1
|
He GJ, Yan YB. Contributions of the C-terminal domain to poly(A)-specific ribonuclease (PARN) stability and self-association. Biochem Biophys Rep 2019; 18:100626. [PMID: 30949591 PMCID: PMC6430076 DOI: 10.1016/j.bbrep.2019.100626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/14/2019] [Accepted: 03/12/2019] [Indexed: 12/19/2022] Open
Abstract
Poly(A)-specific ribonuclease (PARN) catalyzes the degradation of mRNA poly(A) tail to regulate translation efficiency and mRNA decay in higher eukaryotic cells. The full-length PARN is a multi-domain protein containing the catalytic nuclease domain, the R3H domain, the RRM domain and the C-terminal intrinsically unstructured domain (CTD). The roles of the three well-structured RNA-binding domains have been extensively studied, while little is known about CTD. In this research, the impact of CTD on PARN stability and aggregatory potency was studied by comparing the thermal inactivation and denaturation behaviors of full-length PARN with two N-terminal fragments lacking CTD. Our results showed that K+ induced additional regular secondary structures and enhanced PARN stability against heat-induced inactivation, unfolding and aggregation. CTD prevented PARN from thermal inactivation but promoted thermal aggregation to initiate at a temperature much lower than that required for inactivation and unfolding. Blue-shift of Trp fluorescence during thermal transitions suggested that heat treatment induced rearrangements of domain organizations. CTD amplified the stabilizing effect of K+, implying the roles of CTD was mainly achieved by electrostatic interactions. These results suggested that CTD might dynamically interact with the main body of the molecule and release of CTD promoted self-association via electrostatic interactions. The C-terminal domain enhanced PARN stability against thermal inactivation. K+ reinforced the protective effect of the C-terminal domain. The C-terminal domain of PARN was intrinsically aggregation-prone. K+ modulated PARN self-association via the C-terminal domain.
Collapse
Affiliation(s)
- Guang-Jun He
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yong-Bin Yan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
2
|
Cantharidin represses invasion of pancreatic cancer cells through accelerated degradation of MMP2 mRNA. Sci Rep 2015; 5:11836. [PMID: 26135631 PMCID: PMC4488834 DOI: 10.1038/srep11836] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 05/22/2015] [Indexed: 12/22/2022] Open
Abstract
Cantharidin is an active constituent of mylabris, a traditional Chinese medicine, and is a potent and selective inhibitor of protein phosphatase 2A (PP2A) that plays an important role in cell cycle control, apoptosis, and cell-fate determination. In the present study, we found that cantharidin repressed the invasive ability of pancreatic cancer cells and downregulated matrix metalloproteinase 2 (MMP2) expression through multiple pathways, including ERK, JNK, PKC, NF-κB, and β-catenin. Interestingly, transcriptional activity of the MMP2 promoter increased after treatment with PP2A inhibitors, suggesting the involvement of a posttranscriptional mechanism. By using an mRNA stability assay, we found accelerated degradation of MMP2 mRNA after treatment of cantharidin. Microarray analyses revealed that multiple genes involved in the 3' → 5' decay pathway were upregulated, especially genes participating in cytoplasmic deadenylation. The elevation of these genes were further demonstrated to be executed through ERK, JNK, PKC, NF-κB, and β-catenin pathways. Knockdown of PARN, RHAU, and CNOT7, three critical members involved in cytoplasmic deadenylation, attenuated the downregulation of MMP2. Hence, we present the mechanism of repressed invasion by cantharidin and other PP2A inhibitors through increased degradation of MMP2 mRNA by elevated cytoplasmic deadenylation.
Collapse
|
3
|
He GJ, Yan YB. Self-association of poly(A)-specific ribonuclease (PARN) triggered by the R3H domain. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:2077-85. [PMID: 25239613 DOI: 10.1016/j.bbapap.2014.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 09/08/2014] [Accepted: 09/09/2014] [Indexed: 10/24/2022]
Abstract
Poly(A)-specific ribonuclease (PARN) is a deadenylase with three RNA-binding domains (the nuclease, R3H and RRM domains) and a C-terminal domain. PARN participates in diverse physiological processes by regulating mRNA fates through deadenylation. PARN mainly exists as a dimer in dilute solutions. In this research, we found that PARN could self-associate into tetramer and high-order oligomers both in vitro and in living cells. Mutational and spectroscopic analysis indicated that PARN oligomerization was triggered by the R3H domain, which led to the solvent-exposed Trp219 fluorophore to become buried in a solvent-inaccessible microenvironment. The RRM and C-terminal domains also played a role in modulating the dissociation rate of the tetrameric PARN. Enzymatic analysis indicated that tetramerization did not affect the catalytic behavior of the full-length PARN and truncated enzymes containing the RRM domain, which might be caused by the high propensity of the dimeric proteins to self-associate into oligomers. Tetramerization significantly enhanced the catalytic activity and processivity of the truncated form with the removal of the RRM and C-terminal domains. The results herein suggested that self-association might be one of the regulation methods for PARN to achieve a highly regulated deadenylase activity. We propose that self-association may facilitate PARN to concentrate around the target mRNAs by restricted diffusion.
Collapse
Affiliation(s)
- Guang-Jun He
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yong-Bin Yan
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
4
|
Yan YB. Deadenylation: enzymes, regulation, and functional implications. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 5:421-43. [PMID: 24523229 DOI: 10.1002/wrna.1221] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/20/2013] [Accepted: 12/21/2013] [Indexed: 12/27/2022]
Abstract
Lengths of the eukaryotic messenger RNA (mRNA) poly(A) tails are dynamically changed by the opposing effects of poly(A) polymerases and deadenylases. Modulating poly(A) tail length provides a highly regulated means to control almost every stage of mRNA lifecycle including transcription, processing, quality control, transport, translation, silence, and decay. The existence of diverse deadenylases with distinct properties highlights the importance of regulating poly(A) tail length in cellular functions. The deadenylation activity can be modulated by subcellular locations of the deadenylases, cis-acting elements in the target mRNAs, trans-acting RNA-binding proteins, posttranslational modifications of deadenylase and associated factors, as well as transcriptional and posttranscriptional regulation of the deadenylase genes. Among these regulators, the physiological functions of deadenylases are largely dependent on the interactions with the trans-acting RNA-binding proteins, which recruit deadenylases to the target mRNAs. The task of these RNA-binding proteins is to find and mark the target mRNAs based on their sequence features. Regulation of the regulators can switch on or switch off deadenylation and thereby destabilize or stabilize the targeted mRNAs, respectively. The distinct domain compositions and cofactors provide various deadenylases the structural basis for the recruitments by distinct RNA-binding protein subsets to meet dissimilar cellular demands. The diverse deadenylases, the numerous types of regulators, and the reversible posttranslational modifications together make up a complicated network to precisely regulate intracellular mRNA homeostasis. This review will focus on the diverse regulators of various deadenylases and will discuss their functional implications, remaining problems, and future challenges.
Collapse
Affiliation(s)
- Yong-Bin Yan
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
5
|
Virtanen A, Henriksson N, Nilsson P, Nissbeck M. Poly(A)-specific ribonuclease (PARN): an allosterically regulated, processive and mRNA cap-interacting deadenylase. Crit Rev Biochem Mol Biol 2013; 48:192-209. [PMID: 23496118 DOI: 10.3109/10409238.2013.771132] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Deadenylation of eukaryotic mRNA is a mechanism critical for mRNA function by influencing mRNA turnover and efficiency of protein synthesis. Here, we review poly(A)-specific ribonuclease (PARN), which is one of the biochemically best characterized deadenylases. PARN is unique among the currently known eukaryotic poly(A) degrading nucleases, being the only deadenylase that has the capacity to directly interact during poly(A) hydrolysis with both the m(7)G-cap structure and the poly(A) tail of the mRNA. In short, PARN is a divalent metal-ion dependent poly(A)-specific, processive and cap-interacting 3'-5' exoribonuclease that efficiently degrades poly(A) tails of eukaryotic mRNAs. We discuss in detail the mechanisms of its substrate recognition, catalysis, allostery and processive mode of action. On the basis of biochemical and structural evidence, we present and discuss a working model for PARN action. Models of regulation of PARN activity by trans-acting factors are discussed as well as the physiological relevance of PARN.
Collapse
Affiliation(s)
- Anders Virtanen
- Department of Cell and Molecular Biology, Program of Chemical Biology, Uppsala University, Uppsala, Sweden.
| | | | | | | |
Collapse
|
6
|
He GJ, Zhang A, Liu WF, Yan YB. Distinct roles of the R3H and RRM domains in poly(A)-specific ribonuclease structural integrity and catalysis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1089-98. [PMID: 23388391 DOI: 10.1016/j.bbapap.2013.01.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 01/26/2013] [Accepted: 01/28/2013] [Indexed: 10/27/2022]
Abstract
Deadenylases specifically catalyze the degradation of eukaryotic mRNA poly(A) tail in the 3'- to 5'-end direction with the release of 5'-AMP as the product. Among the deadenylase family, poly(A)-specific ribonuclease (PARN) is unique in its domain composition, which contains three potential RNA-binding domains: the catalytic nuclease domain, the R3H domain and the RRM domain. In this research, we investigated the roles of these RNA-binding domains by comparing the structural features and enzymatic properties of mutants lacking either one or two of the three RNA-binding domains. The results showed that the R3H domain had the ability to bind various oligonucleotides at the micromolar level with no oligo(A) specificity. The removal of the R3H domain dissociated PARN into monomers, which still possessed the RNA-binding ability and catalytic functions. Unlike the critical role of the RRM domain in PARN processivity, the removal of the R3H domain did not affect the catalytic pattern of PARN. Our results suggested that both R3H and RRM domains were essential for the high affinity of long poly(A) substrate, but the R3H domain did not contribute to the substrate recognition of PARN. Compared to the RRM domain, the R3H domain played a more important role in the structural integrity of the dimeric PARN. The multiple RNA-binding domain architecture endows PARN the property of highly efficient catalysis in a highly processive mode.
Collapse
Affiliation(s)
- Guang-Jun He
- School of Life Sciences, Tsinghua University, Beijing, China
| | | | | | | |
Collapse
|
7
|
Abstract
The shortening of the 3′-end poly(A) tail, also called deadenylation, is crucial to the regulation of mRNA processing, transportation, translation and degradation. The deadenylation process is achieved by deadenylases, which specifically catalyze the removal of the poly(A) tail at the 3′-end of eukaryotic mRNAs and release 5′-AMP as the product. To achieve their physiological functions, all deadenylases have numerous binding partners that may regulate their catalytic properties or recruit them into various protein complexes. To study the effects of various partners, it is important to develop new deadenylase assay that can be applied either in vivo or in vitro. In this research, we developed the deadenylase assay by the size-exclusion chromatography (SEC) method. The SEC analysis indicated that the poly(A) or oligo(A) substrate and the product AMP could be successfully separated and quantified. The enzymatic parameters of deadenylase could be obtained by quantifying the AMP generation. When using the commercial poly(A) as the substrate, a biphasic catalytic process was observed, which might correlate to the two distinct states of poly(A) in the commercial samples. Different lots of commercial poly(A) had dissimilar size distributions and were dissimilar in response to the degradation of deadenylase. The deadenylation pattern, processive or distributive, could also be investigated using the SEC assay by monitoring the status of the substrate and the generation kinetics of AMP and A2. The SEC assay was applicable to both simple samples using the purified enzyme and complex enzyme reaction conditions such as using protein mixtures or crude cell extracts as samples. The influence of solutes with absorption at 254 nm could be successfully eliminated by constructing the different SEC profiles.
Collapse
|
8
|
Le HTT, Sorrell AM, Siddle K. Two isoforms of the mRNA binding protein IGF2BP2 are generated by alternative translational initiation. PLoS One 2012; 7:e33140. [PMID: 22427968 PMCID: PMC3299737 DOI: 10.1371/journal.pone.0033140] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 02/09/2012] [Indexed: 12/11/2022] Open
Abstract
IGF2BP2 is a member of a family of mRNA binding proteins that, collectively, have been shown to bind to several different mRNAs in mammalian cells, including one of the mRNAs encoding insulin-like growth factor-2. Polymorphisms in the Igf2bp2 gene are associated with risk of developing type 2 diabetes, but detailed functional characterisation of IGF2BP2 protein is lacking. By immunoblotting with C-terminally reactive antibodies we identified a novel IGF2BP2 isoform with a molecular weight of 58 kDa in both human and rodents, that is expressed at somewhat lower levels than the full-length 65 kDa protein. We demonstrated by mutagenesis that this isoform is generated by alternative translation initiation at the internal Met69. It lacks a conserved N-terminal RNA Recognition Motif (RRM) and would be predicted to differ functionally from the canonical full length isoform. We further investigated IGF2BP2 mRNA transcripts by amplification of cDNA using 5'-RACE. We identified multiple transcription start sites of the human, mouse and rat Igf2bp2 genes in a highly conserved region only 50-90 nts upstream of the major translation start site, ruling out the existence of N-terminally extended isoforms. We conclude that structural heterogeneity of IGF2BP2 protein should be taken into account when considering cellular function.
Collapse
Affiliation(s)
| | | | - Kenneth Siddle
- University of Cambridge Metabolic Research Laboratories and Department of Clinical Biochemistry, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, United Kingdom
| |
Collapse
|
9
|
Niedzwiecka A, Lekka M, Nilsson P, Virtanen A. Global architecture of human poly(A)-specific ribonuclease by atomic force microscopy in liquid and dynamic light scattering. Biophys Chem 2011; 158:141-9. [DOI: 10.1016/j.bpc.2011.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 06/16/2011] [Accepted: 06/16/2011] [Indexed: 11/26/2022]
|
10
|
Dissimilar roles of the four conserved acidic residues in the thermal stability of poly(A)-specific ribonuclease. Int J Mol Sci 2011; 12:2901-16. [PMID: 21686157 PMCID: PMC3116163 DOI: 10.3390/ijms12052901] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 03/23/2011] [Accepted: 04/18/2011] [Indexed: 11/17/2022] Open
Abstract
Divalent metal ions are essential for the efficient catalysis and structural stability of many nucleotidyl-transfer enzymes. Poly(A)-specific ribonuclease (PARN) belongs to the DEDD superfamily of 3′-exonucleases, and the active site of PARN contains four conserved acidic amino acid residues that coordinate two Mg2+ ions. In this research, we studied the roles of these four acidic residues in PARN thermal stability by mutational analysis. It was found that Mg2+ significantly decreased the rate but increased the aggregate size of the 54 kDa wild-type PARN in a concentration-dependent manner. All of the four mutants decreased PARN thermal aggregation, while the aggregation kinetics of the mutants exhibited dissimilar Mg2+-dependent behavior. A comparison of the kinetic parameters indicated that Asp28 was the most crucial one to the binding of the two Mg2+ ions, while metal B might be more important in PARN structural stability. The spectroscopic and aggregation results also suggested that the alterations in the active site structure by metal binding or mutations might lead to a global conformational change of the PARN molecule.
Collapse
|
11
|
Algorithm for the Analysis of Tryptophan Fluorescence Spectra and Their Correlation with Protein Structural Parameters. ALGORITHMS 2009. [DOI: 10.3390/a2031155] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
12
|
Balatsos NAA, Anastasakis D, Stathopoulos C. Inhibition of human poly(A)-specific ribonuclease (PARN) by purine nucleotides: kinetic analysis. J Enzyme Inhib Med Chem 2009; 24:516-23. [PMID: 18763168 DOI: 10.1080/14756360802218763] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Poly(A)-specific ribonuclease (PARN) is a cap-interacting and poly(A)-specific 3'-exoribonuclease that efficiently degrades mRNA poly(A) tails. Based on the enzyme's preference for its natural substrates, we examined the role of purine nucleotides as potent effectors of human PARN activity. We found that all purine nucleotides tested can reduce poly(A) degradation by PARN. Detailed kinetic analysis revealed that RTP nucleotides behave as non-competitive inhibitors while RDP and RMP exhibit competitive inhibition. Mg(2 + ) which is a catalytically important mediator of PARN activity can release inhibition of RTP and RDP but not RMP. Although many strategies have been proposed for the regulation of PARN activity, very little is known about the modulation of PARN activity by small molecule effectors, such as nucleotides. Our data imply that PARN activity can be modulated by purine nucleotides in vitro, providing an additional simple regulatory mechanism.
Collapse
Affiliation(s)
- Nikolaos A A Balatsos
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | | | | |
Collapse
|
13
|
He GJ, Zhang A, Liu WF, Cheng Y, Yan YB. Conformational stability and multistate unfolding of poly(A)-specific ribonuclease. FEBS J 2009; 276:2849-60. [PMID: 19459940 DOI: 10.1111/j.1742-4658.2009.07008.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Poly(A)-specific ribonuclease (PARN) specifically catalyzes the degradation of the poly(A) tails of single-stranded mRNAs in a highly processive mode. PARN participates in diverse and important intracellular processes by acting as a regulator of mRNA stability and translational efficiency. In this article, the equilibrium unfolding of PARN was studied using both guanidine hydrochloride and urea as chemical denaturants. The unfolding of PARN was characterized as a multistate process, but involving dissimilar equilibrium intermediates when denatured by the two denaturants. A comparison of the spectral characteristics of these intermediates indicated that the conformational changes at low concentrations of the chemical denaturants were more likely to be rearrangements of the tertiary and quaternary structures. In particular, an inactive molten globule-like intermediate was identified to exist as soluble non-native oligomers, and the formation of the oligomers was modulated by electrostatic interactions. An active dimeric intermediate unique to urea-induced unfolding was characterized to have increased regular secondary structures and modified tertiary structures, implying that additional regular structures could be induced by environmental stresses. The dissimilarity in the unfolding pathways induced by guanidine hydrochloride and urea suggest that electrostatic interactions play an important role in PARN stability and regulation. The appearance of multiple intermediates with distinct properties provides the structural basis for the multilevel regulation of PARN by conformational changes.
Collapse
Affiliation(s)
- Guang-Jun He
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, China
| | | | | | | | | |
Collapse
|
14
|
NFX1-123 increases hTERT expression and telomerase activity posttranscriptionally in human papillomavirus type 16 E6 keratinocytes. J Virol 2009; 83:6446-56. [PMID: 19369336 DOI: 10.1128/jvi.02556-08] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
High-risk human papillomavirus (HPV) E6 protein induces telomerase activity through transcriptional activation of hTERT, the catalytic subunit of telomerase. HPV type 16 (HPV16) E6 interacts with two splice variants of NFX1 to increase hTERT expression. NFX1-91 is a transcriptional repressor of hTERT that is polyubiquitinated and targeted for degradation by HPV16 E6 in concert with E6-associated protein. We previously showed that NFX1-123 augments hTERT expression through binding to cytoplasmic poly(A) binding proteins (PABPCs). In this study, we determined that unlike NFX1-91, NFX1-123 is a cytoplasmic protein that colocalized with PABPCs but does not shuttle with PABPCs between the nucleus and cytoplasm. NFX1-123 requires both its PAM2 motif, with which it binds PABPCs, and its R3H domain, which has putative nucleic acid binding capabilities, to increase hTERT mRNA levels and telomerase activity in keratinocytes expressing HPV16 E6. In keratinocytes expressing HPV16 E6 and overexpressing NFX1-123, there was increased protein expression from in vitro-transcribed RNA fused with the 5' untranslated region (5' UTR) of hTERT. This posttranscriptional increase in expression required the PAM2 motif and R3H domain of NFX1-123 as well as the coexpression of HPV16 E6. NFX1-123 bound endogenous hTERT mRNA and increased its stability in HPV16 E6-expressing human foreskin keratinocytes, and NFX1-123 increased the stability of in vitro-transcribed RNA fused with the 5' UTR of hTERT. Together, these studies describe the first evidence of posttranscriptional regulation of hTERT, through the direct interaction of the cytoplasmic protein NFX1-123 with hTERT mRNA, in HPV16 E6-expressing keratinocytes.
Collapse
|
15
|
Allosteric regulation of human poly(A)-specific ribonuclease by cap and potassium ions. Biochem Biophys Res Commun 2008; 379:341-5. [PMID: 19103158 DOI: 10.1016/j.bbrc.2008.12.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Accepted: 12/11/2008] [Indexed: 11/20/2022]
Abstract
Poly(A)-specific ribonuclease (PARN), a multi-domain dimeric enzyme, is a deadenylase in higher vertebrates and plants with the unique property of cap-dependent catalysis and processivity. We found that PARN is an allosteric enzyme, and potassium ions and the cap analogue were effectors with binding sites located at the RRM domain. The binding of K(+) to the entire RRM domain led to an increase of substrate-binding affinity but a decrease in the cooperativity of the substrate-binding site, while the binding of the cap analogue decreased both the catalytic efficiency and the substrate-binding affinity. The dissimilar kinetic properties of the enzymes with and without the entire RRM domain suggested that the RRM domain played a central role in the allosteric communications of PARN regulation. The allostery is proposed to be important to the multi-level regulation of PARN to achieve precise control of the mRNA poly(A) tail length.
Collapse
|
16
|
Liu WF, Yan YB. Biophysical and biochemical characterization of recombinant human Pop2 deadenylase. Protein Expr Purif 2008; 60:46-52. [DOI: 10.1016/j.pep.2008.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 03/12/2008] [Accepted: 03/16/2008] [Indexed: 11/25/2022]
|
17
|
Liu WF, Zhang A, He GJ, Yan YB. The R3H domain stabilizes poly(A)-specific ribonuclease by stabilizing the RRM domain. Biochem Biophys Res Commun 2007; 360:846-51. [PMID: 17624302 DOI: 10.1016/j.bbrc.2007.06.139] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Accepted: 06/28/2007] [Indexed: 11/29/2022]
Abstract
Poly(A)-specific ribonuclease (PARN), a key enzyme involved in eukaryotic mRNA decay, contains one catalytic domain and two RNA-binding domains. Here we found that at least one RNA-binding domain is required for the substrate binding, but not for the catalysis of PARN. The removal of the R3H domain led to a dramatic decrease in PARN stability and a change in the aggregation kinetic regime, while only minor effects were observed for the removal of the RRM domain or both RNA-binding domains. Thus the R3H domain might stabilize PARN by acting as a protector or intermolecular chaperone of the RRM domain.
Collapse
Affiliation(s)
- Wei-Feng Liu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | | | | | | |
Collapse
|