1
|
Stevanovic M, Drakulic D, Lazic A, Ninkovic DS, Schwirtlich M, Mojsin M. SOX Transcription Factors as Important Regulators of Neuronal and Glial Differentiation During Nervous System Development and Adult Neurogenesis. Front Mol Neurosci 2021; 14:654031. [PMID: 33867936 PMCID: PMC8044450 DOI: 10.3389/fnmol.2021.654031] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022] Open
Abstract
The SOX proteins belong to the superfamily of transcription factors (TFs) that display properties of both classical TFs and architectural components of chromatin. Since the cloning of the Sox/SOX genes, remarkable progress has been made in illuminating their roles as key players in the regulation of multiple developmental and physiological processes. SOX TFs govern diverse cellular processes during development, such as maintaining the pluripotency of stem cells, cell proliferation, cell fate decisions/germ layer formation as well as terminal cell differentiation into tissues and organs. However, their roles are not limited to development since SOX proteins influence survival, regeneration, cell death and control homeostasis in adult tissues. This review summarized current knowledge of the roles of SOX proteins in control of central nervous system development. Some SOX TFs suspend neural progenitors in proliferative, stem-like state and prevent their differentiation. SOX proteins function as pioneer factors that occupy silenced target genes and keep them in a poised state for activation at subsequent stages of differentiation. At appropriate stage of development, SOX members that maintain stemness are down-regulated in cells that are competent to differentiate, while other SOX members take over their functions and govern the process of differentiation. Distinct SOX members determine down-stream processes of neuronal and glial differentiation. Thus, sequentially acting SOX TFs orchestrate neural lineage development defining neuronal and glial phenotypes. In line with their crucial roles in the nervous system development, deregulation of specific SOX proteins activities is associated with neurodevelopmental disorders (NDDs). The overview of the current knowledge about the link between SOX gene variants and NDDs is presented. We outline the roles of SOX TFs in adult neurogenesis and brain homeostasis and discuss whether impaired adult neurogenesis, detected in neurodegenerative diseases, could be associated with deregulation of SOX proteins activities. We present the current data regarding the interaction between SOX proteins and signaling pathways and microRNAs that play roles in nervous system development. Finally, future research directions that will improve the knowledge about distinct and various roles of SOX TFs in health and diseases are presented and discussed.
Collapse
Affiliation(s)
- Milena Stevanovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia.,Faculty of Biology, University of Belgrade, Belgrade, Serbia.,Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Danijela Drakulic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Andrijana Lazic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Danijela Stanisavljevic Ninkovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Marija Schwirtlich
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Marija Mojsin
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
2
|
Yang WT, Feng Q, Ma HM, Lei D, Zheng PS. NF-YA promotes the cell proliferation and tumorigenic properties by transcriptional activation of SOX2 in cervical cancer. J Cell Mol Med 2020; 24:12464-12475. [PMID: 32954681 PMCID: PMC7686972 DOI: 10.1111/jcmm.15777] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 12/24/2022] Open
Abstract
NF‐YA is considered as a crucial regulator for the maintenance of cancer stem cell (CSC) and involved in various types of malignant tumours. However, the exact function and molecular mechanisms of NF‐YA in the progression of cervical cancer remains poorly understood. Here, the expression of NF‐YA detected by immunohistochemistry was gradually increased from normal cervical tissues, to the high‐grade squamous intraepithelial lesions, and then to cervical cancer tissues. NF‐YA promoted the cell proliferation and tumorigenic properties of cervical cancer cells as well as tumorsphere formation and chemoresistance in vitro. The luciferase reporter assay combined with mutagenesis analyses and Western blotting showed that NF‐YA trans‐activated the expression of SOX2 in cervical cancer. Furthermore, quantitative chromatin immunoprecipitation (qChIP) and electrophoretic mobility shift assay (EMSA) confirmed that NF‐YA protein directly bound to the CCAAT box region located upstream of the SOX2 promoter. Together, our data demonstrated that NF‐YA was highly expressed in cervical cancer and promoted the cell proliferation, tumorigenicity and CSC characteristic by trans‐activating the expression of SOX2.
Collapse
Affiliation(s)
- Wen-Ting Yang
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, Xi'an, China
| | - Qian Feng
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, Xi'an, China
| | - Hong-Mei Ma
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, Xi'an, China
| | - Dan Lei
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, Xi'an, China
| | - Peng-Sheng Zheng
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of the People's Republic of China, Shaanxi, Xi'an, China
| |
Collapse
|
3
|
Topalovic V, Krstic A, Schwirtlich M, Dolfini D, Mantovani R, Stevanovic M, Mojsin M. Epigenetic regulation of human SOX3 gene expression during early phases of neural differentiation of NT2/D1 cells. PLoS One 2017; 12:e0184099. [PMID: 28886103 PMCID: PMC5590877 DOI: 10.1371/journal.pone.0184099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 08/17/2017] [Indexed: 01/09/2023] Open
Abstract
Sox3/SOX3 is one of the earliest neural markers in vertebrates. Together with the Sox1/SOX1 and Sox2/SOX2 genes it is implicated in the regulation of stem cell identity. In the present study, we performed the first analysis of epigenetic mechanisms (DNA methylation and histone marks) involved in the regulation of the human SOX3 gene expression during RA-induced neural differentiation of NT2/D1 cells. We show that the promoter of the human SOX3 gene is extremely hypomethylated both in undifferentiated NT2/D1 cells and during the early phases of RA-induced neural differentiation. By employing chromatin immunoprecipitation, we analyze several histone modifications across different regions of the SOX3 gene and their dynamics following initiation of differentiation. In the same timeframe we investigate profiles of selected histone marks on the promoters of human SOX1 and SOX2 genes. We demonstrate differences in histone signatures of SOX1, SOX2 and SOX3 genes. Considering the importance of SOXB1 genes in the process of neural differentiation, the present study contributes to a better understanding of epigenetic mechanisms implicated in the regulation of pluripotency maintenance and commitment towards the neural lineage.
Collapse
Affiliation(s)
- Vladanka Topalovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | | | - Marija Schwirtlich
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Diletta Dolfini
- Department of Biosciences, University of Milan, Milan, Italy
| | | | - Milena Stevanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Marija Mojsin
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
- * E-mail:
| |
Collapse
|
4
|
Gao J, Li P, Zhang W, Wang Z, Wang X, Zhang Q. Molecular Cloning, Promoter Analysis and Expression Profiles of the sox3 Gene in Japanese Flounder, Paralichthys olivaceus. Int J Mol Sci 2015; 16:27931-44. [PMID: 26610486 PMCID: PMC4661933 DOI: 10.3390/ijms161126079] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/12/2015] [Accepted: 11/13/2015] [Indexed: 12/24/2022] Open
Abstract
Sox3, which belongs to the SoxB1 subgroup, plays major roles in neural and gonadal development. In the present study, Japanese flounder Paralichthys olivaceus sox3 gene (Posox3) and its promoter sequence were isolated and characterized. The deduced PoSox3 protein contained 298 amino acids with a characteristic HMG-box domain. Alignment and phylogenetic analyses indicated that PoSox3 shares highly identical sequence with Sox3 homologues from different species. The promoter region of Posox3 has many potential transcription factor (TF) binding sites. The expression profiles of Posox3 in different developmental stages and diverse adult tissues were analyzed by quantitative real-time RT-PCR (qRT-PCR). Posox3 mRNA was maternally inherited, and maintained at a considerably high expression level between the blastula stage and the hatching stage during embryonic development. Posox3 was abundantly expressed in the adult brain and showed sexually dimorphic expression pattern. In situ hybridization (ISH) was carried out to investigate the cellular distribution of Posox3 in the ovary, and results showed the uniform distribution of Posox3 throughout the cytoplasm of oogonia and stage I–III oocytes. These results indicate that Posox3 has potentially vital roles in embryonic and neural development and may be involved in the oogenesis process. Our work provides a fundamental understanding of the structure and potential functions of Sox3 in Paralichthys olivaceus.
Collapse
Affiliation(s)
- Jinning Gao
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, 38 Dengzhou Road, Qingdao 266021, China.
- Key Laboratory of Marine Genetics and Breeding (MGB), Ministry of Education, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Peizhen Li
- Key Laboratory of Marine Genetics and Breeding (MGB), Ministry of Education, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Wei Zhang
- Key Laboratory of Marine Genetics and Breeding (MGB), Ministry of Education, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Zhigang Wang
- Key Laboratory of Marine Genetics and Breeding (MGB), Ministry of Education, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Xubo Wang
- Key Laboratory of Marine Genetics and Breeding (MGB), Ministry of Education, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding (MGB), Ministry of Education, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| |
Collapse
|
5
|
Mojsin M, Topalovic V, Marjanovic Vicentic J, Stevanovic M. Transcription factor NF-Y inhibits cell growth and decreases SOX2 expression in human embryonal carcinoma cell line NT2/D1. BIOCHEMISTRY (MOSCOW) 2015; 80:202-7. [PMID: 25756534 DOI: 10.1134/s0006297915020066] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Transcription factor NF-Y belongs to the embryonic stem cell transcription factor circuitry due to its role in the regulation of cell proliferation. We investigated the role of NF-Y in pluripotency maintenance using NT2/D1 cells as one of the best-characterized human embryonal carcinoma cell line. We investigated the efficiency of protein transduction and analyzed the effects of forced expression of short isoform of NF-Y A-subunit (NF-YAs) on NT2/D1 cell growth and expression of SOX2. We found that protein transduction is an efficient method for NF-Y overexpression in NT2/D1 cells. Next, we analyzed the effect of NF-YAs overexpression on NT2/D1 cell viability and detected significant reduction in cell growth. The negative effect of NF-YAs overexpression on NT2/D1 cell pluripotency maintenance was confirmed by the decrease in the level of the pluripotency marker SOX2. Finally, we checked the p53 status and determined that the NF-Y-induced inhibition of NT2/D1 cell growth is p53-independent.
Collapse
Affiliation(s)
- M Mojsin
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, 11010, Serbia.
| | | | | | | |
Collapse
|
6
|
Jasnic-Savovic J, Klajn A, Milivojevic M, Mojsin M, Nikcevic G. Human embryonal carcinoma cells in serum-free conditions as an in vitro model system of neural differentiation. Altern Lab Anim 2015; 43:9-18. [PMID: 25802994 DOI: 10.1177/026119291504300105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Serum is generally regarded as an essential component of many eukaryotic cell culture media, despite the fact that serum composition varies greatly and may be the source of a wide range of artefacts. The objective of this study was to assess serum-free growth conditions for the human embryonal carcinoma cell line, NT2/D1. These cells greatly resemble embryonic stem cells. In the presence of retinoic acid (RA), NT2/D1 cells irreversibly differentiate along the neuronal lineage. We have previously shown that the early phases of neural induction of these cells by RA involve the up-regulation of SOX3 gene expression. Our goal was to compare RA-induced differentiation of NT2/D1 cells in serum-containing and serum-free media, by using SOX3 protein levels as a marker of differentiation. We found that NT2/D1 cells can be successfully grown under serum-free conditions, and that the presence or absence of serum does not affect the level of SOX3 protein after a 48-hour RA induction. However, six days of RA treatment resulted in a marked increase in SOX3 protein levels in serum-free media compared to serum-containing media, indicating that serum might have an inhibitory effect on the expression of this neural differentiation marker. This finding is important for both basic and translational studies that hope to exploit cell culture conditions that are free of animal-derived products.
Collapse
Affiliation(s)
- Jovana Jasnic-Savovic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Andrijana Klajn
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Milena Milivojevic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Marija Mojsin
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Gordana Nikcevic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
7
|
Kawase S, Kuwako K, Imai T, Renault-Mihara F, Yaguchi K, Itohara S, Okano H. Regulatory factor X transcription factors control Musashi1 transcription in mouse neural stem/progenitor cells. Stem Cells Dev 2015; 23:2250-61. [PMID: 25058468 DOI: 10.1089/scd.2014.0219] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The transcriptional regulation of neural stem/progenitor cells (NS/PCs) is of great interest in neural development and stem cell biology. The RNA-binding protein Musashi1 (Msi1), which is often employed as a marker for NS/PCs, regulates Notch signaling to maintain NS/PCs in undifferentiated states by the translational repression of Numb expression. Considering these critical roles of Msi1 in the maintenance of NS/PCs, it is extremely important to elucidate the regulatory mechanisms by which Msi1 is selectively expressed in these cells. However, the mechanism regulating Msi1 transcription is unclear. We previously reported that the transcriptional regulatory region of Msi1 is located in the sixth intron of the Msi1 locus in NS/PCs, based on in vitro experiments. In the present study, we generated reporter transgenic mice for the sixth intronic Msi1 enhancer (Msi1-6IE), which show the reporter expression corresponding with endogenous Msi1-positive cells in developing and adult NS/PCs. We found that the core element responsible for this reporter gene activity includes palindromic Regulatory factor X (Rfx) binding sites and that Msi1-6IE was activated by Rfx. Rfx4, which was highly expressed in NS/PCs positive for the Msi1-6IE reporter, bound to this region, and both of the palindromic Rfx binding sites were required for the transactivation of Msi1-6IE. Furthermore, ectopic Rfx4 expression in the developing mouse cerebral cortex transactivates Msi1 expression in the intermediate zone. This study suggests that ciliogenic Rfx transcription factors regulate Msi1 expression through Msi1-6IE in NS/PCs.
Collapse
Affiliation(s)
- Satoshi Kawase
- 1 Department of Physiology, Keio University School of Medicine , Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
8
|
Kovacevic-Grujicic N, Mojsin M, Popovic J, Petrovic I, Topalovic V, Stevanovic M. Cyclic AMP response element binding (CREB) protein acts as a positive regulator of SOX3 gene expression in NT2/D1 cells. BMB Rep 2015; 47:197-202. [PMID: 24257117 PMCID: PMC4163894 DOI: 10.5483/bmbrep.2014.47.4.084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 04/29/2013] [Accepted: 06/20/2014] [Indexed: 11/20/2022] Open
Abstract
SOX3 is one of the earliest neural markers in vertebrates, playing the role in specifying neuronal fate. In this study we have established first functional link between CREB and human SOX3 gene which both have important roles in the nervous system throughout development and in the adulthood. Here we demonstrate both in vitro and in vivo that CREB binds to CRE half-site located -195 to -191 within the human SOX3 promoter. Overexpression studies with CREB or its dominant-negative inhibitor A-CREB indicate that this transcription factor acts as a positive regulator of basal SOX3 gene expression in NT2/D1 cells. This is further confirmed by mutational analysis where mutation of CREB binding site results in reduction of SOX3 promoter activity. Our results point at CREB as a positive regulator of SOX3 gene transcription in NT2/D1 cells, while its contribution to RA induction of SOX3 promoter is not prominent. [BMB Reports 2014; 47(4): 197-202]
Collapse
Affiliation(s)
- Natasa Kovacevic-Grujicic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, PO BOX 23, 11010 Belgrade, Serbia
| | - Marija Mojsin
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, PO BOX 23, 11010 Belgrade, Serbia
| | - Jelena Popovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, PO BOX 23, 11010 Belgrade, Serbia
| | - Isidora Petrovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, PO BOX 23, 11010 Belgrade, Serbia
| | - Vladanka Topalovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, PO BOX 23, 11010 Belgrade, Serbia
| | - Milena Stevanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, PO BOX 23, 11010 Belgrade, Serbia
| |
Collapse
|
9
|
A Systematic Survey and Characterization of Enhancers that Regulate Sox3 in Neuro-Sensory Development in Comparison with Sox2 Enhancers. BIOLOGY 2012; 1:714-35. [PMID: 24832516 PMCID: PMC4009812 DOI: 10.3390/biology1030714] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 11/06/2012] [Accepted: 11/09/2012] [Indexed: 11/17/2022]
Abstract
Development of neural and sensory primordia at the early stages of embryogenesis depends on the activity of two B1 Sox transcription factors, Sox2 and Sox3. The embryonic expression patterns of the Sox2 and Sox3 genes are similar, yet they show gene-unique features. We screened for enhancers of the 231-kb genomic region encompassing Sox3 of chicken, and identified 13 new enhancers that showed activity in different domains of the neuro-sensory primordia. Combined with the three Sox3-proximal enhancers determined previously, at least 16 enhancers were involved in Sox3 regulation. Starting from the NP1 enhancer, more enhancers with different specificities are activated in sequence, resulting in complex overlapping patterns of enhancer activities. NP1 was activated in the caudal lateral epiblast adjacent to the posterior growing end of neural plate, and by the combined action of Wnt and Fgf signaling, similar to the Sox2 N1 enhancer involved in neural/mesodermal dichotomous cell lineage segregation. The Sox3 D5 enhancer and Sox2 N3 enhancer were also activated similarly in the diencephalon, optic vesicle and lens placode, suggesting analogies in their regulation. In general, however, the specificities of the enhancers were not identical between Sox3 and Sox2, including the cases of the NP1 and D5 enhancers.
Collapse
|
10
|
Mojsin M, Popovic J, Kovacevic Grujicic N, Stevanovic M. TG-interacting factor (TGIF) downregulates SOX3 gene expression in the NT2/D1 cell line. J Genet Genomics 2011; 39:19-27. [PMID: 22293114 DOI: 10.1016/j.jgg.2011.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 10/07/2011] [Accepted: 11/30/2011] [Indexed: 10/14/2022]
Abstract
SOX3 is a member of the Sox gene family implicated in brain formation and cognitive function. It is considered to be one of the earliest neural markers in vertebrates, playing a role in specifying neuronal fate. Recently, we have established the first link between TALE (three-amino-acid loop extension) proteins, PBX1 (pre-B-cell leukemia homeobox 1) and MEIS1 (myeloid ecotropic viral integration site 1 homologue), and the expression of the human SOX3 gene. Here we present the evidence that TGIF (TG-interacting factor) is an additional TALE superfamily member involved in the regulation of human SOX3 gene expression in NT2/D1 cells by direct interaction with the consensus binding site that is conserved in primate orthologue promoters. Functional analysis demonstrated that mutation of the TGIF binding site resulted in the activation of SOX3 promoter. TGIF overexpression downregulates SOX3 promoter activity and decreases endogenous SOX3 protein expression in both uninduced and retinoic acid (RA)-induced NT2/D1 cells. Up to now, this is the first transcription factor identified as a negative regulator of SOX3 gene expression. The obtained results further underscore the significance of TALE proteins as important transcriptional regulators of SOX3 gene expression.
Collapse
Affiliation(s)
- Marija Mojsin
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia.
| | | | | | | |
Collapse
|
11
|
Nikčević G, Kovačević-Grujičić N, Mojsin M, Krstić A, Savić T, Stevanović M. Regulation of the SOX3 gene expression by retinoid receptors. Physiol Res 2011; 60:S83-91. [PMID: 21777018 DOI: 10.33549/physiolres.932184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Sox3/SOX3 gene is considered to be one of the earliest neural markers in vertebrates. Despite the mounting evidence that Sox3/SOX3 is one of the key players in the development of the nervous system, limited data are available regarding the transcriptional regulation of its expression. This review is focused on the retinoic acid induced regulation of SOX3 gene expression, with particular emphasis on the involvement of retinoid receptors. Experiments with human embryonal carcinoma cells identified two response elements involved in retinoic acid/retinoid X receptor-dependent activation of the SOX3 gene expression: distal atypical retinoic acid-response element, consisting of two unique G-rich boxes separated by 49 bp, and proximal element comprising DR-3-like motif, composed of two imperfect hexameric half-sites. Importantly, the retinoic acid-induced SOX3 gene expression could be significantly down-regulated by a synthetic antagonist of retinoid receptors. This cell model provides a solid base for further studies on mechanism(s) underlying regulation of expression of SOX3 gene, which could improve the understanding of molecular signals that induce neurogenesis in the stem/progenitor cells both during development and in adulthood.
Collapse
Affiliation(s)
- G Nikčević
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia.
| | | | | | | | | | | |
Collapse
|
12
|
Häkkinen A, Healy S, Jacobs HT, Ribeiro AS. Genome wide study of NF-Y type CCAAT boxes in unidirectional and bidirectional promoters in human and mouse. J Theor Biol 2011; 281:74-83. [DOI: 10.1016/j.jtbi.2011.04.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 04/05/2011] [Accepted: 04/23/2011] [Indexed: 11/16/2022]
|
13
|
Involvement of ubiquitous and tale transcription factors, as well as liganded RXRα, in the regulation of human SOX2 gene expression in the NT2/D1 embryonal carcinoma cell line. ARCH BIOL SCI 2010. [DOI: 10.2298/abs1002199m] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
SOX2 is a key transcription factor in embryonic development representing a universal marker of pluripotent stem cells. Based on the functional redundancy and overlapping expression patterns of SOXB1 subgroup members during development, the goal of this study has been to analyze if some aspects of regulation of expression are preserved between human SOX2 and SOX3 genes. Thus, we have tested several transcription factors previously demonstrated to play roles in controlling SOX3 gene activity for potential participation in the regulation of SOX2 gene expression in NT2/D1 cells. Here we report on the activation of SOX2 expression by ubiquitous transcription factors (NF-Y, Sp1 and MAZ), TALE family members (Pbx1 and Meis1), as well as liganded RXR?. Elucidating components involved in the regulation of SOX gene expression represent a valuable contribution in unraveling the regulatory networks operating in pluripotent embryonic cells.
Collapse
|
14
|
Mojsin M, Stevanovic M. PBX1 and MEIS1 up-regulate SOX3 gene expression by direct interaction with a consensus binding site within the basal promoter region. Biochem J 2009; 425:107-16. [PMID: 19799567 DOI: 10.1042/bj20090694] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sox3/SOX3 [SRY (sex determining region Y)-box 3] is considered to be one of the earliest neural markers in vertebrates, playing a role in specifying neuronal fate. We have previously reported characterization of the SOX3 promoter and demonstrated that the general transcription factors NF-Y (nuclear factor-Y), Sp1 (specificity protein 1) and USF (upstream stimulatory factor) are involved in transcriptional regulation of SOX3 promoter activity. In the present study we provide the first evidence that the TALE (three-amino-acid loop extension) transcription factors PBX1 (pre-B-cell leukaemia homeobox 1) and MEIS1 (myeloid ecotropic viral integration site 1 homologue) participate in regulating human SOX3 gene expression in NT2/D1 cells by direct interaction with the consensus PBX/MEIS-binding site, which is conserved in all mammalian orthologue promoters analysed. PBX1 is present in the protein complex formed at this site with nuclear proteins from uninduced cells, whereas both PBX1 and MEIS1 proteins were detected in the complex created with extract from RA (retinoic acid)-induced NT2/D1 cells. By functional analysis we also showed that mutations of the PBX1/MEIS1-binding sites resulted in profound reduction of SOX3 promoter responsiveness to RA. Finally, we demonstrated that overexpressed PBX1 and MEIS1 increased endogenous SOX3 protein expression in both uninduced and RA-induced NT2/D1 cells. With the results of the present study, for the first time, we have established a functional link between the TALE proteins, PBX1 and MEIS1, and expression of the human SOX3 gene. This link is of particular interest since both TALE family members and members of the SOX superfamily are recognized as important developmental regulators.
Collapse
Affiliation(s)
- Marija Mojsin
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, PO Box 23, 11010 Belgrade, Serbia
| | | |
Collapse
|
15
|
Chen YH, Lin YT, Lee GH. Novel and unexpected functions of zebrafish CCAAT box binding transcription factor (NF-Y) B subunit during cartilages development. Bone 2009; 44:777-84. [PMID: 19442608 DOI: 10.1016/j.bone.2009.01.374] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 09/30/2008] [Accepted: 01/18/2009] [Indexed: 11/22/2022]
Abstract
We used zebrafish as a model to study the biological functions of NF-YB during early development. Both RT-PCR and whole-mount in situ hybridization experiments revealed that nf-yb was a maternally inherited gene. Later, its expression was restricted in the future head cartilages as well as in the developing notochord. Embryos after injection with nf-yb-morpholino displayed reduced-head phenotypes, including smaller head (WT, length of head, L: 0.515+/-0.019 mm, width of head, W: 0.323+/-0.077 mm; nf-yb-morphant, L: 0.347+/-0.037 mm; W: 0.266+/-0.018 mm), sharpen Meckel's cartilage, loss of ceratobranchial, and enlarged angles of ceratohyal (WT: 72.6+/-9.4 degrees ; nf-yb-morphant: 110.0+/-32.5 degrees ). Subsequently, those abnormalities can be rescued after injection with capped nf-yb mRNA. TUNEL assay suggested that large amounts of cell apoptosis appeared in the head region of nf-yb-morphants. Staining with digoxigenin-labeled dlx2a, sox9a, runx2b and col2a1 riboprobes showed that nf-yb-morphants displayed reduced amounts of cranial neural crest cells which are required for mandibular and branchial arches formation. These observations clearly indicate that knockdown of nf-yb translation induced parts of cranial neural crest cells apoptosis, affected cartilages formation and consequently caused reduced-head phenotypes. These findings uncover a novel and unexpected role for NF-YB as a critical modulator of neural crest cell's gene expression governing embryonic cartilage growth.
Collapse
Affiliation(s)
- Yau-Hung Chen
- Graduate Institute of Life Sciences, Tamkang University, Tamsui, Taipei County, Taiwan.
| | | | | |
Collapse
|
16
|
Mendoza-Mendoza A, Eskova A, Weise C, Czajkowski R, Kahmann R. Hap2 regulates the pheromone response transcription factorprf1inUstilago maydis. Mol Microbiol 2009; 72:683-98. [DOI: 10.1111/j.1365-2958.2009.06676.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
17
|
NF-Y influences directionality of transcription from the bidirectional Mrps12/Sarsm promoter in both mouse and human cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1789:432-42. [DOI: 10.1016/j.bbagrm.2009.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 04/30/2009] [Accepted: 05/04/2009] [Indexed: 11/18/2022]
|
18
|
Retinoic acid-induced SoX3 gene expression in NT2/D1 cells is RXR homodimer-independent. ARCH BIOL SCI 2009. [DOI: 10.2298/abs0904631s] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The Sox3/SOX3 gene is implicated in the control of nervous system development. We previously demon?strated modulation of human SOX3 gene expression during neural induction of NT2/D1 cells by retinoic acid (RA). Also, we accurately verified RXR retinoid receptors as major mediators of the effect of RA on SOX3 expression, and excluded RARs as its heterodimeric partners in RA-SOX3 signaling. Here we present evidence that activation of the SOX3 gene by RA is not RXR homodimer-dependent. The described line of SOX3 gene expression studies is valuable for future investigation of the impact that this gene has multiple aspects of normal and pathological development.
Collapse
|
19
|
Nikcević G, Savić T, Kovacević-Grujicić N, Stevanović M. Up-regulation of the SOX3 gene expression by retinoic acid: characterization of the novel promoter-response element and the retinoid receptors involved. J Neurochem 2008; 107:1206-15. [PMID: 18786169 DOI: 10.1111/j.1471-4159.2008.05670.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sox3/SOX3 gene is considered to be one of the earliest neural markers in vertebrates and it is implicated in the genetic cascades that direct brain formation. We have previously shown that early phases of differentiation and neural induction of NT2/D1 embryonal carcinoma cells by retinoic acid (RA) involve up-regulation of the SOX3 gene expression. Here, we present identification of a novel positive regulatory promoter element involved in RA-dependent activation of the SOX3 gene expression in NT2/D1 cells. This element represents a direct repeat 3-like motif that directly interacts with retinoid X receptor (RXR) alpha in a sequence-specific manner. It is capable of independently mediating the RA effect in a heterologous promoter context and its disruption caused significant reduction of RA/RXR transactivation of the SOX3 promoter. Furthermore, by using synthetic antagonists of retinoid receptors, we have shown for the first time, that RA-induced SOX3 gene expression could be significantly down-regulated by the synthetic antagonist of RXR. Also, this data showed that RXRs, but not RA receptors, are mediators of RA effect on the SOX3 gene up-regulation in NT2/D1 cells. Presented data will be valuable for future investigation of SOX3 gene expression, not only in NT2/D1 model system, but also in diverse developmental, physiological and pathological settings.
Collapse
Affiliation(s)
- Gordana Nikcević
- Institute of Molecular Genetics and Genetic Engineering, Belgrade, Serbia
| | | | | | | |
Collapse
|
20
|
ZBP-89 and Sp3 down-regulate while NF-Y up-regulates SOX18 promoter activity in HeLa cells. Mol Biol Rep 2008; 36:993-1000. [PMID: 18496767 DOI: 10.1007/s11033-008-9272-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 05/12/2008] [Indexed: 10/22/2022]
Abstract
The aim of this study has been to identify transcription factors involved in transcriptional regulation of the human SOX18 gene expression. Structural analysis revealed that the SOX18 promoter lacks a TATA box, but is CG-rich containing many putative binding sites for transcription factors that can bind and act through GC-boxes. Alignment analysis of promoter regions between human and mouse revealed conserved putative binding sites for transcription factors NF-Y and Sp-family members. Mithramycin A treatment led to increased SOX18 expression in vivo raising the possibility that the GC-rich sequence of the human SOX18 promoter might be occupied by transcription factor(s) that acts as repressor(s). Using in vitro binding assays we have demonstrated that transcription factors Sp3, ZBP-89 and NF-Y are capable of binding to the SOX18 promoter region spanning the sequence -200 to -162 relative to ATG and that formation of complexes could be efficiently reduced by mithramycin A. Furthermore, co-transfection experiments revealed that over-expression of Sp3 and ZBP-89 down-regulate, while over-expression of NF-Y up-regulates SOX18 promoter activity in HeLa cells. The involvement of these transcription factors in the regulation of SOX18 expression in HeLa cells was further confirmed in vivo by Western blot analyses. In this paper, for the first time, we have demonstrated that Sp3, ZBP-89 and NF-Y are involved in transcriptional regulation of the human SOX18 gene expression. Presented data provide the initial information about transcriptional regulation that will help in better understanding of molecular mechanisms involved in regulation of SOX18 gene expression.
Collapse
|
21
|
Kovacevic-Grujicic N, Yokoyama K, Stevanovic M. Trans-activation of the human SOX3 promoter by MAZ in NT2/D1 cells. ARCH BIOL SCI 2008. [DOI: 10.2298/abs0803379k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In this study, we examine the role of three highly conserved putative binding sites for Myc-associated zinc finger protein (MAZ) in regulation of the human SOX3 gene expression. Electrophoretic mobility shift and supershift assays indicate that complexes formed at two out of three MAZ sites of the human SOX3 promoter involve ubiquitously expressed MAZ protein. Furthermore, in cotransfection experiments we demonstrate that MAZ acts as a positive regulator of SOX3 gene transcription in both undifferentiated and RA-differentiated NT2/D1 cells. Although MAZ increased both basal and RA-induced promoter activity, our results suggest that MAZ does not contribute to RA inducibility of the SOX3 promoter during neuronal differentiation of NT2/D1 cells.
Collapse
Affiliation(s)
| | - Kazunari Yokoyama
- Gene Engineering Division, RIKEN BioResource Center Koyadai, Tsukuba Ibaraki, Japan
| | | |
Collapse
|