1
|
Sarkar P, Gopi P, Pandya P, Paria S, Hossain M, Siddiqui MH, Alamri S, Bhadra K. Insights on the comparative affinity of ribonucleic acids with plant-based beta carboline alkaloid, harmine: Spectroscopic, calorimetric and computational evaluation. Heliyon 2024; 10:e34183. [PMID: 39100473 PMCID: PMC11295990 DOI: 10.1016/j.heliyon.2024.e34183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
Small molecules as ligands target multifunctional ribonucleic acids (RNA) for therapeutic engagement. This study explores how the anticancer DNA intercalator harmine interacts various motifs of RNAs, including the single-stranded A-form poly (rA), the clover leaf tRNAphe, and the double-stranded A-form poly (rC)-poly (rG). Harmine showed the affinity to the polynucleotides in the order, poly (rA) > tRNAphe > poly (rC)·poly (rG). While no induced circular dichroism change was detected with poly (rC)poly (rG), significant structural alterations of poly (rA) followed by tRNAphe and occurrence of concurrent initiation of optical activity in the attached achiral molecule of alkaloid was reported. At 25 °C, the affinity further showed exothermic and entropy-driven binding. The interaction also highlighted heat capacity (ΔC o p ) and Gibbs energy contribution from the hydrophobic transfer (ΔG hyd) of binding with harmine. Molecular docking calculations indicated that harmine exhibits higher affinity for poly (rA) compared to tRNAphe and poly (rC)·poly (rG). Subsequent molecular dynamics simulations were conducted to investigate the binding mode and stability of harmine with poly(A), tRNAphe, and poly (rC)·poly (rG). The results revealed that harmine adopts a partial intercalative binding with poly (rA) and tRNAphe, characterized by pronounced stacking forces and stronger binding free energy observed with poly (rA), while a comparatively weaker binding free energy was observed with tRNAphe. In contrast, the stacking forces with poly (rC)·poly (rG) were comparatively less pronounced and adopts a groove binding mode. It was also supported by ferrocyanide quenching analysis. All these findings univocally provide detailed insight into the binding specificity of harmine, to single stranded poly (rA) over other RNA motifs, probably suggesting a self-structure formation in poly (rA) with harmine and its potential as a lead compound for RNA based drug targeting.
Collapse
Affiliation(s)
- Paromita Sarkar
- University of Kalyani, Department of Zoology, Nadia, W. Bengal, 741235, India
| | - Priyanka Gopi
- Amity Institute of Forensic Sciences, Amity University, Noida, Uttar Pradesh, India
| | - Prateek Pandya
- Amity Institute of Forensic Sciences, Amity University, Noida, Uttar Pradesh, India
| | - Samaresh Paria
- Vidyasagar University, Department of Chemistry, Midnapore 721 102, West Bengal, India
| | - Maidul Hossain
- Vidyasagar University, Department of Chemistry, Midnapore 721 102, West Bengal, India
| | - Manzer H. Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Kakali Bhadra
- University of Kalyani, Department of Zoology, Nadia, W. Bengal, 741235, India
| |
Collapse
|
2
|
Krochtová K, Janovec L, Bogárová V, Halečková A, Kožurková M. Interaction of 3,9-disubstituted acridine with single stranded poly(rA), double stranded poly(rAU) and triple stranded poly(rUAU): molecular docking - A spectroscopic tandem study. Chem Biol Interact 2024; 394:110965. [PMID: 38552767 DOI: 10.1016/j.cbi.2024.110965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/12/2024] [Accepted: 03/16/2024] [Indexed: 04/10/2024]
Abstract
RNA plays an important role in many biological processes which are crucial for cell survival, and it has been suggested that it may be possible to inhibit individual processes involved in many diseases by targeting specific sequences of RNA. The aim of this work is to determine the affinity of novel 3,9-disubstited acridine derivative 1 with three different RNA molecules, namely single stranded poly(rA), double stranded homopolymer poly(rAU) and triple stranded poly(rUAU). The results of the absorption titration assays show that the binding constant of the novel derivative to the RNA molecules was in the range of 1.7-6.2 × 104 mol dm-3. The fluorescence and circular dichroism titration assays revealed considerable changes. The most significant results in terms of interpreting the nature of the interactions were the melting temperatures of the RNA samples in complexes with the 1. In the case of poly(rA), denaturation resulted in a self-structure formation; increased stabilization was observed for poly(rAU), while the melting points of the ligand-poly(rUAU) complex showed significant destabilization as a result of the interaction. The principles of molecular mechanics were applied to propose the non-bonded interactions within the binding complex, pentariboadenylic acid and acridine ligand as the study model. Initial molecular docking provided the input structure for advanced simulation techniques. Molecular dynamics simulation and cluster analysis reveal π - π stacking and the hydrogen bonds formation as the main forces that can stabilize the binding complex. Subsequent MM-GBSA calculations showed negative binding enthalpy accompanied the complex formation and proposed the most preferred conformation of the interaction complex.
Collapse
Affiliation(s)
- Kristína Krochtová
- Department of Biochemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54, Košice, Slovak Republic
| | - Ladislav Janovec
- Department of Organic Chemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54, Košice, Slovak Republic
| | - Viktória Bogárová
- Department of Biochemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54, Košice, Slovak Republic
| | - Annamária Halečková
- Department of Organic Chemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54, Košice, Slovak Republic
| | - Mária Kožurková
- Department of Biochemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54, Košice, Slovak Republic.
| |
Collapse
|
3
|
Lee SR, Ong CYJ, Wong JY, Ke Y, Lim JYC, Dong Z, Long Y, Hu Y. Programming the Assembly of Oligo-Adenine with Coralyne into a pH-Responsive DNA Hydrogel. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38489480 DOI: 10.1021/acsami.4c01678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
External stimuli-responsive DNA hydrogels present interesting platforms for drug loading and triggered release. Typically, drug molecules are encapsulated within three-dimensionally hybridized DNA networks. However, the utilization of drug molecules as cofactors to facilitate the directed assembly of DNA strands into hydrogel frameworks and their subsequent controlled release remains to be explored. Herein, we introduce the guided assembly of oligo-adenine (A-strand) into an acidic pH-responsive DNA hydrogel using an anticancer drug, coralyne (COR), as a low-molecular-weight cofactor. At pH 7, COR orchestrates the assembly of A-strand into an antiparallel duplex configuration cross-linked by A-COR-A units at a stoichiometric ratio of one COR cofactor per four adenine bases, resulting in a DNA hydrogel characterized by A-COR-A duplex bridges. At pH 4-5, the instability of A-COR-A units results in the disintegration of the duplex into its constituent components, leading to the release of COR and simultaneous dissociation of the DNA hydrogel matrix. This study introduces a method by which drug molecules, exemplified here by COR, facilitate the direct formation of a supramolecular cofactor-DNA complex, subsequently leading to the creation of a stimuli-responsive DNA hydrogel. This approach may inspire future investigations into DNA hydrogels tailored for controlled drug encapsulation and release applications.
Collapse
Affiliation(s)
- Shu Rui Lee
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Republic of Singapore
| | - Clemen Yu Jie Ong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Republic of Singapore
| | - Jing Yi Wong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117543, Republic of Singapore
| | - Yujie Ke
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Jason Y C Lim
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Zhaogang Dong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Yi Long
- Electronic Engineering Department, The Chinese University of Hong Kong, Hong Kong 999077, P. R. China
| | - Yuwei Hu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| |
Collapse
|
4
|
Das H, Paul L, Chowdhury S, Goswami R, Das S. New insights into self-structure induction in poly (rA) by Quinacrine through non-classical intercalation: Spectroscopic and theoretical perspectives. Int J Biol Macromol 2023; 251:126189. [PMID: 37586624 DOI: 10.1016/j.ijbiomac.2023.126189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/18/2023]
Abstract
Self-structure induction in a single stranded polyriboadenylic acid [poly (rA)] is an auspicious physiological phenomenon which switches off protein production in tumor cells. In the present study, the self-structure induction process in poly (rA) moiety was thoroughly investigated using various steady state and time resolved techniques. Optical melting pattern directly evidenced the formation of self-structured assembly in single stranded poly (rA) upon complexation with quinacrine. Further, UV-absorption spectroscopic studies revealed that quinacrine binds to poly (rA) in co-operative fashion and the indication of intercalative mode of binding first came out with the involvement of around two base pairs of poly (rA) in the complexation. Experimental observations established the unconventional or non-classical intercalation of quinacrine molecule inside self-structured duplex poly (rA) moiety. This complexation was accompanied with negative enthalpy change and positive entropy change; suggesting strong van der Waals and the H-bonding interactions as the major governing forces in the complexation. Moreover, ionic strength dependent binding study established that the non-polyelectrolytic forces were the dominating forces. Further, the photo physical behavior of QN was authenticated using time dependent density functional theory (TDDFT) where both the ground and excited states were exploited.
Collapse
Affiliation(s)
- Himal Das
- Biophysical Chemistry Laboratory, Physical Chemistry Section, Department of Chemistry, Jadavpur University, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India
| | - Lopa Paul
- Biophysical Chemistry Laboratory, Physical Chemistry Section, Department of Chemistry, Jadavpur University, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India
| | - Susmita Chowdhury
- Biophysical Chemistry Laboratory, Physical Chemistry Section, Department of Chemistry, Jadavpur University, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India
| | - Rapti Goswami
- Biophysical Chemistry Laboratory, Physical Chemistry Section, Department of Chemistry, Jadavpur University, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India
| | - Suman Das
- Biophysical Chemistry Laboratory, Physical Chemistry Section, Department of Chemistry, Jadavpur University, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India.
| |
Collapse
|
5
|
Vardevanyan PO, Antonyan AP, Movsisyan ZH, Parsadanyan MA, Shahinyan MA, Grigoryan KR, Shilajyan HA. Study of complexation of single-stranded poly(rA) and poly(rU) with methylene blue. J Biomol Struct Dyn 2023; 41:15320-15327. [PMID: 36919567 DOI: 10.1080/07391102.2023.2189475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/27/2023] [Indexed: 03/16/2023]
Abstract
To reveal the effect of DNA- or RNA-specific low-molecular compounds on cellular processes on the molecular level, we have carried out the studies with the application of spectroscopic methods. It is necessary for the understanding of structural-functional properties of nucleic acids in cell. In this work the interaction of DNA-specific thiazine dye methylene blue (MB) with synthetic polynucleotides poly(rA) and poly(rU) was studied. The interaction of MB with synthetic polyribonucleotides poly(rA) and poly(rU) was examined in the solution with high ionic strength in a wide phosphate-to-dye (P/D) range, using the absorption and fluorescence spectroscopies, as well as the fluorescence 2D spectra and 3D spectra analyses were given. Values of the fluorescence quenching constants for the complexes of MB with poly(rA) and poly(rU) were calculated (KSV is the Stern-Volmer quenching constant). Two different modes of MB binding to single-stranded (ss-) poly(rA) and poly(rU) and to their hybrid double-stranded (ds-) structure - poly(rA)-poly(rU) were identified. This ligand binds to ss-poly(rA) and poly(rA)-poly(rU) by semi-intercalation and electrostatic modes, but to ss-poly(rU) the prevailing mode is the electrostatic interaction.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Poghos O Vardevanyan
- Department of Biophysics, Faculty of Biology, Yerevan State University, Yerevan, Armenia
| | - Ara P Antonyan
- Department of Biophysics, Faculty of Biology, Yerevan State University, Yerevan, Armenia
| | - Zvart H Movsisyan
- Department of Biophysics, Faculty of Biology, Yerevan State University, Yerevan, Armenia
| | - Marine A Parsadanyan
- Department of Biophysics, Faculty of Biology, Yerevan State University, Yerevan, Armenia
| | - Mariam A Shahinyan
- Department of Biophysics, Faculty of Biology, Yerevan State University, Yerevan, Armenia
| | - Karine R Grigoryan
- Laboratory of Physical Chemistry, Research Institute of Chemistry, Yerevan State University, Yerevan, Armenia
| | - Hasmik A Shilajyan
- Laboratory of Physical Chemistry, Research Institute of Chemistry, Yerevan State University, Yerevan, Armenia
| |
Collapse
|
6
|
Peng S, Chang Y, Zeng X, Lai R, Yang M, Wang D, Zhou X, Shao Y. Selectivity of natural isoquinoline alkaloid assembler in programming poly(dA) into parallel duplex by polyvalent synergy. Anal Chim Acta 2023; 1241:340777. [PMID: 36657870 DOI: 10.1016/j.aca.2022.340777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/04/2022] [Accepted: 12/31/2022] [Indexed: 01/03/2023]
Abstract
Ligand-induced assembly of disordered DNAs attracts much attention due to its potential action in transcription regulation and molecular switches-based sensors. Among natural isoquinoline alkaloids (NIAs), we screened out nitidine (NIT) as polyvalent-binding assembler to program poly(dA) into a parallel duplex assembly at neutral pH. The molecule planarity of NIAs was believed to be a determinant factor in programming the parallel poly(dA) assembly. Poly(dA) with more than six adenines can initiate the synergistic binding of NIT to generate the parallel assembly. It is expected that one A-A pair in duplex can bind one NIT molecule provided that poly(dA) is long enough, suggesting the pivotal role of the polyvalent synergy of NIT in programming the parallel poly(dA) assembly. A gold nanoparticles-based colorimetric method was also developed to screen NIT out of NIAs having the potential to construct the poly(dA) assembly. Our work will inspire more interest in developing polyadenine-based switches and sensors by concentrating NIT within the polyadenine parallel assembly.
Collapse
Affiliation(s)
- Shuzhen Peng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Yun Chang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Xingli Zeng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Rong Lai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Mujing Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Dandan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Xiaoshun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Yong Shao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China.
| |
Collapse
|
7
|
Ray B, Mehrotra R. Nucleic acid binding mechanism of flavone derivative, riviciclib: Structural analysis to unveil anticancer potential. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 211:111990. [PMID: 32858336 DOI: 10.1016/j.jphotobiol.2020.111990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/17/2020] [Accepted: 08/07/2020] [Indexed: 10/23/2022]
Abstract
Despite burgeoned knowledge about the origin, growth, tissue interactions, and spread of cancer in recent years, the functional complexity and unique survival ability of cancer cells still make it difficult to target them. Riviciclib is a semi-synthetic derivative of rohitukine and possesses anticancer potential. Inhibition of nucleic acid activity in an uncontrolled dividing cell can form the basis for the development of new-age cancer therapeutics. The present study reports the molecular interaction between riviciclib and nucleic acid (DNA/tRNA) using spectroscopic and molecular docking studies in an attempt to comprehend its cellular toxicity as well as the nature and mode of binding between them. Vibrational spectroscopic results suggest that riviciclib intercalates DNA duplex and primarily binds with guanine, adenine, and thymine nucleobases. While in the case of riviciclib-tRNA complexation, riviciclib interacts mostly with uracil residues of the tRNA molecule. Besides nucleobases, riviciclib interacts with the sugar-phosphate backbone of both biomacromolecules. Conformationally, DNA alters from B-form to C-form, whereas tRNA shows no change in its native A-form. The order (104 M-1) of binding constant for riviciclib-nucleic acid complexation infer moderate to strong affinity of riviciclib with DNA and tRNA, respectively. Molecular docking explorations are further in corroboration with our spectroscopic outcomes.
Collapse
Affiliation(s)
- Bhumika Ray
- CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ranjana Mehrotra
- CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
8
|
Verma AK, Khan E, Mishra SK, Mishra A, Charlet-Berguerand N, Kumar A. Curcumin Regulates the r(CGG) exp RNA Hairpin Structure and Ameliorate Defects in Fragile X-Associated Tremor Ataxia Syndrome. Front Neurosci 2020; 14:295. [PMID: 32317919 PMCID: PMC7155420 DOI: 10.3389/fnins.2020.00295] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/16/2020] [Indexed: 12/21/2022] Open
Abstract
Fragile X-associated tremor ataxia syndrome is an untreatable neurological and neuromuscular disorder caused by unstable expansion of 55–200 CGG nucleotide repeats in 5′ UTR of Fragile X intellectual disability 1 (FMR1) gene. The expansion of CGG repeats in the FMR1 mRNA elicits neuronal cell toxicity through two main pathogenic mechanisms. First, mRNA with CGG expanded repeats sequester specific RNA regulatory proteins resulting in splicing alterations and formation of ribonuclear inclusions. Second, repeat-associated non-canonical translation (RANT) of the CGG expansion produces a toxic homopolymeric protein, FMRpolyG. Very few small molecules are known to modulate these pathogenic events, limiting the therapeutic possibilities for FXTAS. Here, we found that a naturally available biologically active small molecule, Curcumin, selectively binds to CGG RNA repeats. Interestingly, Curcumin improves FXTAS associated alternative splicing defects and decreases the production and accumulation of FMRpolyG protein inclusion. Furthermore, Curcumin decreases cell cytotoxicity promptly by expression of CGG RNA in FXTAS cell models. In conclusion, our data suggest that small molecules like Curcumin and its derivatives may be explored as a potential therapeutic strategy against the debilitating repeats associated neurodegenerative disorders.
Collapse
Affiliation(s)
- Arun Kumar Verma
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Eshan Khan
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Subodh Kumar Mishra
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Nicolas Charlet-Berguerand
- Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, University of Strasbourg, Strasbourg, France
| | - Amit Kumar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
9
|
Paul P, Mati SS, Kumar GS. Insights on the interaction of phenothiazinium dyes methylene blue and new methylene blue with synthetic duplex RNAs through spectroscopy and modeling. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 204:111804. [PMID: 32007677 DOI: 10.1016/j.jphotobiol.2020.111804] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 12/31/2022]
Abstract
The ubiquitous influence of double stranded RNAs in biological events makes them imperative to gather data based on specific binding procedure of small molecules to various RNA conformations. Particular interest may be attributed to situations wherein small molecules target RNAs altering their structures and causing functional modifications. The main focus of this study is to delve into the interactive pattern of two small molecule phenothiazinium dyes, methylene blue and new methylene blue, with three duplex RNA polynucleotides-poly(A).poly(U), poly(C).poly(G) and poly(I).poly(C) by spectroscopic and molecular modeling techniques. Analysis of data as per Scatchard and Benesi-Hildebrand methodologies revealed highest affinity of these dyes to poly(A).poly(U) and least to poly(I).poly(C). In addition to fluorescence quenching, viscometric studies also substantiated that the dyes follow different modes of binding to different RNA polynucleotides. Distortion in the RNA structures with induced optical activity in the otherwise optically inactive dye molecules was evidenced from circular dichroism results. Dye-induced RNA structural modification occurred from extended conformation to compact particles visualized by atomic force microscopy. Molecular docking results revealed different binding patterns of the dye molecules within the RNA duplexes. The novelty of the present work lies towards a new contribution of the phenothiazinium dyes in dysfunctioning double stranded RNAs, advancing our knowledge to their potential use as RNA targeted small molecules.
Collapse
Affiliation(s)
- Puja Paul
- Department of Chemistry, Dinabandhu Mahavidyalaya, Bongaon, West Bengal 743235, India; CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Soumya Sundar Mati
- Government GD College, Keshiary, Paschim Medinipur, West Bengal 721135, India
| | | |
Collapse
|
10
|
Verma AK, Khan E, Mishra SK, Jain N, Kumar A. Piperine Modulates Protein Mediated Toxicity in Fragile X-Associated Tremor/Ataxia Syndrome through Interacting Expanded CGG Repeat (r(CGG) exp) RNA. ACS Chem Neurosci 2019; 10:3778-3788. [PMID: 31264835 DOI: 10.1021/acschemneuro.9b00282] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
An expansion of CGG tandem repeats in the 5' untranslated region (5'-UTR) of fragile X mental retardation 1 (FMR1) gene causes fragile X-associated tremor/ataxia syndrome (FXTAS). The transcripts of these expanded repeats r(CGG)exp either form RNA foci or undergo the repeat-associated non-ATG (RAN) translation that produces toxic homopolymeric proteins in neuronal cells. The discovery of small molecule modulators that possess a strong binding affinity and high selectivity to these toxic expanded repeats RNA could be a promising therapeutic approach to cure the expanded repeat-associated neurological diseases. Therefore, here we sought to test the therapeutic potential of a natural alkaloid, piperine, by assessing its ability to bind and neutralize the toxicity of r(CGG)exp RNA motif. To accomplish this first, we have determined the affinity of piperine to r(CGG)exp RNA using fluorescence-based binding assay and isothermal titration calorimetry assay. These assays showed that piperine forms a thermodynamically favorable interaction with r(CGG)exp RNA with high selectivity to the G-rich RNA motif. Interaction of piperine with r(CGG)exp motif was further validated using several biophysical techniques such as CD, CD melting, NMR spectroscopy, and gel retardation assay. Moreover, piperine was also found to be effective for improving the r(CGG)exp associated splicing defects and RAN translation in a FXTAS cell model system. Our results effectively provided the evidence that piperine strongly interacts with r(CGG)exp RNA and could be used as a suitable candidate for therapeutic development against FXTAS.
Collapse
Affiliation(s)
- Arun Kumar Verma
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Eshan Khan
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Subodh Kumar Mishra
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Neha Jain
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Amit Kumar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| |
Collapse
|
11
|
Habib A, Bhatti HN, Iqbal M, Asim S, Mansha A. 4-Acetamidophenol Binding Mechanism with DNA by UV-Vis and FTIR Techniques Based on Binding Energy, LUMO and HOMO Orbitals and Geometry of Molecule. Z PHYS CHEM 2019. [DOI: 10.1515/zpch-2018-1340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Present study was conducted to appraise the interaction mechanism of 4-acetamidophenol (4-AP) with DNA based on UV-Vis and FTIR techniques based on binding energy, isolated atomic energy, LUMO and HOMO orbitals gap and geometry of molecule. Analysis revealed the groove binding and intercalation mode of interaction between 4-AP and DNA since hyperchromic and bathochromic shifts were observed in response of interaction of DNA. The planar part of interacting molecule intercalated with DNA and non-planar part of 4-acetamidophenol bounded with DNA (groove binding). The constants for binding between 4-AP and DNA were calculated and 20.12 × 103 mol−1 dm3 binding constant was recorded at pH 4.7, whereas this value was 5.32 × 103 mol−1 dm3 for the pH 7.4. The binding constant value for interaction of 4-AP with DNA revealed the possibility of oral administration of 4-AP. The 4-AP binding with DNA is spontaneous process, which was confirmed from negative value of free energy at room temperature. FTIR study revealed that C–H and C=C (aromatic) functional groups were involved in binding at pH 4.7 and C=O (amide) was involved in groove binding, whereas C–H (aromatic) was responsible for intercalation at pH 7.4 and C–H (alkaline) and C=O (amide) were responsible for groove binding at pH 4.7.
Collapse
Affiliation(s)
- Aqsa Habib
- Department of Chemistry , University of Agriculture , Faisalabad-38040 , Pakistan
| | - Haq Nawaz Bhatti
- Department of Chemistry , University of Agriculture , Faisalabad-38040 , Pakistan
| | - Munawar Iqbal
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
| | - Sadia Asim
- Department of Chemistry , University of Agriculture , Faisalabad-38040 , Pakistan
- Department of Chemistry , Government College Women University , Faisalabad , Pakistan
| | - Asim Mansha
- Department of Chemistry , Government College Women University , Faisalabad , Pakistan
| |
Collapse
|
12
|
Zarudnaya MI, Kolomiets IM, Potyahaylo AL, Hovorun DM. Structural transitions in poly(A), poly(C), poly(U), and poly(G) and their possible biological roles. J Biomol Struct Dyn 2018; 37:2837-2866. [PMID: 30052138 DOI: 10.1080/07391102.2018.1503972] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The homopolynucleotide (homo-oligonucleotide) tracts function as regulatory elements at various stages of mRNAs life cycle. Numerous cellular proteins specifically bind to these tracts. Among them are the different poly(A)-binding proteins, poly(C)-binding proteins, multifunctional fragile X mental retardation protein which binds specifically both to poly(G) and poly(U) and others. Molecular mechanisms of regulation of gene expression mediated by homopolynucleotide tracts in RNAs are not fully understood and the structural diversity of these tracts can contribute substantially to this regulation. This review summarizes current knowledge on different forms of homoribopolynucleotides, in particular, neutral and acidic forms of poly(A) and poly(C), and also biological relevance of homoribopolynucleotide (homoribo-oligonucleotide) tracts is discussed. Under physiological conditions, the acidic forms of poly(A) and poly(C) can be induced by proton transfer from acidic amino acids of proteins to adenine and cytosine bases. Finally, we present potential mechanisms for the regulation of some biological processes through the formation of intramolecular poly(A) duplexes.
Collapse
Affiliation(s)
- Margarita I Zarudnaya
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , Kyiv , Ukraine
| | - Iryna M Kolomiets
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , Kyiv , Ukraine
| | - Andriy L Potyahaylo
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , Kyiv , Ukraine
| | - Dmytro M Hovorun
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , Kyiv , Ukraine.,b Department of Molecular Biotechnology and Bioinformatics , Institute of High Technologies, Taras Shevchenko National University of Kyiv , Kyiv , Ukraine
| |
Collapse
|
13
|
Basu A, Kumar GS. Nucleic acids binding strategies of small molecules: Lessons from alkaloids. Biochim Biophys Acta Gen Subj 2018; 1862:1995-2016. [DOI: 10.1016/j.bbagen.2018.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/11/2018] [Accepted: 06/11/2018] [Indexed: 01/14/2023]
|
14
|
Yang Y, Peng J, Li F, Liu X, Deng M, Wu H. Determination of Alkaloid Contents in Various Tissues of Coptis Chinensis Franch. by Reversed Phase-High Performance Liquid Chromatography and Ultraviolet Spectrophotometry. J Chromatogr Sci 2018; 55:556-563. [PMID: 28203760 DOI: 10.1093/chromsci/bmx009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Indexed: 11/12/2022]
Abstract
A simple and intuitive method for optimizing the chemical constituents of Coptis Chinensis Franch. is important to assess its quality and clinical efficacy. An high performance liquid chromatography and ultraviolet spectrophotometry method was developed for the determination of berberine hydrochloride, palmatine chloride, jatrorrhizine hydrochloride, epiberberine, coptisine, columbamine and magnoflorine in various tissues (i.e., phloem, xylem and medulla) and rizhome of C. Chinensis Franch. The transection of rhizome from outside-in includes cork layer, cortex, phloem, cambium, xylem and medulla. Cork layer consists of dead cells, and therefore is not of any research significance. Cortex, phloem and cambium were almost impossible to separate, therefore they were studied as a whole in our experiments. They were collectively referred to as "phloem". The analytes were separated on a Gemini-NX C18 (250 mm × 4.6 mm, 5 μm) reversed phase column using a gradient elution of acetonitrile-0.03 mol/L ammonium acetate solution (containing 0.1% triethylamine and 0.6% ammonium hydroxide) as the mobile phase at a flow rate of 1.0 mL/min and UV detection at 270 nm. The method allowing the simultaneous quantification of seven major active constituents was optimized and validated for linearity, precision, accuracy, limits of detection (LOD) and quantification. The LOD ranged from 0.102 to 0.651 mg/mL (r ≥ 0.9993). Accuracy, precision and recovery were all within the required limits. The average recovery was between 100.14% and 102.75% and the relative standard deviations were <3.34%. At the same time, the absorbance was determined by ultraviolet spectrophotometry at 345 nm wavelength. Based on contents of the seven constituents and clustering result, this investigation suggests that there are significant differences in the distribution of seven alkaloids in the tissues examined. Furthermore, the total alkaloid content in xylem is relatively lower than that in phloem, medulla and rhizome.
Collapse
Affiliation(s)
- Yanfang Yang
- School of Pharmacy, Hubei University of Chinese Medicine, Hongshan District, Hubei Province, Wuhan 430065, P.R. China.,Collaborative Innovation Center of Traditional Chinese Medicine of New Products for Geriatrics Hubei Province, Huangjia Lake West Road on the 1st, Hubei Province, Wuhan 430065, P.R. China.,Key Laboratory of Resource Science and Chemistry in Chinese Medicine Hubei Province, Huangjia Lake West Road on the 1st, Hubei Province, Wuhan 430061, P.R. China
| | - Jingling Peng
- School of Pharmacy, Hubei University of Chinese Medicine, Hongshan District, Hubei Province, Wuhan 430065, P.R. China
| | - Fangping Li
- School of Pharmacy, Hubei University of Chinese Medicine, Hongshan District, Hubei Province, Wuhan 430065, P.R. China
| | - Xin Liu
- School of Pharmacy, Hubei University of Chinese Medicine, Hongshan District, Hubei Province, Wuhan 430065, P.R. China
| | - Meng Deng
- School of Pharmacy, Hubei University of Chinese Medicine, Hongshan District, Hubei Province, Wuhan 430065, P.R. China
| | - Hezhen Wu
- School of Pharmacy, Hubei University of Chinese Medicine, Hongshan District, Hubei Province, Wuhan 430065, P.R. China.,Collaborative Innovation Center of Traditional Chinese Medicine of New Products for Geriatrics Hubei Province, Huangjia Lake West Road on the 1st, Hubei Province, Wuhan 430065, P.R. China.,Key Laboratory of Resource Science and Chemistry in Chinese Medicine Hubei Province, Huangjia Lake West Road on the 1st, Hubei Province, Wuhan 430061, P.R. China
| |
Collapse
|
15
|
Paul P, Chatterjee S, Pramanik A, Karmakar P, Chandra Bhattacharyya S, Kumar GS. Thionine Conjugated Gold Nanoparticles Trigger Apoptotic Activity Toward HepG2 Cancer Cell Line. ACS Biomater Sci Eng 2018; 4:635-646. [DOI: 10.1021/acsbiomaterials.7b00390] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Puja Paul
- Organic
and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
- Department
of Chemistry, Jadavpur University, Kolkata 700 032, India
| | - Sabyasachi Chatterjee
- Organic
and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Arindam Pramanik
- Department
of Life Science and Bio-technology, Jadavpur University, Kolkata 700 032, India
| | - Parimal Karmakar
- Department
of Life Science and Bio-technology, Jadavpur University, Kolkata 700 032, India
| | | | - Gopinatha Suresh Kumar
- Organic
and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| |
Collapse
|
16
|
Haque L, Bhuiya S, Das S. Self-structure assembly in single stranded polyriboadenylic acid by benzophenanthridine alkaloid: Spectroscopic and calorimetric exploration. Int J Biol Macromol 2018; 106:1130-1138. [DOI: 10.1016/j.ijbiomac.2017.08.119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/19/2017] [Accepted: 08/21/2017] [Indexed: 02/07/2023]
|
17
|
Khan AY, Suresh Kumar G. Exploring the binding interaction of potent anticancer drug topotecan with human serum albumin: spectroscopic, calorimetric and fibrillation study. J Biomol Struct Dyn 2017; 36:2463-2473. [DOI: 10.1080/07391102.2017.1359671] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Asma Yasmeen Khan
- Biophysical Chemistry Laboratory, Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory, Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| |
Collapse
|
18
|
Bandyopadhyay N, Basu P, Kumar GS, Guhathakurta B, Singh P, Naskar JP. Biophysical studies on the interaction of a novel oxime based palladium(II) complex with DNA and RNA. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 173:560-570. [DOI: 10.1016/j.jphotobiol.2017.06.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 12/13/2022]
|
19
|
Basu P, Suresh Kumar G. Small molecule-RNA recognition: Binding of the benzophenanthridine alkaloids sanguinarine and chelerythrine to single stranded polyribonucleotides. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 174:173-181. [PMID: 28779690 DOI: 10.1016/j.jphotobiol.2017.07.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/18/2017] [Accepted: 07/21/2017] [Indexed: 01/18/2023]
Abstract
Single stranded RNAs are biologically potent as they participate in various key cellular processes. The binding efficacy of two potent anticancer alkaloids, sanguinarine (here after SANG) and chelerythrine (here after CHEL), with single-stranded ribonucleic acids poly(rI), poly(rG), and poly(rC) were studied using spectroscopic and thermodynamic tools. Results reveal that both SANG and CHEL binds well with single stranded RNAs with affinity in the order poly(rI)>poly(rG)>poly(rC). CHEL showed slightly higher affinity compared to SANG with all the single stranded RNAs. Both SANG and CHEL showed association affinity of the lower 106 order with poly(rI), higher 105 order binding with poly(rG) and lower 105 order with poly(rC). The binding mode was partial intercalation due to the staking interaction between the bases and the alkaloids. The complexation of both the SANG and CHEL to the RNAs were mainly enthalpy driven and also favoured by entropy changes. Perturbation was observed in the RNA conformation due to binding of the alkaloids. In this present study we have deciphered the fundamental structural and calorimetric aspects of the interaction of the natural benzophenanthridine alkaloids with single stranded RNAs and these results may help to develop new generation alkaloid based therapeutics targeting single stranded RNAs.
Collapse
Affiliation(s)
- Pritha Basu
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Gopinatha Suresh Kumar
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India.
| |
Collapse
|
20
|
Das A, Chatterjee S, Suresh Kumar G. Targeting human telomeric G-quadruplex DNA with antitumour natural alkaloid aristololactam-β-D-glucoside and its comparison with daunomycin. J Mol Recognit 2017; 30. [DOI: 10.1002/jmr.2639] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/05/2017] [Accepted: 04/11/2017] [Indexed: 11/05/2022]
Affiliation(s)
| | - Sabyasachi Chatterjee
- Biophysical Chemistry Laboratory, Organic and Medicinal Chemistry Division; CSIR-Indian Institute of Chemical Biology; Kolkata India
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory, Organic and Medicinal Chemistry Division; CSIR-Indian Institute of Chemical Biology; Kolkata India
| |
Collapse
|
21
|
Wang X, Milne M, Martínez F, Scholl TJ, Hudson RHE. Synthesis of a poly(Gd( iii)-DOTA)–PNA conjugate as a potential MRI contrast agent via post-synthetic click chemistry functionalization. RSC Adv 2017. [DOI: 10.1039/c7ra09040d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
An operationally easy method provides poly(Gd3+chelate) PNA conjugates that form comb-like complexes with poly(rA) and demonstrate increased relaxivity.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Department of Chemistry
- The University of Western Ontario
- London
- Canada
| | - Mark Milne
- Department of Chemistry
- The University of Western Ontario
- London
- Canada
| | - Francisco Martínez
- Department of Medical Biophysics
- The Robarts Research Institute
- The University of Western Ontario
- London
- Canada
| | - Timothy J. Scholl
- Department of Medical Biophysics
- The Robarts Research Institute
- The University of Western Ontario
- London
- Canada
| | | |
Collapse
|
22
|
Guhathakurta B, Basu P, Kumar GS, Lu L, Zhu M, Bandyopadhyay N, Naskar JP. Synthetic, structural, electrochemical and DNA-binding aspects of a novel oximato bridged copper(II) dimer. Polyhedron 2016. [DOI: 10.1016/j.poly.2016.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Basu A, Kumar GS. Spectroscopic and microcalorimetric studies on the molecular binding of food colorant acid red 27 with deoxyribonucleic acid. J Mol Recognit 2016; 29:363-9. [DOI: 10.1002/jmr.2536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 12/26/2015] [Accepted: 12/26/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Anirban Basu
- Biophysical Chemistry Laboratory, Organic and Medicinal Chemistry Division; CSIR-Indian Institute of Chemical Biology; Kolkata 700 032 India
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory, Organic and Medicinal Chemistry Division; CSIR-Indian Institute of Chemical Biology; Kolkata 700 032 India
| |
Collapse
|
24
|
Kumar GS, Basu A. The use of calorimetry in the biophysical characterization of small molecule alkaloids binding to RNA structures. Biochim Biophys Acta Gen Subj 2015; 1860:930-944. [PMID: 26522497 DOI: 10.1016/j.bbagen.2015.10.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/06/2015] [Accepted: 10/27/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND RNA has now emerged as a potential target for therapeutic intervention. RNA targeted drug design requires detailed thermodynamic characterization that provides new insights into the interactions and this together with structural data, may be used in rational drug design. The use of calorimetry to characterize small molecule-RNA interactions has emerged as a reliable and sensitive tool after the recent advancements in biocalorimetry. SCOPE OF THE REVIEW This review summarizes the recent advancements in thermodynamic characterization of small molecules, particularly some natural alkaloids binding to various RNA structures. Thermodynamic characterization provides information that can supplement structural data leading to more effective drug development protocols. MAJOR CONCLUSIONS This review provides a concise report on the use of isothermal titration calorimetry (ITC) and differential scanning calorimetry (DSC) techniques in characterizing small molecules, mostly alkaloids-RNA interactions with particular reference to binding of tRNA, single stranded RNA, double stranded RNA, poly(A), triplex RNA. GENERAL SIGNIFICANCE It is now apparent that a combination of structural and thermodynamic data is essential for rational design of specific RNA targeted drugs. Recent advancements in biocalorimetry instrumentation have led to detailed understanding of the thermodynamics of small molecules binding to various RNA structures paving the path for the development of many new natural and synthetic molecules as specific binders to various RNA structures. RNA targeted drug design, that remained unexplored, will immensely benefit from the calorimetric studies leading to the development of effective drugs for many diseases.
Collapse
Affiliation(s)
- Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory, Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India.
| | - Anirban Basu
- Biophysical Chemistry Laboratory, Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| |
Collapse
|
25
|
Khilari R, Thakur Y, Pardhi M, Pande R. RNA-Binding Efficacy of N-Phenylbenzohydroxamic Acid: An Invitro and Insilico Approach. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2015; 34:332-47. [PMID: 25874942 DOI: 10.1080/15257770.2014.1001073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
RNA has attracted recent attention for its key role in gene expression and hence targeting by small molecules for therapeutic intervention. This study is aimed to elucidate the specificity of RNA binding affinity of parent compound of N-arylhydroxamic acids series, N-phenylbenzohydroxamic acid trivially named as PBHA,C6H5NOH.C6H5C˭O. The binding behavior was examined by various biophysical methods such as absorption, fluorescence, and viscosity measurements. Molecular docking was also done. The value of affinity constant and overall binding constant was calculated 5.79±0.03×10(4) M(-1) and K'=1.09±0.03×10(5) M(-1), respectively. The Stern-Volmer constant Ksv obtained was 2.28±0.04×10(4) M(-1). The compound (PBHA) shows a concentration-based enhancement of fluorescence intensity with increasing RNA concentration. Fluorescence quenching of PBHA-RNA complex in presence of K4 [Fe(CN)6] was also observed. Viscometric studies complimented the UV results where a continuous increase in relative viscosity of the RNA solution was observed with added optimal PBHA concentration. All the experimental evidences indicate that PBHA can strongly bind to RNA through an intercalative mode.
Collapse
Affiliation(s)
- Rubi Khilari
- a School of Studies in Chemistry, Pt. Ravishankar Shukla University , Raipur , Chhattisgarh , India
| | | | | | | |
Collapse
|
26
|
Bhowmik D, Fiorillo G, Lombardi P, Suresh Kumar G. Recognition of human telomeric G-quadruplex DNA by berberine analogs: effect of substitution at the 9 and 13 positions of the isoquinoline moiety. J Mol Recognit 2015; 28:722-30. [DOI: 10.1002/jmr.2486] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/11/2015] [Accepted: 05/23/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Debipreeta Bhowmik
- Biophysical Chemistry Laboratory; CSIR-Indian Institute of Chemical Biology; Kolkata 700 032 India
| | - Gaetano Fiorillo
- Naxospharma srl; Via G. Di Vittorio 70 20026 Novate Milanese MI Italy
| | - Paolo Lombardi
- Naxospharma srl; Via G. Di Vittorio 70 20026 Novate Milanese MI Italy
| | - G. Suresh Kumar
- Biophysical Chemistry Laboratory; CSIR-Indian Institute of Chemical Biology; Kolkata 700 032 India
| |
Collapse
|
27
|
Roviello GN, Musumeci D, Roviello V, Pirtskhalava M, Egoyan A, Mirtskhulava M. Natural and artificial binders of polyriboadenylic acid and their effect on RNA structure. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2015; 6:1338-1347. [PMID: 26199837 PMCID: PMC4505092 DOI: 10.3762/bjnano.6.138] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 05/22/2015] [Indexed: 06/10/2023]
Abstract
The employment of molecular tools with nucleic acid binding ability to specifically control crucial cellular functions represents an important scientific area at the border between biochemistry and pharmaceutical chemistry. In this review we describe several molecular systems of natural or artificial origin, which are able to bind polyriboadenylic acid (poly(rA)) both in its single-stranded or structured forms. Due to the fundamental role played by the poly(rA) tail in the maturation and stability of mRNA, as well as in the initiation of the translation process, compounds able to bind this RNA tract, influencing the mRNA fate, are of special interest for developing innovative biomedical strategies mainly in the field of anticancer therapy.
Collapse
Affiliation(s)
- Giovanni N Roviello
- Istituto di Biostrutture e Bioimmagini - CNR, via Mezzocannone 16, 80134 Napoli, Italy
| | - Domenica Musumeci
- Istituto di Biostrutture e Bioimmagini - CNR, via Mezzocannone 16, 80134 Napoli, Italy
- Dipartimento di Scienze Chimiche, Università di Napoli “Federico II”, 80126 Napoli, Italy
| | - Valentina Roviello
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale (DICMaPI), Università di Napoli “Federico II”, 80125 Napoli, Italy
| | | | | | | |
Collapse
|
28
|
Abassi Joozdani F, Yari F, Abassi Joozdani P, Nafisi S. Interaction of sulforaphane with DNA and RNA. PLoS One 2015; 10:e0127541. [PMID: 26030290 PMCID: PMC4452540 DOI: 10.1371/journal.pone.0127541] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 04/16/2015] [Indexed: 01/19/2023] Open
Abstract
Sulforaphane (SFN) is an isothiocyanate found in cruciferous vegetables with anti-inflammatory, anti-oxidant and anti-cancer activities. However, the antioxidant and anticancer mechanism of sulforaphane is not well understood. In the present research, we reported binding modes, binding constants and stability of SFN-DNA and -RNA complexes by Fourier transform infrared (FTIR) and UV-Visible spectroscopic methods. Spectroscopic evidence showed DNA intercalation with some degree of groove binding. SFN binds minor and major grooves of DNA and backbone phosphate (PO2), while RNA binding is through G, U, A bases with some degree of SFN-phosphate (PO2) interaction. Overall binding constants were estimated to be K(SFN-DNA)=3.01 (± 0.035)×10(4) M(-1) and K(SFN-RNA)= 6.63 (±0.042)×10(3) M(-1). At high SFN concentration (SFN/RNA = 1/1), DNA conformation changed from B to A occurred, while RNA remained in A-family structure.
Collapse
Affiliation(s)
| | - Faramarz Yari
- Department of Biology, IAU, Science and Research Branch, Tehran, Iran
| | | | - Shohreh Nafisi
- Department of Chemistry, IAU, Central Tehran Branch, Tehran, Iran
- Department of Dermatology, University of California, San Francisco, California, United States of America
| |
Collapse
|
29
|
Paul P, Kumar GS. Photophysical and calorimetric investigation on the structural reorganization of poly(A) by phenothiazinium dyes azure A and azure B. Photochem Photobiol Sci 2015; 13:1192-202. [PMID: 24953877 DOI: 10.1039/c4pp00085d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Poly(A) has significant relevance to mRNA stability, protein synthesis and cancer biology. The ability of two phenothiazinium dyes azure A (AA) and azure B (AB) to bind single-stranded poly(A) was studied by spectroscopic and calorimetric techniques. Strong binding of the dyes and the higher affinity of AA over AB were ascertained from absorbance and fluorescence experiments. Significant perturbation of the circular dichroism spectrum of poly(A) in the presence of these molecules with formation of induced CD bands in the 300-700 nm region was observed. Strong emission polarization of the bound dyes and strong energy transfer from the adenine base pairs of poly(A) suggested intercalative binding to poly(A). Intercalative binding was confirmed from fluorescence quenching experiments and was predominantly entropy driven as evidenced from isothermal titration calorimetry data. The negative values of heat capacity indicated involvement of hydrophobic forces and enthalpy-entropy compensation suggested noncovalent interactions in the complexation for both the dyes. Poly(A) formed a self-assembled structure on the binding of both the dyes that was more favored under higher salt conditions. New insights in terms of spectroscopic and thermodynamic aspects into the self-structure formation of poly(A) by two new phenothiazinium dyes that may lead to structural and functional damage of mRNA are revealed from these studies.
Collapse
Affiliation(s)
- Puja Paul
- Biophysical Chemistry Laboratory, Chemisry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India.
| | | |
Collapse
|
30
|
Basu P, Kumar GS. A comparative study on the interaction of the putative anticancer alkaloids, sanguinarine and chelerythrine, with single- and double-stranded, and heat-denatured DNAs. J Biomol Struct Dyn 2015; 33:2594-605. [PMID: 25562701 DOI: 10.1080/07391102.2014.1002425] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A detailed investigation on the interaction of two benzophenanthridine alkaloids, sanguinarine (SGR) and chelerythrine (CHL), with the double-stranded (ds), heat-denatured (hd), and single-stranded (ss) DNA was performed by spectroscopy and calorimetry techniques. Binding to the three DNA conformations leads to quenching of fluorescence of SGR and enhancement in the fluorescence of CHL. The binding was cooperative for both of the alkaloids with all the three DNA conformations. The binding constant values of both alkaloids with the ds DNA were in the order of 10(6) M(-1); binding was weak with hd and much weaker to the ss DNA. The fluorescence emission of the alkaloid molecules bound to the ds and hd DNAs was quenched much less compared to those bound to the ss DNA based on competition with the anionic quencher KI. For both double stranded and heat denatured structures the emission of the bound alkaloid molecules was polarized significantly and strong energy transfer from the DNA bases to the alkaloid molecules occurred. Intercalation of SGR and CHL to ds, hd, and ss DNA was proved from these fluorescence results. Calorimetric studies suggested that the binding to all DNA conformations was both enthalpy and entropy favored. Both the alkaloids preferred double-helical regions for binding, but SGR was a stronger binder than CHL to all the three DNA structures.
Collapse
Affiliation(s)
- Pritha Basu
- a Biophysical Chemistry Laboratory , CSIR-Indian Institute of Chemical Biology , 4, Raja S. C. Mullick Road, Kolkata 700 032 , India
| | - Gopinatha Suresh Kumar
- a Biophysical Chemistry Laboratory , CSIR-Indian Institute of Chemical Biology , 4, Raja S. C. Mullick Road, Kolkata 700 032 , India
| |
Collapse
|
31
|
Basu P, Kumar GS. Structural and thermodynamic basis of interaction of the putative anticancer agent chelerythrine with single, double and triple-stranded RNAs. RSC Adv 2015. [DOI: 10.1039/c5ra00660k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Interaction of chl with poly(uau), poly(au) and poly(u).
Collapse
Affiliation(s)
- Pritha Basu
- Biophysical Chemistry Laboratory
- Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700 032
- India
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory
- Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700 032
- India
| |
Collapse
|
32
|
Kabir A, Kumar GS. Probing the interaction of spermine and 1-naphthyl acetyl spermine with DNA polynucleotides: a comparative biophysical and thermodynamic investigation. MOLECULAR BIOSYSTEMS 2014; 10:1172-83. [PMID: 24643290 DOI: 10.1039/c3mb70616h] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The interaction of spermine and its analogue, 1-naphthyl acetyl spermine with four double stranded DNA polynucleotides has been studied to understand the structural and thermodynamic basis of the binding. The efficacy and specificity of DNA binding of this analogue has not yet been revealed. The energetics of the interaction was studied by isothermal titration calorimetry and differential scanning calorimetry. Circular dichroism spectroscopy, UV-thermal melting and ethidium bromide displacement assay have been employed to characterize the association. Circular dichroism studies showed that 1-naphthyl acetyl spermine caused a stronger structural perturbation in the polynucleotides. Among the adenine-thymine polynucleotides the alternating polynucleotide was more preferred by naphthyl acetyl spermine compared to the preference of spermine for the homo sequence. The higher melting stabilization revealed by the optical melting and differential scanning calorimetry results suggested that the binding of 1-naphthyl acetyl spermine increased the melting temperature and the total standard molar enthalpy of the transition of adenine-thymine polynucleotides. Microcalorimetry results revealed that unlike spermine the binding of 1-naphthyl acetyl spermine was endothermic. The interaction was characterized by total enthalpy-entropy compensation and high standard molar heat capacity values. There are differences in the mode of association of 1-naphthyl acetyl spermine and spermine. 1-naphthyl acetyl spermine binds with an enhanced affinity with the adenine-thymine hetero polynucleotide. Thus, the result suggests the importance of polyamine analogues and their ability to interfere with normal polyamine interactions.
Collapse
Affiliation(s)
- Ayesha Kabir
- Biophysical Chemistry Laboratory, Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700 032, India.
| | | |
Collapse
|
33
|
Khan AY, Saha B, Kumar GS. Interaction of phenazinium dyes with double-stranded poly(A): spectroscopy and isothermal titration calorimetry studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 131:615-624. [PMID: 24861262 DOI: 10.1016/j.saa.2014.04.087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/19/2014] [Accepted: 04/14/2014] [Indexed: 06/03/2023]
Abstract
A comprehensive study on the binding of phenazinium dyes viz. janus green B, indoine blue, safranine O and phenosafranine with double stranded poly(A) using various spectroscopic and calorimetric techniques is presented. A higher binding of janus green B and indoine blue over safranine O and phenosafranine to poly(A) was observed from all experiments. Intercalative mode of binding of the dyes was inferred from fluorescence polarization anisotropy, iodide quenching and viscosity experiments. Circular dichroism study revealed significant perturbation of the secondary structure of poly(A) on binding of these dyes. Results from isothermal titration calorimetry experiments suggested that the binding was predominantly entropy driven with a minor contribution of enthalpy to the standard molar Gibbs energy. The results presented here may open new opportunities in the application of these dyes as RNA targeted therapeutic agents.
Collapse
Affiliation(s)
- Asma Yasmeen Khan
- Biophysical Chemistry Laboratory, Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Baishakhi Saha
- Biophysical Chemistry Laboratory, Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory, Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India.
| |
Collapse
|
34
|
Zhou ZX, Gao F, Chen X, Tian XJ, Ji LN. Selective binding and reverse transcription inhibition of single-strand poly(A) RNA by metal TMPyP complexes. Inorg Chem 2014; 53:10015-7. [PMID: 25203754 DOI: 10.1021/ic501337c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ni-, Cu-, and Zn-TMPyP are capable of binding to single-strand poly(A) RNA with high preference and affinity and inhibiting the reverse transcription of RNA by both M-MuLV and HIV-1 reverse transcriptase. With 10 nM azidothymidine, the IC50 value of M-TMPyP could be lowered to 10(-1) μM order.
Collapse
Affiliation(s)
- Zhu-Xin Zhou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University , Guangzhou 510275, P. R. China
| | | | | | | | | |
Collapse
|
35
|
Basu P, Suresh Kumar G. Elucidation of the DNA binding specificity of the natural plant alkaloid chelerythrine: A biophysical approach. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 138:282-94. [DOI: 10.1016/j.jphotobiol.2014.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/20/2014] [Accepted: 06/09/2014] [Indexed: 12/20/2022]
|
36
|
Gaier AJ, Ghimire S, Fix SE, McMillin DR. Internal Versus External Binding of Cationic Porphyrins to Single-Stranded DNA. Inorg Chem 2014; 53:5467-73. [PMID: 24828700 DOI: 10.1021/ic403105q] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Abby J. Gaier
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, Indiana 47907, United States
| | - Srijana Ghimire
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, Indiana 47907, United States
| | - Sarah E. Fix
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, Indiana 47907, United States
| | - David R. McMillin
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, Indiana 47907, United States
| |
Collapse
|
37
|
Ghosh S, Chakrabarty S, Bhowmik D, Kumar GS, Chattopadhyay N. Stepwise Unfolding of Bovine and Human Serum Albumin by an Anionic Surfactant: An Investigation Using the Proton Transfer Probe Norharmane. J Phys Chem B 2014; 119:2090-102. [DOI: 10.1021/jp501150p] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Saptarshi Ghosh
- Department
of Chemistry, Jadavpur University, Kolkata 700 032, India
| | | | - Debipreeta Bhowmik
- Biophysical
Chemistry Laboratory, Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Gopinatha Suresh Kumar
- Biophysical
Chemistry Laboratory, Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | | |
Collapse
|
38
|
Khan AY, Saha B, Suresh Kumar G. Phenazinium dyes safranine O and phenosafranine induce self-structure in single stranded polyadenylic acid: structural and thermodynamic studies. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 132:17-26. [PMID: 24565690 DOI: 10.1016/j.jphotobiol.2014.01.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 12/30/2013] [Accepted: 01/19/2014] [Indexed: 11/29/2022]
Abstract
The interaction of phenazinium dyes, safranine O and phenosafranine with single stranded polyadenylic acid was studied using spectroscopic viscometric and calorimetric techniques. Both dyes bind to polyadenylic acid strongly with association constant of the order of 10(5)M(-1). Safranine O showed higher affinity over phenosafranine. The binding induced conformational changes in polyadenylic acid, but the extent of change was much higher with safranine O. The bound safranine O molecules acquired strong induced circular dichroism spectra compared to the weak induced circular dichroism of phenosafranine. Fluorescence polarization, iodide quenching, viscosity results and energy transfer from bases to bound dyes suggested intercalation of the dye molecules to polyadenylic acid structure. The binding was entropy driven in both the cases. Circular dichroism and optical melting studies revealed cooperative melting profiles for dye-polyadenylic acid complexes that provided evidence for the formation of self-structured polyadenylic acid on dye binding. This structural reorganization was further confirmed by differential scanning calorimetry results.
Collapse
Affiliation(s)
- Asma Yasmeen Khan
- Biophysical Chemistry Laboratory, Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Baishakhi Saha
- Biophysical Chemistry Laboratory, Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory, Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India.
| |
Collapse
|
39
|
Pradhan AB, Haque L, Roy S, Das S. Binding of phenazinium dye safranin T to polyriboadenylic acid: spectroscopic and thermodynamic study. PLoS One 2014; 9:e87992. [PMID: 24498422 PMCID: PMC3912202 DOI: 10.1371/journal.pone.0087992] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 01/02/2014] [Indexed: 11/18/2022] Open
Abstract
Here, we report results from experiments designed to explore the association of the phenazinium dye safranin T (ST, 3,7-diamino-2,8-dimethyl-5-phenylphenazinium chloride) with single and double stranded form of polyriboadenylic acid (hereafter poly-A) using several spectroscopic techniques. We demonstrate that the dye binds to single stranded polyriboadenylic acid (hereafter ss poly-A) with high affinity while it does not interact at all with the double stranded (ds) form of the polynucleotide. Fluorescence and absorption spectral studies reveal the molecular aspects of binding of ST to single stranded form of the polynucleotide. This observation is also supported by the circular dichroism study. Thermodynamic data obtained from temperature dependence of binding constant reveals that association is driven by negative enthalpy change and opposed by negative entropy change. Ferrocyanide quenching studies have shown intercalative binding of ST to ss poly-A. Experiments on viscosity measurements confirm the binding mode of the dye to be intercalative. The effect of [Na⁺] ion concentration on the binding process suggests the role of electrostatic forces in the complexation. Present studies reveal the utility of the dye in probing nucleic acid structure.
Collapse
Affiliation(s)
| | - Lucy Haque
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata, India
| | - Snigdha Roy
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata, India
| | - Suman Das
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata, India
| |
Collapse
|
40
|
Basu A, Kumar GS. Minor groove binding of the food colorant carmoisine to DNA: spectroscopic and calorimetric characterization studies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:317-326. [PMID: 24328331 DOI: 10.1021/jf404960n] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The interaction of the food additive carmoisine with herring testes DNA was studied by multifaceted biophysical techniques. Carmoisine exhibited hypochromic effects in absorbance, whereas in fluorescence the intensity enhanced upon complexation with DNA. Energy transfer from the DNA base pairs to carmoisine molecules occurred upon complexation. A groove binding model of interaction was envisaged for carmoisine-DNA complexation from 4',6-diamidino-2-phenylindole (DAPI) and Hoechst displacement studies. The binding of carmoisine stabilized the DNA structure against thermal denaturation. The binding induced moderate conformational perturbations in the B-form structure of DNA. The binding affinity (10(4) M(-1)) values, calculated from absorbance and fluorescence data, and calorimetry titrations were in close agreement with each other. The binding was characterized to be exothermic and favored by small negative enthalpic and large positive entropic contributions. Salt-dependent calorimetric studies revealed that the binding reaction was dominated by nonpolyelectrolytic forces. The negative heat capacity value suggested the role of hydrophobic effect in the interaction.
Collapse
Affiliation(s)
- Anirban Basu
- Biophysical Chemistry Laboratory, Chemistry Division, CSIR-Indian Institute of Chemical Biology , Kolkata 700 032, India
| | | |
Collapse
|
41
|
Pradhan AB, Haque L, Bhuiya S, Das S. Induction of self-structure in polyriboadenylic acid by the benzophenanthridine plant alkaloid chelerythrine: a spectroscopic approach. RSC Adv 2014. [DOI: 10.1039/c4ra07075e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Induction of self-structure in polyriboadenylic acid by chelerythrine.
Collapse
Affiliation(s)
| | - Lucy Haque
- Department of Chemistry
- Jadavpur University
- Kolkata 700 032, India
| | - Sutanwi Bhuiya
- Department of Chemistry
- Jadavpur University
- Kolkata 700 032, India
| | - Suman Das
- Department of Chemistry
- Jadavpur University
- Kolkata 700 032, India
| |
Collapse
|
42
|
Paul P, Suresh Kumar G. Self-structure formation in polyadenylic acid by small molecules: new insights from the binding of planar dyes thionine and toluidine blue O. RSC Adv 2014. [DOI: 10.1039/c4ra02671c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Thionine and toluidine blue targeting poly(A).
Collapse
Affiliation(s)
- Puja Paul
- Biophysical Chemistry Laboratory
- Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700 032, India
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory
- Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700 032, India
| |
Collapse
|
43
|
Das A, Kumar GS. Binding studies of aristololactam-β-d-glucoside and daunomycin to human serum albumin. RSC Adv 2014. [DOI: 10.1039/c4ra04327h] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The binding of two carbohydrate containing molecules aristololactam-β-d-glucoside and daunomycin with human serum albumin was evaluated by biophysical techniques.
Collapse
Affiliation(s)
- Abhi Das
- Biophysical Chemistry Laboratory
- Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700 032, India
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory
- Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700 032, India
| |
Collapse
|
44
|
Paul P, Kumar GS. Targeting ribonucleic acids by toxic small molecules: structural perturbation and energetics of interaction of phenothiazinium dyes thionine and toluidine blue O to tRNA phe. JOURNAL OF HAZARDOUS MATERIALS 2013; 263 Pt 2:735-745. [PMID: 24231328 DOI: 10.1016/j.jhazmat.2013.10.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 09/17/2013] [Accepted: 10/19/2013] [Indexed: 06/02/2023]
Abstract
This study was designed to examine the toxic interaction of two phenothiazinium dyes thionine (TO) and toluidine blue O (TBO) with tRNA(phe) by spectroscopic and calorimetric techniques. While phenothiazinium dye complexation with DNA is known, their bindings to RNA are not fully investigated. The non cooperative binding of both the dyes to tRNA was revealed from absorbance and fluorescence studies. From absorption, steady-state emission, the effect of ferrocyanide ion-induced steady-state fluorescence quenching, circular dichroism, the mode of binding of these dyes into the tRNA helix has been substantiated to be principally by intercalative in nature. Both dyes enhanced the thermal stability of tRNA. Circular dichroism studies provided evidence for the structural perturbations associated with the tRNA structure with induction of optical activity in the CD inactive dye molecules. Results from isothermal titration calorimetry experiments suggested that the binding of both dyes was predominantly entropy driven with a smaller but favorable enthalpy term that increased with temperature. The binding was dependent on the Na(+) concentration, but had a larger non-electrostatic contribution to the Gibbs energy. A small heat capacity value and the enthalpy-entropy compensation in the energetics of the interaction characterized the binding of the dyes to tRNA. This study confirms that the tRNA(phe) binding affinity is greater for TO compared to TBO. The utility of the present work lies in understanding the potential binding and consequent damage to tRNA by these toxic dyes in their development as therapeutic agents.
Collapse
Affiliation(s)
- Puja Paul
- Biophysical Chemistry Laboratory, Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, India
| | | |
Collapse
|
45
|
The benzophenanthridine alkaloid chelerythrine binds to DNA by intercalation: Photophysical aspects and thermodynamic results of iminium versus alkanolamine interaction. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 129:57-68. [DOI: 10.1016/j.jphotobiol.2013.09.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/30/2013] [Accepted: 09/30/2013] [Indexed: 11/22/2022]
|
46
|
Bhowmik D, Buzzetti F, Fiorillo G, Lombardi P, Suresh Kumar G. Spectroscopic studies on the binding interaction of novel 13-phenylalkyl analogs of the natural alkaloid berberine to nucleic acid triplexes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 120:257-264. [PMID: 24184628 DOI: 10.1016/j.saa.2013.09.081] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/13/2013] [Accepted: 09/25/2013] [Indexed: 06/02/2023]
Abstract
In this study we have characterized the capability of six 13-phenylalkyl analogs of berberine to stabilize nucleic acid triplex structures, poly(rA)⋅2poly(rU) and poly(dA)⋅2poly(dT). Berberine analogs bind to the RNA and DNA triplexes non-cooperatively. As the chain length of the substitution increased beyond CH2, the affinity enhanced up to critical length of (CH2)4, there after which the binding affinity decreased for both the triplexes. A remarkably stronger intercalative binding of the analogs compared to berberine to the triplexes was confirmed from ferrocyanide fluorescence quenching, fluorescence polarization and viscosity results. Circular dichroism results had indicated strong conformational changes in the triplexes on binding of the analogs. The analogs enhanced the stability of the Hoogsteen base paired third strand of both the triplexes while no significant change in the high-temperature duplex-to-single strand transitions was observed. Energetics of the interaction revealed that as the alkyl chain length increased, the binding was more entropy driven. This study demonstrates that phenylalkyl substitution at the 13-position of berberine increased the triplex binding affinity of berberine but a threshold length of the side chain is critical for the strong intercalative binding to occur.
Collapse
Affiliation(s)
- Debipreeta Bhowmik
- Biophysical Chemistry Laboratory, Chemistry Division, CSIR - Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Franco Buzzetti
- Naxopharma srl, Via G. Di Vittorio, 70, 20026 Novate Milanese (MI), Italy
| | - Gaetano Fiorillo
- Naxopharma srl, Via G. Di Vittorio, 70, 20026 Novate Milanese (MI), Italy
| | - Paolo Lombardi
- Naxopharma srl, Via G. Di Vittorio, 70, 20026 Novate Milanese (MI), Italy
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory, Chemistry Division, CSIR - Indian Institute of Chemical Biology, Kolkata 700 032, India.
| |
Collapse
|
47
|
Namdar R, Makouie N, Nafisi S. Study on the interaction of homoisoflavonoids with RNA. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 128:100-6. [PMID: 24084260 DOI: 10.1016/j.jphotobiol.2013.08.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 08/26/2013] [Accepted: 08/30/2013] [Indexed: 01/05/2023]
Abstract
Homoisoflavonoids (3-benzylidene-4-chromanones) are isomers of flavonoids and exhibit different biological activities because of hydroxyl groups attaching to different positions. This study is the first attempt to locate the binding sites of four synthetic homoisoflavonoids: (E)-3-(3,4-dihydroxybenzylidene)-7-methoxychroman-4-one (BMC), (E)-3-(3,4-dihydroxybenzylidene)-7-propoxychroman-4-one (BPC), (E)-3-(4-hydroxybenzylidene)-7-methoxychroman-4-one (HBMC) and (E) 3-(4-hydroxybenzylidene)-chroman-4-one (HBC) to RNA. The effect of the ligand complexation on RNA aggregation was investigated in aqueous solution at physiological conditions, using constant RNA concentration (6.25mM) and various ligand/polynucleotide (phosphate) ratios of 1/120, 1/80, 1/40, 1/20, 1/10 and 1/5. Fourier transform infrared (FTIR) and UV-Visible spectroscopic methods were used to determine the ligand binding modes, the binding constants, and the stability of ligand-RNA complexes in aqueous solution. Spectroscopic evidence showed external binding of homoisoflavonoids to RNA duplex with overall binding constants of KBMC-RNA = 1.06(± 0.09) × 10(4)M(-1), KBPC-RNA = 1.11(± 0.15) × 10(4)M (-1), KHBC-RNA = 3.82(± 0.09) × 10(3)M(-1) and KHBMC-RNA=5.82(± 0.04) × 10(3) M(-1). The affinity of homoisoflavonoid-RNA binding is in the order of BPC>BMC>HBMC>HBC. No biopolymer secondary structural changes were observed upon homoisoflavonoids interaction and RNA remains in the A-family structure in these complexes.
Collapse
Affiliation(s)
- Roshanak Namdar
- Department of Chemistry, Islamic Azad University, Central Tehran Branch (IAUCTB), Tehran, Iran; Young Researchers and Elite Club, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | | |
Collapse
|
48
|
Kabir A, Suresh Kumar G. Binding of the biogenic polyamines to deoxyribonucleic acids of varying base composition: base specificity and the associated energetics of the interaction. PLoS One 2013; 8:e70510. [PMID: 23894663 PMCID: PMC3722294 DOI: 10.1371/journal.pone.0070510] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 06/24/2013] [Indexed: 11/18/2022] Open
Abstract
Background The thermodynamics of the base pair specificity of the binding of the polyamines spermine, spermidine, putrescine, and cadaverine with three genomic DNAs Clostridium perfringens, 27% GC, Escherichia coli, 50% GC and Micrococcus lysodeikticus, 72% GC have been studied using titration calorimetry and the data supplemented with melting studies, ethidium displacement and circular dichroism spectroscopy results. Methodology/Principal Findings Isothermal titration calorimetry, differential scanning calorimetry, optical melting studies, ethidium displacement, circular dichroism spectroscopy are the various techniques employed to characterize the interaction of four polyamines, spermine, spermidine, putersine and cadaverine with the DNAs. Polyamines bound stronger with AT rich DNA compared to the GC rich DNA and the binding varied depending on the charge on the polyamine as spermine>spermidine >putrescine>cadaverine. Thermodynamics of the interaction revealed that the binding was entropy driven with small enthalpy contribution. The binding was influenced by salt concentration suggesting the contribution from electrostatic forces to the Gibbs energy of binding to be the dominant contributor. Each system studied exhibited enthalpy-entropy compensation. The negative heat capacity changes suggested a role for hydrophobic interactions which may arise due to the non polar interactions between DNA and polyamines. Conclusion/Significance From a thermodynamic analysis, the AT base specificity of polyamines to DNAs has been elucidated for the first time and supplemented by structural studies.
Collapse
Affiliation(s)
- Ayesha Kabir
- Biophysical Chemistry Laboratory, Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory, Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- * E-mail:
| |
Collapse
|
49
|
Das A, Kumar GS. Binding of the plant alkaloid aristololactam-β-d-glucoside and antitumor antibiotic daunomycin to single stranded polyribonucleotides. Biochim Biophys Acta Gen Subj 2013; 1830:4708-18. [PMID: 23769768 DOI: 10.1016/j.bbagen.2013.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 05/24/2013] [Accepted: 06/04/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND Interaction of the plant alkaloid aristololactam-β-d-glucoside and the antitumor drug daunomycin with single stranded RNAs poly(G), poly(I), poly(C) and poly(U) has been investigated. METHODS Biophysical techniques of absorption, fluorescence, competition dialysis, circular dichroism, and microcalorimetry have been used. RESULTS Absorption and fluorescence studies have revealed noncooperative binding of ADG and DAN to the single stranded RNAs. The binding affinity of ADG varied as poly(G) > poly(I) > > poly(C) > poly(U). The affinity of DAN was one order higher than that of ADG and varied as poly(G) > poly(I) > poly(U) > poly(C). This binding preference was further confirmed by competition dialysis assay. The thermodynamics of the binding was characterised to be favourable entropy and enthalpic terms but their contributions were different for different systems. The major non-polyelectrolytic contribution to the binding revealed from salt dependent data appears to be arising mostly from stacking of DAN and ADG molecules with the bases leading to partial intercalation to single stranded RNA structures. Small negative heat capacity values have been observed in all the four cases. CONCLUSIONS This study presents the comparative structural and thermodynamic profiles of the binding of aristololactam-β-d-glucoside and daunomycin to single stranded polyribonucleotides. GENERAL SIGNIFICANCE These results suggest strong, specific but differential binding of these drug molecules to the single stranded RNAs and highlight the role of their structural differences in the interaction profile.
Collapse
Affiliation(s)
- Abhi Das
- CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | | |
Collapse
|
50
|
Paul P, Suresh Kumar G. Spectroscopic studies on the binding interaction of phenothiazinium dyes toluidine blue O, azure A and azure B to DNA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 107:303-310. [PMID: 23434558 DOI: 10.1016/j.saa.2013.01.063] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 12/25/2012] [Accepted: 01/17/2013] [Indexed: 06/01/2023]
Abstract
In this study a detailed characterization of the binding aspects of three phenothiazinium dyes, toluidine blue O (TBO), azure A and azure B with herring testes DNA is presented employing spectroscopic techniques. The absorbance and fluorescence properties of these dyes have been remarkably modified upon binding with DNA and the interaction is manifested through noncooperative binding as revealed form non-linear Scatchard plots with negative slopes at all binding ratios. The binding clearly revealed the high preference of TBO to DNA followed by the other two dyes azure A and azure B. The affinity of TBO was higher by about two times than that of the azures. From the series of studies using absorption, steady-state emission, the effect of ferrocyanide ion-induced steady-state fluorescence quenching, fluorescence polarization anisotropy, circular dichroism, the mode of binding of these dyes to the DNA double helix has been substantiated to be principally intercalative in nature. The stoichiometry of the association of these dyes to DNA was determined by the continuous variation analysis of Job from fluorescence data. The conformational aspects of the interaction was delineated from circular dichroism studies wherein higher perturbation was observed with TBO. Hydrodynamic study using viscosity measurements of linear rod like DNA confirmed that the binding was intercalative and strongest for TBO and weaker for azure A and azure B. The utility of the present work lies in exploring the potential binding applicability of these dyes to DNA for their development as effective therapeutic agents.
Collapse
Affiliation(s)
- Puja Paul
- Biophysical Chemistry Laboratory, Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | | |
Collapse
|