IgE binding of this protein was assessed by IgE-immunoblotting, ELISA and inhibition ELISA. RESULTS The directional cloning was resulted in expression of a fusion Cuc m 1. Immunoblotting with sera of patients allergic to melon showed strong reactivity with purified protein band. Inhibition assays demonstrated that purified rCuc m 1 could be the same with natural form of Cuc m 1 in total extract. CONCLUSIONS In the present study, we have provided a functional recombinant cucumisin allergen, rCuc m 1 with 86kDa, which may be used as a standard allergen for clinical diagnosis and study of allergy to melon.
Collapse
|
18
|
Cloning and expression of Che a 1, the major allergen of Chenopodium album in Escherichia coli. Appl Biochem Biotechnol 2010; 163:895-905. [PMID: 20872185 DOI: 10.1007/s12010-010-9093-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 09/13/2010] [Indexed: 01/03/2023]
Abstract
Chenopodium album is a weedy annual plant in the genus Chenopodium. C. album pollen represents a predominant allergen source in Iran. The main C. album pollen allergens have been described as Che a 1, Che a 2, and Che a 3. The aim of this work was to clone the Che a 1 in Escherichia coli to establish a system for overproduction of the recombinant Che a 1 (rChe a 1). In order to clone this allergen, the pollens were subjected to RNA extraction. A full-length fragment encoding Che a 1 was prepared by polymerase chain reaction amplification of the first-strand cDNA synthesized from extracted RNA. Cloning was carried out by inserting the cDNA into the pET21b+ vector, thereafter the construct was transformed into E. coli Top10 cells and expression of the protein was induced by IPTG. The rChe a 1 was purified using histidine tag in recombinant protein by means of Ni-NTA affinity chromatography. IgE immunoblotting, ELISA, and inhibition ELISA were done to evaluate IgE binding of the purified protein. In conclusion, the cDNA for the major allergen of the C. album pollen, Che a 1, was successfully cloned and rChe a 1 was purified. Inhibition assays demonstrated allergic subjects sera reacted with rChe a 1 similar to natural Che a 1 in crude extract of C. album pollen. This study is the first report of using the E. coli as a prokaryotic system for Che a 1 cloning and production of rChe a 1.
Collapse
|
19
|
Varasteh AR, Moghadam M, Vahedi F, Kermani T, Sankian M. Cloning and expression of the allergen Cro s 2 profilin from saffron (Crocus sativus). Allergol Int 2009; 58:429-35. [PMID: 19628979 DOI: 10.2332/allergolint.09-oa-0088] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2009] [Accepted: 03/13/2009] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Profilin is a panallergen that is recognized by IgE in allergic patients. Allergy to saffron (Crocus sativus) pollen has been described in people exposed to its pollen. Saffron contains a profilin that may cause allergic reactions in atopic subjects. The aim of this study was to describe the cloning, expression and purification of saffron profilin from pollen. METHODS Cloning of saffron profilin was performed by polymerase chain reaction using specific primers from saffron pollen RNA. Expression was carried out in Escherichia coli BL21 (DE3) using a vector pET-102- TOPO. A recombinant fusion protein was expressed and the recombinant profilin was purified by metal precipitation. Immunological characterization was performed by immunoblotting experiments. RESULTS The 34kDa- recombinant saffron profilin, Cro s 2, as a fusion protein was purified. Immunoblotting tested with the sera of allergic patients showed a specific reaction with the recombinant Cro s 2 band. CONCLUSIONS The sequence of Cro s 2 showed a high degree of identity and similarity to other plant profilins and the recombinant saffron profilin, Cro s 2, may be used for target-specific diagnosis and structural analyses and investigation of cross reactivity of Cro s 2 with other plant profilins.
Collapse
Affiliation(s)
- Abdol-Reza Varasteh
- Immunobiochemistry Lab, Immunology Research Center, Avicenna Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | | | | |
Collapse
|
20
|
Xiao J, Burn A, Tolbert TJ. Increasing solubility of proteins and peptides by site-specific modification with betaine. Bioconjug Chem 2008; 19:1113-8. [PMID: 18498185 DOI: 10.1021/bc800063k] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Proteins and peptides with low solubility and which aggregate are often encountered in biochemical studies and in pharmaceutical applications of polypeptides. Here, we report a new strategy to improve solubility and prevent aggregation of polypeptides using site-specific modification with the small molecule betaine, which contains a quaternary ammonium moiety. Betaine was site-selectively attached to the N-termini of two aggregation-prone polypeptide models, the bacterial enzyme xanthine-guanine phosphoribosyltransferase (CG-GPRT) and the HIV entry inhibitor peptide CG-T20, utilizing native chemical ligation. N-terminal cysteines for the betaine ligation reactions were generated from His-tagged fusion proteins using TEV protease cleavage. Ligation of the betaine thioester (1) to the N-terminal cysteine-containing polypeptide models proceeded in high yield, though denaturing conditions were required for CG-T20 due to the hydrophobic nature of this peptide. CD spectroscopy and GPRT activity assays indicate that the betaine modification of CG-GPRT and CG-T20 does not significantly affect structure or activity of the polypeptides. Solubility and turbidity measurements of betaine-modified and unmodified polypeptides demonstrate that betaine modification can greatly increase solubility. Finally, it is shown that betaine-modified CG-T20 acts as an inhibitor of the aggregation of unmodified CG-T20.
Collapse
Affiliation(s)
- Junpeng Xiao
- Department of Chemistry and Interdisciplinary Biochemistry Graduate Program, Indiana University,Bloomington, Indiana 47405, USA
| | | | | |
Collapse
|