1
|
Mitra P, Deshmukh AS. Proteostasis is a key driver of the pathogenesis in Apicomplexa. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119824. [PMID: 39168412 DOI: 10.1016/j.bbamcr.2024.119824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
Proteostasis, including protein folding mediated by molecular chaperones, protein degradation, and stress response pathways in organelles like ER (unfolded protein response: UPR), are responsible for cellular protein quality control. This is essential for cell survival as it regulates and reprograms cellular processes. Here, we underscore the role of the proteostasis pathway in Apicomplexan parasites with respect to their well-characterized roles as well as potential roles in many parasite functions, including survival, multiplication, persistence, and emerging drug resistance. In addition to the diverse physiological importance of proteostasis in Apicomplexa, we assess the potential of the pathway's components as chemotherapeutic targets.
Collapse
Affiliation(s)
- Pallabi Mitra
- BRIC-Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.
| | | |
Collapse
|
2
|
Chahine Z, Abel S, Hollin T, Barnes GL, Chung JH, Daub ME, Renard I, Choi JY, Vydyam P, Pal A, Alba-Argomaniz M, Banks CAS, Kirkwood J, Saraf A, Camino I, Castaneda P, Cuevas MC, De Mercado-Arnanz J, Fernandez-Alvaro E, Garcia-Perez A, Ibarz N, Viera-Morilla S, Prudhomme J, Joyner CJ, Bei AK, Florens L, Ben Mamoun C, Vanderwal CD, Le Roch KG. A kalihinol analog disrupts apicoplast function and vesicular trafficking in P. falciparum malaria. Science 2024; 385:eadm7966. [PMID: 39325875 DOI: 10.1126/science.adm7966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/27/2024] [Accepted: 07/09/2024] [Indexed: 09/28/2024]
Abstract
We report the discovery of MED6-189, an analog of the kalihinol family of isocyanoterpene natural products that is effective against drug-sensitive and drug-resistant Plasmodium falciparum strains, blocking both asexual replication and sexual differentiation. In vivo studies using a humanized mouse model of malaria confirm strong efficacy of the compound in animals with no apparent hemolytic activity or toxicity. Complementary chemical, molecular, and genomics analyses revealed that MED6-189 targets the parasite apicoplast and acts by inhibiting lipid biogenesis and cellular trafficking. Genetic analyses revealed that a mutation in PfSec13, which encodes a component of the parasite secretory machinery, reduced susceptibility to the drug. Its high potency, excellent therapeutic profile, and distinctive mode of action make MED6-189 an excellent addition to the antimalarial drug pipeline.
Collapse
Affiliation(s)
- Z Chahine
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| | - S Abel
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| | - T Hollin
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| | - G L Barnes
- Department of Chemistry, University of California, Irvine, CA, USA
| | - J H Chung
- Department of Chemistry, University of California, Irvine, CA, USA
| | - M E Daub
- Department of Chemistry, University of California, Irvine, CA, USA
| | - I Renard
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - J Y Choi
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - P Vydyam
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - A Pal
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - M Alba-Argomaniz
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - C A S Banks
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - J Kirkwood
- Metabolomics Core Facility, University of California, Riverside, CA, USA
| | - A Saraf
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Present address: Shankel Structural Biology Center, The University of Kansas, Lawrence, KS, USA
| | - I Camino
- GSK, Tres Cantos (Madrid), Spain
| | | | | | | | | | | | - N Ibarz
- GSK, Tres Cantos (Madrid), Spain
| | | | - J Prudhomme
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| | - C J Joyner
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - A K Bei
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - L Florens
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - C Ben Mamoun
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - C D Vanderwal
- Department of Chemistry, University of California, Irvine, CA, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - K G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| |
Collapse
|
3
|
Ahmad T, Alhammadi BA, Almaazmi SY, Arafa S, Blatch GL, Dutta T, Gestwicki JE, Keyzers RA, Shonhai A, Singh H. Plasmodium falciparum heat shock proteins as antimalarial drug targets: An update. Cell Stress Chaperones 2024; 29:326-337. [PMID: 38518861 PMCID: PMC10990865 DOI: 10.1016/j.cstres.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/25/2024] [Accepted: 03/18/2024] [Indexed: 03/24/2024] Open
Abstract
Global efforts to eradicate malaria are threatened by multiple factors, particularly the emergence of antimalarial drug resistant strains of Plasmodium falciparum. Heat shock proteins (HSPs), particularly P. falciparum HSPs (PfHSPs), represent promising drug targets due to their essential roles in parasite survival and virulence across the various life cycle stages. Despite structural similarities between human and malarial HSPs posing challenges, there is substantial evidence for subtle differences that could be exploited for selective drug targeting. This review provides an update on the potential of targeting various PfHSP families (particularly PfHSP40, PfHSP70, and PfHSP90) and their interactions within PfHSP complexes as a strategy to develop new antimalarial drugs. In addition, the need for a deeper understanding of the role of HSP complexes at the host-parasite interface is highlighted, especially heterologous partnerships between human and malarial HSPs, as this opens novel opportunities for targeting protein-protein interactions crucial for malaria parasite survival and pathogenesis.
Collapse
Affiliation(s)
- Tanveer Ahmad
- Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates
| | - Bushra A Alhammadi
- Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates
| | - Shaikha Y Almaazmi
- Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates
| | - Sahar Arafa
- Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates
| | - Gregory L Blatch
- Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates; Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa.
| | - Tanima Dutta
- Department of Diagnostic Genomics, Pathwest, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
| | - Robert A Keyzers
- Centre for Biodiscovery & School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Addmore Shonhai
- Department of Biochemistry and Microbiology, University of Venda, Thohoyandou, South Africa
| | - Harpreet Singh
- Department of Bioinformatics, Hans Raj Mahila Maha Vidyalaya, Jalandhar, Punjab, India
| |
Collapse
|
4
|
Chahine Z, Abel S, Hollin T, Chung JH, Barnes GL, Daub ME, Renard I, Choi JY, Pratap V, Pal A, Alba-Argomaniz M, Banks CAS, Kirkwood J, Saraf A, Camino I, Castaneda P, Cuevas MC, De Mercado-Arnanz J, Fernandez-Alvaro E, Garcia-Perez A, Ibarz N, Viera-Morilla S, Prudhomme J, Joyner CJ, Bei AK, Florens L, Ben Mamoun C, Vanderwal CD, Le Roch KG. A Potent Kalihinol Analogue Disrupts Apicoplast Function and Vesicular Trafficking in P. falciparum Malaria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.21.568162. [PMID: 38045341 PMCID: PMC10690269 DOI: 10.1101/2023.11.21.568162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Here we report the discovery of MED6-189, a new analogue of the kalihinol family of isocyanoterpene (ICT) natural products. MED6-189 is effective against drug-sensitive and -resistant P. falciparum strains blocking both intraerythrocytic asexual replication and sexual differentiation. This compound was also effective against P. knowlesi and P. cynomolgi. In vivo efficacy studies using a humanized mouse model of malaria confirms strong efficacy of the compound in animals with no apparent hemolytic activity or apparent toxicity. Complementary chemical biology, molecular biology, genomics and cell biological analyses revealed that MED6-189 primarily targets the parasite apicoplast and acts by inhibiting lipid biogenesis and cellular trafficking. Genetic analyses in P. falciparum revealed that a mutation in PfSec13, which encodes a component of the parasite secretory machinery, reduced susceptibility to the drug. The high potency of MED6-189 in vitro and in vivo, its broad range of efficacy, excellent therapeutic profile, and unique mode of action make it an excellent addition to the antimalarial drug pipeline.
Collapse
Affiliation(s)
- Z Chahine
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| | - S Abel
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| | - T Hollin
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| | - JH Chung
- Department of Chemistry, University of California, Irvine, California, 92617, USA
| | - GL Barnes
- Department of Chemistry, University of California, Irvine, California, 92617, USA
| | - ME Daub
- Department of Chemistry, University of California, Irvine, California, 92617, USA
| | - I Renard
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - JY Choi
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - V Pratap
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - A Pal
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - M Alba-Argomaniz
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
| | - CAS Banks
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | - J Kirkwood
- Metabolomics Core Facility, University of California, Riverside, CA 92521, USA
| | - A Saraf
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | - I Camino
- GSK, C/ Severo Ochoa, 2 PTM, 28760 Tres Cantos (Madrid), Spain
| | - P Castaneda
- GSK, C/ Severo Ochoa, 2 PTM, 28760 Tres Cantos (Madrid), Spain
| | - MC Cuevas
- GSK, C/ Severo Ochoa, 2 PTM, 28760 Tres Cantos (Madrid), Spain
| | | | | | - A Garcia-Perez
- GSK, C/ Severo Ochoa, 2 PTM, 28760 Tres Cantos (Madrid), Spain
| | - N Ibarz
- GSK, C/ Severo Ochoa, 2 PTM, 28760 Tres Cantos (Madrid), Spain
| | - S Viera-Morilla
- GSK, C/ Severo Ochoa, 2 PTM, 28760 Tres Cantos (Madrid), Spain
| | - J Prudhomme
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| | - CJ Joyner
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
| | - AK Bei
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - L Florens
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | - C Ben Mamoun
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - CD Vanderwal
- Department of Chemistry, University of California, Irvine, California, 92617, USA
| | - KG Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| |
Collapse
|
5
|
Singh H, Almaazmi SY, Dutta T, Keyzers RA, Blatch GL. In silico identification of modulators of J domain protein-Hsp70 interactions in Plasmodium falciparum: a drug repurposing strategy against malaria. Front Mol Biosci 2023; 10:1158912. [PMID: 37621993 PMCID: PMC10445141 DOI: 10.3389/fmolb.2023.1158912] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Plasmodium falciparum is a unicellular, intracellular protozoan parasite, and the causative agent of malaria in humans, a deadly vector borne infectious disease. A key phase of malaria pathology, is the invasion of human erythrocytes, resulting in drastic remodeling by exported parasite proteins, including molecular chaperones and co-chaperones. The survival of the parasite within the human host is mediated by P. falciparum heat shock protein 70s (PfHsp70s) and J domain proteins (PfJDPs), functioning as chaperones-co-chaperones partnerships. Two complexes have been shown to be important for survival and pathology of the malaria parasite: PfHsp70-x-PFE0055c (exported); and PfHsp70-2-PfSec63 (endoplasmic reticulum). Virtual screening was conducted on the drug repurposing library, the Pandemic Response Box, to identify small-molecules that could specifically disrupt these chaperone complexes. Five top ranked compounds possessing preferential binding affinity for the malarial chaperone system compared to the human system, were identified; three top PfHsp70-PfJDP binders, MBX 1641, zoliflodacin and itraconazole; and two top J domain binders, ezetimibe and a benzo-diazepinone. These compounds were validated by repeat molecular dockings and molecular dynamics simulation, resulting in all the compounds, except for MBX 1461, being confirmed to bind preferentially to the malarial chaperone system. A detailed contact analysis of the PfHsp70-PfJDP binders identified two different types of modulators, those that potentially inhibit complex formation (MBX 1461), and those that potentially stabilize the complex (zoliflodacin and itraconazole). These data suggested that zoliflodacin and itraconazole are potential novel modulators specific to the malarial system. A detailed contact analysis of the J domain binders (ezetimibe and the benzo-diazepinone), revealed that they bound with not only greater affinity but also a better pose to the malarial J domain compared to that of the human system. These data suggested that ezetimibe and the benzo-diazepinone are potential specific inhibitors of the malarial chaperone system. Both itraconazole and ezetimibe are FDA-approved drugs, possess anti-malarial activity and have recently been repurposed for the treatment of cancer. This is the first time that such drug-like compounds have been identified as potential modulators of PfHsp70-PfJDP complexes, and they represent novel candidates for validation and development into anti-malarial drugs.
Collapse
Affiliation(s)
- Harpreet Singh
- Department of Bioinformatics, Hans Raj Mahila Maha Vidyalaya, Jalandhar, India
| | - Shaikha Y. Almaazmi
- Biomedical Research and Drug Discovery Research Group, Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates
| | - Tanima Dutta
- Department of Diagnostic Genomics, Path West Nedlands, QEII Medical Centre, Nedlands, WA, Australia
| | - Robert A. Keyzers
- Centre for Biodiscovery & School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Gregory L. Blatch
- Biomedical Research and Drug Discovery Research Group, Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
6
|
Blatch GL. Plasmodium falciparum Molecular Chaperones: Guardians of the Malaria Parasite Proteome and Renovators of the Host Proteome. Front Cell Dev Biol 2022; 10:921739. [PMID: 35652103 PMCID: PMC9149364 DOI: 10.3389/fcell.2022.921739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Plasmodium falciparum is a unicellular protozoan parasite and causative agent of the most severe form of malaria in humans. The malaria parasite has had to develop sophisticated mechanisms to preserve its proteome under the changing stressful conditions it confronts, particularly when it invades host erythrocytes. Heat shock proteins, especially those that function as molecular chaperones, play a key role in protein homeostasis (proteostasis) of P. falciparum. Soon after invading erythrocytes, the malaria parasite exports a large number of proteins including chaperones, which are responsible for remodeling the infected erythrocyte to enable its survival and pathogenesis. The infected host cell has parasite-resident and erythrocyte-resident chaperones, which appear to play a vital role in the folding and functioning of P. falciparum proteins and potentially host proteins. This review critiques the current understanding of how the major chaperones, particularly the Hsp70 and Hsp40 (or J domain proteins, JDPs) families, contribute to proteostasis of the malaria parasite-infected erythrocytes.
Collapse
Affiliation(s)
- Gregory L Blatch
- The Vice Chancellery, The University of Notre Dame Australia, Fremantle, WA, Australia.,Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa.,Biomedical Research and Drug Discovery Research Group, Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates
| |
Collapse
|
7
|
Daniyan MO. Heat Shock Proteins as Targets for Novel Antimalarial Drug Discovery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1340:205-236. [PMID: 34569027 DOI: 10.1007/978-3-030-78397-6_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Plasmodium falciparum, the parasitic agent that is responsible for a severe and dangerous form of human malaria, has a history of long years of cohabitation with human beings with attendant negative consequences. While there have been some gains in the fight against malaria through the application of various control measures and the use of chemotherapeutic agents, and despite the global decline in malaria cases and associated deaths, the continual search for new and effective therapeutic agents is key to achieving sustainable development goals. An important parasite survival strategy, which is also of serious concern to the scientific community, is the rate at which the parasites continually develop resistance to drugs. Among the key players in the parasite's ability to develop resistance, maintain cellular integrity, and survives within an unusual environment of the red blood cells are the molecular chaperones of the heat shock proteins (HSP) family. HSPs constitute a novel avenue for antimalarial drug discovery and by exploring their ubiquitous nature and multifunctional activities, they may be suitable targets for the discovery of multi-targets antimalarial drugs, needed to fight incessant drug resistance. In this chapter, features of selected families of plasmodial HSPs that can be exploited in drug discovery are presented. Also, known applications of HSPs in small molecule screening, their potential usefulness in high throughput drug screening, as well as possible challenges are highlighted.
Collapse
Affiliation(s)
- Michael Oluwatoyin Daniyan
- Department of Pharmacology, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria.
| |
Collapse
|
8
|
The Role of Hsp70s in the Development and Pathogenicity of Plasmodium falciparum. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 34569021 DOI: 10.1007/978-3-030-78397-6_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The main agent of human malaria, the protozoa, Plasmodium falciparum is known to infect liver cells, subsequently invading the host erythrocyte, leading to the manifestation of clinical outcomes of the disease. As part of its survival in the human host, P. falciparum employs several heat shock protein (Hsp) families whose primary purpose is to ensure cytoprotection through their molecular chaperone role. The parasite expresses six Hsp70s that localise to various subcellular organelles of the parasite, with one, PfHsp70-x, being exported to the infected human erythrocyte. The role of these Hsp70s in the survival and pathogenicity of malaria has received immense research attention. Several studies have reported on their structure-function features, network partnerships, and elucidation of their potential substrates. Apart from their role in cytoprotection and pathogenicity, Hsp70s are implicated in antimalarial drug resistance. As such, they are deemed potential antimalarial drug candidates, especially suited for co-targeting in combination therapies. In addition, Hsp70 is implicated in host immune modulation. The current report highlights the various structure-function features of these proteins, their roles in the development of malaria, current and prospective efforts being employed towards targeting them in malaria intervention efforts.
Collapse
|
9
|
Role of the J Domain Protein Family in the Survival and Pathogenesis of Plasmodium falciparum. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1340:97-123. [PMID: 34569022 DOI: 10.1007/978-3-030-78397-6_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Plasmodium falciparum has dedicated an unusually large proportion of its genome to molecular chaperones (2% of all genes), with the heat shock protein 40 (Hsp40) family (now called J domain proteins, JDPs) exhibiting evolutionary radiation into 49 members. A large number of the P. falciparum JDPs (PfJDPs) are predicted to be exported, with certain members shown experimentally to be present in the erythrocyte cytosol (PFA0660w and PFE0055c) or erythrocyte membrane (ring-infected erythrocyte surface antigen, RESA). PFA0660w and PFE0055c are associated with an exported plasmodial Hsp70 (PfHsp70-x) within novel mobile structures called J-dots, which have been proposed to be dedicated to the trafficking of key membrane proteins such as erythrocyte membrane protein 1 (PfEMP1). Well over half of the PfJDPs appear to be essential, including the J-dot PfJDP, PFE0055c, while others have been found to be required for growth under febrile conditions (e.g. PFA0110w, the ring-infected erythrocyte surface antigen protein [RESA]) or involved in pathogenesis (e.g. PF10_0381 has been shown to be important for protrusions of the infected red blood cell membrane, the so-called knobs). Here we review what is known about those PfJDPs that have been well characterised, and may be directly or indirectly involved in the survival and pathogenesis of the malaria parasite.
Collapse
|
10
|
Andersson A, Kudva R, Magoulopoulou A, Lejarre Q, Lara P, Xu P, Goel S, Pissi J, Ru X, Hessa T, Wahlgren M, von Heijne G, Nilsson I, Tellgren-Roth Å. Membrane integration and topology of RIFIN and STEVOR proteins of the Plasmodium falciparum parasite. FEBS J 2019; 287:2744-2762. [PMID: 31821735 DOI: 10.1111/febs.15171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/20/2019] [Accepted: 12/06/2019] [Indexed: 01/18/2023]
Abstract
The malarial parasite Plasmodium exports its own proteins to the cell surfaces of red blood cells (RBCs) during infection. Examples of exported proteins include members of the repetitive interspersed family (RIFIN) and subtelomeric variable open reading frame (STEVOR) family of proteins from Plasmodium falciparum. The presence of these parasite-derived proteins on surfaces of infected RBCs triggers the adhesion of infected cells to uninfected cells (rosetting) and to the vascular endothelium potentially obstructing blood flow. While there is a fair amount of information on the localization of these proteins on the cell surfaces of RBCs, less is known about how they can be exported to the membrane and the topologies they can adopt during the process. The first step of export is plausibly the cotranslational insertion of proteins into the endoplasmic reticulum (ER) of the parasite, and here, we investigate the insertion of three RIFIN and two STEVOR proteins into the ER membrane. We employ a well-established experimental system that uses N-linked glycosylation of sites within the protein as a measure to assess the extent of membrane insertion and the topology it assumes when inserted into the ER membrane. Our results indicate that for all the proteins tested, transmembranes (TMs) 1 and 3 integrate into the membrane, so that the protein assumes an overall topology of Ncyt-Ccyt. We also show that the segment predicted to be TM2 for each of the proteins likely does not reside in the membrane, but is translocated to the lumen.
Collapse
Affiliation(s)
- Annika Andersson
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | - Renuka Kudva
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | - Anastasia Magoulopoulou
- Department of Biochemistry and Biophysics, Stockholm University, Sweden.,Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Quentin Lejarre
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | - Patricia Lara
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | - Peibo Xu
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | - Suchi Goel
- Center for Infectious Disease Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jennifer Pissi
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | - Xing Ru
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | - Tara Hessa
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | - Mats Wahlgren
- Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Gunnar von Heijne
- Department of Biochemistry and Biophysics, Stockholm University, Sweden.,Center for Infectious Disease Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - IngMarie Nilsson
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | - Åsa Tellgren-Roth
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| |
Collapse
|
11
|
Jimenez-Ruiz E, Morlon-Guyot J, Daher W, Meissner M. Vacuolar protein sorting mechanisms in apicomplexan parasites. Mol Biochem Parasitol 2016; 209:18-25. [PMID: 26844642 PMCID: PMC5154328 DOI: 10.1016/j.molbiopara.2016.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 01/14/2016] [Accepted: 01/28/2016] [Indexed: 12/26/2022]
Abstract
The phylum Apicomplexa comprises more than 5000 species including pathogens of clinical and economical importance. These obligate intracellular parasites possess a highly complex endomembrane system to build amongst others three morphologically distinct secretory organelles: rhoptries, micronemes and dense granules. Proteins released by these organelles are essential for invasion and hijacking of the host cell. Due to the complexity of the internal organization of these parasites, a wide panoply of trafficking factors was expected to be required for the correct sorting of proteins towards the various organelles. However, Toxoplasma gondii and other apicomplexan parasites contain only a core set of these factors and several of the vacuolar protein sorting (VPS) homologues found in most eukaryotes have been lost in this phylum. In this review, we will summarise our current knowledge about the role of trafficking complexes in T. gondii, highlighting recent studies focused on complexes formed by VPS proteins. We also present a novel, hypothetical model, suggesting the recycling of parasite membrane and micronemal proteins.
Collapse
|
12
|
Przyborski JM, Diehl M, Blatch GL. Plasmodial HSP70s are functionally adapted to the malaria parasite life cycle. Front Mol Biosci 2015; 2:34. [PMID: 26167469 PMCID: PMC4481151 DOI: 10.3389/fmolb.2015.00034] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/12/2015] [Indexed: 11/13/2022] Open
Abstract
The human malaria parasite, Plasmodium falciparum, encodes a minimal complement of six heat shock protein 70s (PfHSP70s), some of which are highly expressed and are thought to play an important role in the survival and pathology of the parasite. In addition to canonical features of molecular chaperones, these HSP70s possess properties that reflect functional adaptation to a parasitic life style, including resistance to thermal insult during fever periods and host–parasite interactions. The parasite even exports an HSP70 to the host cell where it is likely to be involved in host cell modification. This review focuses on the features of the PfHSP70s, particularly with respect to their adaptation to the malaria parasite life cycle.
Collapse
Affiliation(s)
| | - Mathias Diehl
- Parasitology, Philipps University Marburg Marburg, Germany
| | - Gregory L Blatch
- Centre for Chronic Disease Prevention and Management, College of Health and Biomedicine, Victoria University Melbourne, VIC, Australia ; Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University Grahamstown, South Africa
| |
Collapse
|
13
|
Abstract
SUMMARYPlasmodium falciparumdisplays a large and remarkable variety of heat shock protein 40 family members (PfHsp40s). The majority of the PfHsp40s are poorly characterized, and although the functions of some of them have been suggested, their exact mechanism of action is still elusive and their interacting partners and client proteins are unknown. TheP. falciparumheat shock protein 70 family members (PfHsp70s) have been more extensively characterized than the PfHsp40s, with certain members shown to function as molecular chaperones. However, little is known about the PfHsp70-PfHsp40 chaperone partnerships. There is mounting evidence that these chaperones are important not only in protein homoeostasis and cytoprotection, but also in protein trafficking across the parasitophorous vacuole (PV) and into the infected erythrocyte. We propose that certain members of these chaperone families work together to maintain exported proteins in an unfolded state until they reach their final destination. In this review, we critically evaluate what is known and not known about PfHsp40s and PfHsp70s.
Collapse
|
14
|
Plasmodium falciparum signal recognition particle components and anti-parasitic effect of ivermectin in blocking nucleo-cytoplasmic shuttling of SRP. Cell Death Dis 2014; 5:e994. [PMID: 24434517 PMCID: PMC4040695 DOI: 10.1038/cddis.2013.521] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/20/2013] [Accepted: 11/21/2013] [Indexed: 11/08/2022]
Abstract
Signal recognition particle (SRP) is a ubiquitous ribonucleoprotein complex that targets proteins to endoplasmic reticulum (ER) in eukaryotes. Here we report that Plasmodium falciparum SRP is composed of six polypeptides; SRP9, SRP14, SRP19, SRP54, SRP68 and SRP72 and a 303nt long SRP RNA. We generated four transgenic parasite lines expressing SRP-GFP chimeric proteins and co-localization studies showed the nucleo-cytoplasmic localization for these proteins. The evaluation of the effect of known SRP and nuclear import/export inhibitors on P. falciparum revealed that ivermectin, an inhibitor of importin α/β mediated nuclear import inhibited the nuclear import of PfSRP polypeptides at submicromolar concentration, thereby killing the parasites. These findings provide insights into dynamic structure of P. falciparum SRP and also raise the possibility that ivermectin could be used in combination with other antimalarial agents to control the disease.
Collapse
|
15
|
Jackson AJ, Clucas C, Mamczur NJ, Ferguson DJ, Meissner M. Toxoplasma gondii Syntaxin 6 is required for vesicular transport between endosomal-like compartments and the Golgi complex. Traffic 2013; 14:1166-81. [PMID: 23962112 PMCID: PMC3963449 DOI: 10.1111/tra.12102] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 08/15/2013] [Accepted: 08/20/2013] [Indexed: 11/28/2022]
Abstract
Apicomplexans are obligate intracellular parasites that invade the host cell in an active process that relies on unique secretory organelles (micronemes, rhoptries and dense granules) localized at the apical tip of these highly polarized eukaryotes. In order for the contents of these specialized organelles to reach their final destination, these proteins are sorted post-Golgi and it has been speculated that they pass through endosomal-like compartments (ELCs), where they undergo maturation. Here, we characterize a Toxoplasma gondii homologue of Syntaxin 6 (TgStx6), a well-established marker for the early endosomes and trans Golgi network (TGN) in diverse eukaryotes. Indeed, TgStx6 appears to have a role in the retrograde transport between ELCs, the TGN and the Golgi, because overexpression of TgStx6 results in the development of abnormally shaped parasites with expanded ELCs, a fragmented Golgi and a defect in inner membrane complex maturation. Interestingly, other organelles such as the micronemes, rhoptries and the apicoplast are not affected, establishing the TGN as a major sorting compartment where several transport pathways intersect. It therefore appears that Toxoplasma has retained a plant-like secretory pathway.
Collapse
Affiliation(s)
- Allison J Jackson
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, The University of Glasgow, Glasgow, G12 8TA, UK
| | | | | | | | | |
Collapse
|
16
|
Deponte M, Hoppe HC, Lee MC, Maier AG, Richard D, Rug M, Spielmann T, Przyborski JM. Wherever I may roam: Protein and membrane trafficking in P. falciparum-infected red blood cells. Mol Biochem Parasitol 2012; 186:95-116. [DOI: 10.1016/j.molbiopara.2012.09.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/21/2012] [Accepted: 09/24/2012] [Indexed: 11/27/2022]
|
17
|
Zimmermann R, Blatch GL. A novel twist to protein secretion in eukaryotes. Trends Parasitol 2009; 25:147-50. [PMID: 19269249 DOI: 10.1016/j.pt.2009.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 01/19/2009] [Accepted: 01/20/2009] [Indexed: 11/29/2022]
Abstract
A recent functional analysis of the protein translocase, which is present in the trypanosomal endoplasmic reticulum membrane, by Michaeli and co-workers has indicated an unexpected diversity in the mechanisms and components of protein secretion in eukaryotes and might eventually pave the way for the development of anti-trypanosomal drugs. Furthermore, the work on these human parasites also supports conclusions that were drawn previously for components of protein secretion in human cells on the basis of in vitro studies.
Collapse
Affiliation(s)
- Richard Zimmermann
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany.
| | | |
Collapse
|
18
|
Su RW, Sun ZG, Zhao YC, Chen QJ, Yang ZM, Li RS, Wang J. The uterine expression of SEC63 gene is up-regulated at implantation sites in association with the decidualization during the early pregnancy in mice. Reprod Biol Endocrinol 2009; 7:12. [PMID: 19208265 PMCID: PMC2655295 DOI: 10.1186/1477-7827-7-12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Accepted: 02/11/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sec63 is a key component of the protein translocation machinery in the mammalian endoplasmic reticulum (ER), and involved in the post-translation processing of secretory proteins. The aim of this study was to determine the expression pattern of SEC63 gene in mouse uterus during the early pregnancy. METHODS Real-time quantitative PCR and Western blot analyses were used to evaluate the alteration in levels of uterine SEC63 gene expression during the peri-implantation period in mice. Further, both in situ hybridization and immunohistochemical analyses were performed to examine the spatial localization of SEC63 gene expression in mouse uterine tissues. The presence of Sec63 protein in human uterine tissue was also detected by immunohistochemical analysis. Statistical analysis was carried out using Tukey test. RESULTS Uterine SEC63 gene expression was up-regulated and predominantly localized in mouse decidual cells during days 5-8 of pregnancy. More interestingly, Sec63 protein was also detected in human decidua of 10-week pregnancy, whereas was not observed in human endometrial tissues both at proliferative and secretory phases of menstrual cycle. CONCLUSION The pattern of SEC63 gene expression is consistent with a possible role for SEC63 in decidualization.
Collapse
Affiliation(s)
- Ren-wei Su
- School of Life Science, Xiamen University, Xiamen 361005, PR China.
| | | | | | | | | | | | | |
Collapse
|
19
|
Goldshmidt H, Sheiner L, Bütikofer P, Roditi I, Uliel S, Günzel M, Engstler M, Michaeli S. Role of protein translocation pathways across the endoplasmic reticulum in Trypanosoma brucei. J Biol Chem 2008; 283:32085-98. [PMID: 18768469 DOI: 10.1074/jbc.m801499200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The translocation of secretory and membrane proteins across the endoplasmic reticulum (ER) membrane is mediated by co-translational (via the signal recognition particle (SRP)) and post-translational mechanisms. In this study, we investigated the relative contributions of these two pathways in trypanosomes. A homologue of SEC71, which functions in the post-translocation chaperone pathway in yeast, was identified and silenced by RNA interference. This factor is essential for parasite viability. In SEC71-silenced cells, signal peptide (SP)-containing proteins traversed the ER, but several were mislocalized, whereas polytopic membrane protein biogenesis was unaffected. Surprisingly trypanosomes can interchangeably utilize two of the pathways to translocate SP-containing proteins except for glycosylphosphatidylinositol-anchored proteins, whose level was reduced in SEC71-silenced cells but not in cells depleted for SRP68, an SRP-binding protein. Entry of SP-containing proteins to the ER was significantly blocked only in cells co-silenced for the two translocation pathways (SEC71 and SRP68). SEC63, a factor essential for both translocation pathways in yeast, was identified and silenced by RNA interference. SEC63 silencing affected entry to the ER of both SP-containing proteins and polytopic membrane proteins, suggesting that, as in yeast, this factor is essential for both translocation pathways in vivo. This study suggests that, unlike bacteria or other eukaryotes, trypanosomes are generally promiscuous in their choice of mechanism for translocating SP-containing proteins to the ER, although the SRP-independent pathway is favored for glycosylphosphatidylinositol-anchored proteins, which are the most abundant surface proteins in these parasites.
Collapse
Affiliation(s)
- Hanoch Goldshmidt
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Tuteja R, Pradhan A, Sharma S. Plasmodium falciparum signal peptidase is regulated by phosphorylation and required for intra-erythrocytic growth. Mol Biochem Parasitol 2007; 157:137-47. [PMID: 18054093 DOI: 10.1016/j.molbiopara.2007.10.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 10/16/2007] [Accepted: 10/18/2007] [Indexed: 11/15/2022]
Abstract
The human malaria parasite Plasmodium falciparum exports a variety of its proteins through its endoplasmic reticulum (ER) based secretory pathway in order to survive in the host erythrocyte. Signal peptidases are membrane-bound endopeptidases and have an important role in the transport and maturation of these parasite proteins. Prokaryotic signal peptidases are indispensable enzymes required for the removal of N-terminal signal peptide from the secretory proteins. Eukaryotic signal peptidases exist as multimeric protein complex in the ER and the catalytic subunit of this complex catalyzes removal of the N-terminal signal peptide from preproteins. All the signal peptidases contain five regions of high-sequence similarity referred to as boxes A-E. Here we report characterization of the catalytic subunit of signal peptidase complex (SPC) from P. falciparum. This protein designated as PfSP21 shows homology with the similar subunit from other sources and contains all the conserved boxes A-E. PfSP21 is able to cleave the peptide substrate containing the signal peptidase cleavage site. PfSP21 is phosphorylated by protein kinase C and its enzyme activity was upregulated after this phosphorylation. Immunofluorescence assay studies revealed that PfSP21 is localized in the ER of P. falciparum. PfSP21 dsRNA specifically inhibits the growth of P. falciparum in culture and this inhibition is most likely due to the decrease in the amount of endogenous PfSP21 protein. These studies demonstrate the characterization of a functional subunit of SPC from P. falciparum and should make an important contribution in our better understanding of the complex process of protein translocation in the parasite.
Collapse
Affiliation(s)
- Renu Tuteja
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India.
| | | | | |
Collapse
|