1
|
El-Gazzar MGM, Ghorab MM, Amin MA, Korany M, Khedr MA, El-Gazzar MG, Sakr TM. Computational, in vitro and radiation-based in vivo studies on acetamide quinazolinone derivatives as new proposed purine nucleoside phosphorylase inhibitors for breast cancer. Eur J Med Chem 2023; 248:115087. [PMID: 36610250 DOI: 10.1016/j.ejmech.2023.115087] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/25/2022] [Accepted: 01/01/2023] [Indexed: 01/04/2023]
Abstract
The present work describes a quinazolinone-based lead optimization for the development of novel purine nucleoside phosphorylase (PNP) inhibitors with quinazolinone scaffold. Nineteen compounds were proposed and docked against PNP, the best 14 compounds with highest docking and affinity scores and low RMSD values were synthesized. Synthesis of new quinazolinone derivatives with variable acetamide substituents on two positions on quinazoline ring was performed. The structures assigned to the products were concordant with the microanalytical and spectral data. In vitro cytotoxicity on human breast cancer cell line (MCF7) was performed and identified compound 6g as the most potent with IC50 (0.99 ± 0.11 μM) which was further tested against five different breast cancer cell lines in addition to normal breast cell to determine the selectivity. Compound 6g was subjected to molecular dynamic simulation study, radiolabelling and biodistribution study to investigate its stability and selectivity toward breast cancers. The in vitro PNP inhibition results were aligned with the in silico, cytotoxicity, and biodistribution results where 6g showed the most potent PNP inhibitory activity with IC50 (0.159 ± 0.007 μM) when compared to Peldesine (BCX-34) IC50 (0.041 ± 0.002 μM).
Collapse
Affiliation(s)
- Mostafa G M El-Gazzar
- Department of Drug Radiation Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, 11787, Egypt
| | - Mostafa M Ghorab
- Department of Drug Radiation Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, 11787, Egypt.
| | - Mohamed A Amin
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt
| | - Mohamed Korany
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt
| | - Mohammed A Khedr
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, Kuwait
| | - Marwa G El-Gazzar
- Department of Drug Radiation Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, 11787, Egypt
| | - Tamer M Sakr
- Radioactive Isotopes and Generator Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt
| |
Collapse
|
2
|
Timofeev VI, Fateev IV, Kostromina MA, Abramchik YA, Konstantinova ID, Volkov VV, Lykoshin DD, Mikheeva OO, Muravieva TI, Esipov RS, Kuranova IP. The comparative analysis of the properties and structures of purine nucleoside phosphorylases from thermophilic bacterium Thermus thermophilus HB27. J Biomol Struct Dyn 2020; 40:3626-3641. [PMID: 33225840 DOI: 10.1080/07391102.2020.1848628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Two recombinant purine nucleoside phosphorylases from thermophilic bacterium Thermus thermophilus HB27 encoded by genes TT_C1070 (TthPNPI) and TT_C0194 (TthPNPII) were purified and characterized. The comparative analysis of their sequences, molecular weight, enzymes specificity and kinetics of the catalyzed reaction were realized. As a result, it was determined that the TthPNPI is specific to guanosine while the TthPNPII to adenosine. According to the results of the size exclusion chromatography and SAXS study both enzymes are hexameric molecules. Based on the sequence alignment with homologous purine nucleoside phosphorylases (PNPs), Asn was identified as a purine base recognizing residue in the active site of TthPNPI and Asp in TthPNPII. The three-dimensional structure of TthPNPII was solved at 2.5 Å resolution by molecular replacement method using crystals grown in microgravity. Position of phosphate in the active site cavity is located. The possible arrangement of adenosine and guanosine in TthPNPII active site cavity is considered using superposition with the structures of homologous trimeric and hexameric PNPs complexed with corresponding substrates. The peculiarities of oligomeric structure of TthPNPII in comparison with homologous PNPs are described. It is shown that two trimeric molecules of TthPNPII in the asymmetric part of the unit cell are connected by three two-fold axis into a hexamer with 32-point symmetry. This type of hexameric structure of PNP is found for the first time. The interface area between the subunits in trimeric molecule and between the trimers in TthPNPII hexamer is described.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vladimir I Timofeev
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, Moscow, Russian Federation
| | - Ilya V Fateev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Maria A Kostromina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Yuliya A Abramchik
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Irina D Konstantinova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir V Volkov
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, Moscow, Russian Federation
| | - Dmitry D Lykoshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Olga O Mikheeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana I Muravieva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Roman S Esipov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Inna P Kuranova
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
3
|
Bitencourt-Ferreira G, de Azevedo WF. Docking with GemDock. Methods Mol Biol 2019; 2053:169-188. [PMID: 31452105 DOI: 10.1007/978-1-4939-9752-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
GEMDOCK is a protein-ligand docking software that makes use of an elegant biologically inspired computational methodology based on the differential evolution algorithm. As any docking program, GEMDOCK has two major features to predict the binding of a small-molecule ligand to the binding site of a protein target: the search algorithm and the scoring function to evaluate the generated poses. The GEMDOCK scoring function uses a piecewise potential energy function integrated into the differential evolutionary algorithm. GEMDOCK has been applied to a wide range of protein systems with docking accuracy similar to other docking programs such as Molegro Virtual Docker, AutoDock4, and AutoDock Vina. In this chapter, we explain how to carry out protein-ligand docking simulations with GEMDOCK. We focus this tutorial on the protein target cyclin-dependent kinase 2.
Collapse
Affiliation(s)
- Gabriela Bitencourt-Ferreira
- Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul-PUCRS, Porto Alegre, RS, Brazil
| | - Walter Filgueira de Azevedo
- Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul-PUCRS, Porto Alegre, RS, Brazil.
| |
Collapse
|
4
|
Abstract
Since the early 1980s, we have witnessed considerable progress in the development and application of docking programs to assess protein-ligand interactions. Most of these applications had as a goal the identification of potential new binders to protein targets. Another remarkable progress is taking place in the determination of the structures of protein-ligand complexes, mostly using X-ray diffraction crystallography. Considering these developments, we have a favorable scenario for the creation of a computational tool that integrates into one workflow all steps involved in molecular docking simulations. We had these goals in mind when we developed the program SAnDReS. This program allows the integration of all computational features related to modern docking studies into one workflow. SAnDReS not only carries out docking simulations but also evaluates several docking protocols allowing the selection of the best approach for a given protein system. SAnDReS is a free and open-source (GNU General Public License) computational environment for running docking simulations. Here, we describe the combination of SAnDReS and AutoDock4 for protein-ligand docking simulations. AutoDock4 is a free program that has been applied to over a thousand receptor-ligand docking simulations. The dataset described in this chapter is available for downloading at https://github.com/azevedolab/sandres.
Collapse
Affiliation(s)
- Gabriela Bitencourt-Ferreira
- Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul-PUCRS, Porto Alegre, RS, Brazil
| | - Walter Filgueira de Azevedo
- Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul-PUCRS, Porto Alegre, RS, Brazil.
| |
Collapse
|
5
|
Bitencourt-Ferreira G, Veit-Acosta M, de Azevedo WF. Van der Waals Potential in Protein Complexes. Methods Mol Biol 2019; 2053:79-91. [PMID: 31452100 DOI: 10.1007/978-1-4939-9752-7_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Van der Waals forces are determinants of the formation of protein-ligand complexes. Physical models based on the Lennard-Jones potential can estimate van der Waals interactions with considerable accuracy and with a computational complexity that allows its application to molecular docking simulations and virtual screening of large databases of small organic molecules. Several empirical scoring functions used to evaluate protein-ligand interactions approximate van der Waals interactions with the Lennard-Jones potential. In this chapter, we present the main concepts necessary to understand van der Waals interactions relevant to molecular recognition of a ligand by the binding pocket of a protein target. We describe the Lennard-Jones potential and its application to calculate potential energy for an ensemble of structures to highlight the main features related to the importance of this interaction for binding affinity.
Collapse
Affiliation(s)
- Gabriela Bitencourt-Ferreira
- Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul-PUCRS, Porto Alegre, RS, Brazil
| | - Martina Veit-Acosta
- Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul-PUCRS, Porto Alegre, RS, Brazil
| | - Walter Filgueira de Azevedo
- Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul-PUCRS, Porto Alegre, RS, Brazil.
| |
Collapse
|
6
|
Abstract
Homology modeling is a computational approach to generate three-dimensional structures of protein targets when experimental data about similar proteins are available. Although experimental methods such as X-ray crystallography and nuclear magnetic resonance spectroscopy successfully solved the structures of nearly 150,000 macromolecules, there is still a gap in our structural knowledge. We can fulfill this gap with computational methodologies. Our goal in this chapter is to explain how to perform homology modeling of protein targets for drug development. We choose as a homology modeling tool the program MODELLER. To illustrate its use, we describe how to model the structure of human cyclin-dependent kinase 3 using MODELLER. We explain the modeling procedure of CDK3 apoenzyme and the structure of this enzyme in complex with roscovitine.
Collapse
Affiliation(s)
- Gabriela Bitencourt-Ferreira
- Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul-PUCRS, Porto Alegre, RS, Brazil
| | - Walter Filgueira de Azevedo
- Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul-PUCRS, Porto Alegre, RS, Brazil.
| |
Collapse
|
7
|
Abstract
Fast and reliable evaluation of the hydrogen bond potential energy has a significant impact in the drug design and development since it allows the assessment of large databases of organic molecules in virtual screening projects focused on a protein of interest. Semi-empirical force fields implemented in molecular docking programs make it possible the evaluation of protein-ligand binding affinity where the hydrogen bond potential is a common term used in the calculation. In this chapter, we describe the concepts behind the programs used to predict hydrogen bond potential energy employing semi-empirical force fields as the ones available in the programs AMBER, AutoDock4, TreeDock, and ReplicOpter. We described here the 12-10 potential and applied it to evaluate the binding affinity for an ensemble of crystallographic structures for which experimental data about binding affinity are available.
Collapse
Affiliation(s)
- Gabriela Bitencourt-Ferreira
- Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul-PUCRS, Porto Alegre, RS, Brazil
| | - Martina Veit-Acosta
- Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul-PUCRS, Porto Alegre, RS, Brazil
| | - Walter Filgueira de Azevedo
- Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul-PUCRS, Porto Alegre, RS, Brazil.
| |
Collapse
|
8
|
Spyrakis F, Benedetti P, Decherchi S, Rocchia W, Cavalli A, Alcaro S, Ortuso F, Baroni M, Cruciani G. A Pipeline To Enhance Ligand Virtual Screening: Integrating Molecular Dynamics and Fingerprints for Ligand and Proteins. J Chem Inf Model 2015; 55:2256-74. [DOI: 10.1021/acs.jcim.5b00169] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Francesca Spyrakis
- Department of Life
Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Paolo Benedetti
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Sergio Decherchi
- CONCEPT Lab, Italian Institute of Technology, via Morego 30, 16163 Genova, Italy
- BiKi Technologies s.r.l., via XX Settembre 33, 16121 Genova, Italy
| | - Walter Rocchia
- CONCEPT Lab, Italian Institute of Technology, via Morego 30, 16163 Genova, Italy
| | - Andrea Cavalli
- CompuNet, Italian Institute of Technology, via Morego 30, 16163 Genova, Italy
- Department of Pharmacy
and Biotechnology, University of Bologna, via Belmeloro 6, 40126 Bologna, Italy
| | - Stefano Alcaro
- Department of Health Science, University Magna Graecia of Catanzaro, Campus “S Venuta”, Viale Europa 88100, Catanzaro, Italy
| | - Francesco Ortuso
- Department of Health Science, University Magna Graecia of Catanzaro, Campus “S Venuta”, Viale Europa 88100, Catanzaro, Italy
| | - Massimo Baroni
- Molecular Discovery Limited, 215
Marsh Road, Pinner Middlesex, London HA5-5NE, United Kingdom
| | - Gabriele Cruciani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| |
Collapse
|
9
|
Westermaier Y, Barril X, Scapozza L. Virtual screening: an in silico tool for interlacing the chemical universe with the proteome. Methods 2014; 71:44-57. [PMID: 25193260 DOI: 10.1016/j.ymeth.2014.08.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 07/16/2014] [Accepted: 08/02/2014] [Indexed: 12/28/2022] Open
Abstract
In silico screening both in the forward (traditional virtual screening) and reverse sense (inverse virtual screening (IVS)) are helpful techniques for interlacing the chemical universe of small molecules with the proteome. The former, which is using a protein structure and a large chemical database, is well-known by the scientific community. We have chosen here to provide an overview on the latter, focusing on validation and target prioritization strategies. By comparing it to complementary or alternative wet-lab approaches, we put IVS in the broader context of chemical genomics, target discovery and drug design. By giving examples from the literature and an own example on how to validate the approach, we provide guidance on the issues related to IVS.
Collapse
Affiliation(s)
- Yvonne Westermaier
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, 1211 Geneva 4, Switzerland; Computational Biology & Drug Design Group, Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain.
| | - Xavier Barril
- Computational Biology & Drug Design Group, Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| | - Leonardo Scapozza
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, 1211 Geneva 4, Switzerland.
| |
Collapse
|
10
|
Ioerger TR, O’Malley T, Liao R, Guinn KM, Hickey MJ, Mohaideen N, Murphy KC, Boshoff HIM, Mizrahi V, Rubin EJ, Sassetti CM, Barry CE, Sherman DR, Parish T, Sacchettini JC. Identification of new drug targets and resistance mechanisms in Mycobacterium tuberculosis. PLoS One 2013; 8:e75245. [PMID: 24086479 PMCID: PMC3781026 DOI: 10.1371/journal.pone.0075245] [Citation(s) in RCA: 185] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 08/12/2013] [Indexed: 11/18/2022] Open
Abstract
Identification of new drug targets is vital for the advancement of drug discovery against Mycobacterium tuberculosis, especially given the increase of resistance worldwide to first- and second-line drugs. Because traditional target-based screening has largely proven unsuccessful for antibiotic discovery, we have developed a scalable platform for target identification in M. tuberculosis that is based on whole-cell screening, coupled with whole-genome sequencing of resistant mutants and recombineering to confirm. The method yields targets paired with whole-cell active compounds, which can serve as novel scaffolds for drug development, molecular tools for validation, and/or as ligands for co-crystallization. It may also reveal other information about mechanisms of action, such as activation or efflux. Using this method, we identified resistance-linked genes for eight compounds with anti-tubercular activity. Four of the genes have previously been shown to be essential: AspS, aspartyl-tRNA synthetase, Pks13, a polyketide synthase involved in mycolic acid biosynthesis, MmpL3, a membrane transporter, and EccB3, a component of the ESX-3 type VII secretion system. AspS and Pks13 represent novel targets in protein translation and cell-wall biosynthesis. Both MmpL3 and EccB3 are involved in membrane transport. Pks13, AspS, and EccB3 represent novel candidates not targeted by existing TB drugs, and the availability of whole-cell active inhibitors greatly increases their potential for drug discovery.
Collapse
Affiliation(s)
- Thomas R. Ioerger
- Department of Computer Science and Engineering, Texas A&M University, College Station, Texas, United States of America
| | - Theresa O’Malley
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Reiling Liao
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Kristine M. Guinn
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Mark J. Hickey
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Nilofar Mohaideen
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Kenan C. Murphy
- University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Helena I. M. Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Valerie Mizrahi
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Eric J. Rubin
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Christopher M. Sassetti
- University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Clifton E. Barry
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - David R. Sherman
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Tanya Parish
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - James C. Sacchettini
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
11
|
Bello M, Martínez-Archundia M, Correa-Basurto J. Automated docking for novel drug discovery. Expert Opin Drug Discov 2013; 8:821-34. [DOI: 10.1517/17460441.2013.794780] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
12
|
de Moraes MC, Ducati RG, Donato AJ, Basso LA, Santos DS, Cardoso CL, Cass QB. Capillary bioreactors based on human purine nucleoside phosphorylase: A new approach for ligands identification and characterization. J Chromatogr A 2012; 1232:110-5. [DOI: 10.1016/j.chroma.2011.10.056] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Revised: 10/19/2011] [Accepted: 10/20/2011] [Indexed: 11/27/2022]
|
13
|
Caceres RA, Timmers LFSM, Ducati RG, da Silva DON, Basso LA, de Azevedo WF, Santos DS. Crystal structure and molecular dynamics studies of purine nucleoside phosphorylase from Mycobacterium tuberculosis associated with acyclovir. Biochimie 2011; 94:155-65. [PMID: 22033138 DOI: 10.1016/j.biochi.2011.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 10/11/2011] [Indexed: 11/30/2022]
Abstract
Consumption has been a scourge of mankind since ancient times. This illness has charged a high price to human lives. Many efforts have been made to defeat Mycobacterium tuberculosis (Mt). The M. tuberculosis purine nucleoside phosphorylase (MtPNP) is considered an interesting target to pursuit new potential inhibitors, inasmuch it belongs to the purine salvage pathway and its activity might be involved in the mycobacterial latency process. Here we present the MtPNP crystallographic structure associated with acyclovir and phosphate (MtPNP:ACY:PO(4)) at 2.10 Å resolution. Molecular dynamics simulations were carried out in order to dissect MtPNP:ACY:PO(4) structural features, and the influence of the ligand in the binding pocket stability. Our results revealed that the ligand leads to active site lost of stability, in agreement with experimental results, which demonstrate a considerable inhibitory activity against MtPNP (K(i) = 150 nM). Furthermore, we observed that some residues which are important in the proper ligand's anchor into the human homologous enzyme do not present the same importance to MtPNP. Therewithal, these findings contribute to the search of new specific inhibitors for MtPNP, since peculiarities between the mycobacterial and human enzyme binding sites have been identified, making a structural-based drug design feasible.
Collapse
Affiliation(s)
- Rafael A Caceres
- Faculdade de Biociências, Laboratório de Bioquímica Estrutural, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre - RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
14
|
Ducati RG, Basso LA, Santos DS, de Azevedo WF. Crystallographic and docking studies of purine nucleoside phosphorylase from Mycobacterium tuberculosis. Bioorg Med Chem 2010; 18:4769-74. [DOI: 10.1016/j.bmc.2010.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 05/01/2010] [Accepted: 05/04/2010] [Indexed: 10/19/2022]
|
15
|
Glavas-Obrovac L, Suver M, Hikishima S, Hashimoto M, Yokomatsu T, Magnowska L, Bzowska A. Antiproliferative activity of purine nucleoside phosphorylase multisubstrate analogue inhibitors containing difluoromethylene phosphonic acid against leukaemia and lymphoma cells. Chem Biol Drug Des 2010; 75:392-9. [PMID: 20102369 DOI: 10.1111/j.1747-0285.2009.00939.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Potent inhibitors of purine nucleoside phosphorylase (PNP) are expected to act as selective agents against T-cell tumours. Five compounds with guanine, three with hypoxanthine, and five with 9-deazaguanine, all connected by a linker with difluoromethylene phosphonic acid, were studied on their inhibitory potential against human and calf PNPs. Antiproliferative activity of these analogues against lymphocytes as well as lymphoma and leukaemia cells has been also investigated. All tested compounds act as multisubstrate analogue inhibitors of PNP with the apparent inhibition constants in the range 5-100 nm, and also show a slight antiproliferative activity. Analogues with 9-deazaguanine aglycone have better anti-leukaemic and anti-lymphoma activities compared to the guanine and hypoxanthine analogues, and applied in the concentration of 100 mum, caused a statistically significant decrease in the cell viability in all human leukaemia and lymphoma cells used. Despite the high PNP inhibitory potential of tested analogues, no differences were observed between the effects on the growth of tumour cells sensible to the inhibition of PNP, such as human adult T-cell leukaemia and lymphoma cells, and other investigated cells. Obtained poor effects on cell proliferation could be explained probably by a poor ability of tested compounds to penetrate cell membranes.
Collapse
Affiliation(s)
- Ljubica Glavas-Obrovac
- School of Medicine, J.J. Strossmayer University of Osijek and University Hospital Osijek J. Huttlera 4, Osijek, HR-31000, Croatia.
| | | | | | | | | | | | | |
Collapse
|
16
|
Caceres RA, Timmers LFSM, Pauli I, Gava LM, Ducati RG, Basso LA, Santos DS, de Azevedo WF. Crystal structure and molecular dynamics studies of human purine nucleoside phosphorylase complexed with 7-deazaguanine. J Struct Biol 2009; 169:379-88. [PMID: 19932753 DOI: 10.1016/j.jsb.2009.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 11/09/2009] [Accepted: 11/16/2009] [Indexed: 11/16/2022]
Abstract
In humans, purine nucleoside phosphorylase (HsPNP) is responsible for degradation of deoxyguanosine, and genetic deficiency of this enzyme leads to profound T-cell mediated immunosuppression. HsPNP is a target for inhibitor development aiming at T-cell immune response modulation. Here we report the crystal structure of HsPNP in complex with 7-deazaguanine (HsPNP:7DG) at 2.75 A. Molecular dynamics simulations were employed to assess the structural features of HsPNP in both free form and in complex with 7DG. Our results show that some regions, responsible for entrance and exit of substrate, present a conformational variability, which is dissected by dynamics simulation analysis. Enzymatic assays were also carried out and revealed that 7-deazaguanine presents a lower inhibitory activity against HsPNP (K(i)=200 microM). The present structure may be employed in both structure-based design of PNP inhibitors and in development of specific empirical scoring functions.
Collapse
Affiliation(s)
- Rafael Andrade Caceres
- Faculdade de Biociências, Instituto Nacional de Ciência e Tecnologia em Tuberculose-CNPq, Laboratório de Bioquímica Estrutural, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Zanchi FB, Caceres RA, Stabeli RG, de Azevedo WF. Molecular dynamics studies of a hexameric purine nucleoside phosphorylase. J Mol Model 2009; 16:543-50. [PMID: 19669809 DOI: 10.1007/s00894-009-0557-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 06/28/2009] [Indexed: 11/30/2022]
Abstract
Purine nucleoside phosphorylase (PNP) (EC.2.4.2.1) is an enzyme that catalyzes the cleavage of N-ribosidic bonds of the purine ribonucleosides and 2-deoxyribonucleosides in the presence of inorganic orthophosphate as a second substrate. This enzyme is involved in purine-salvage pathway and has been proposed as a promising target for design and development of antimalarial and antibacterial drugs. Recent elucidation of the three-dimensional structure of PNP by X-ray protein crystallography left open the possibility of structure-based virtual screening initiatives in combination with molecular dynamics simulations focused on identification of potential new antimalarial drugs. Most of the previously published molecular dynamics simulations of PNP were carried out on human PNP, a trimeric PNP. The present article describes for the first time molecular dynamics simulations of hexameric PNP from Plasmodium falciparum (PfPNP). Two systems were simulated in the present work, PfPNP in ligand free form, and in complex with immucillin and sulfate. Based on the dynamical behavior of both systems the main results related to structural stability and protein-drug interactions are discussed.
Collapse
|
18
|
Pauli I, Macedo Timmers LFS, Andrade Caceres R, Augusto Basso L, Santiago Santos D, Filgueira de Azevedo Jr. W. Molecular modeling and dynamics studies of purine nucleoside phosphorylase from Bacteroides fragilis. J Mol Model 2009; 15:913-22. [DOI: 10.1007/s00894-008-0445-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 12/08/2008] [Indexed: 10/21/2022]
|
19
|
Timmers LFSM, Caceres RA, Dias R, Basso LA, Santos DS, de Azevedo WF. Molecular modeling, dynamics and docking studies of purine nucleoside phosphorylase from Streptococcus pyogenes. Biophys Chem 2009; 142:7-16. [PMID: 19282092 DOI: 10.1016/j.bpc.2009.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 02/17/2009] [Accepted: 02/17/2009] [Indexed: 11/19/2022]
Abstract
Purine Nucleoside Phosphorylase (PNP) catalyzes the reversible phosphorolysis of N-glycosidic bonds of purine nucleosides and deoxynucleosides, except for adenosine, to generate ribose 1-phosphate and the purine base. PNP has been submitted to intensive structural studies. This work describes for the first time a structural model of PNP from Streptococcus pyogenes (SpPNP). We modeled the complexes of SpPNP with six different ligands in order to determine the structural basis for specificity of these ligands against SpPNP. Molecular dynamics (MD) simulations were performed in order to evaluate the overall stability of SpPNP model. The analysis of the MD simulation was assessed mainly by principal component analysis (PCA) to explore the trimeric structure behavior. Structural comparison, between SpPNP and human PNP, was able to identify the main features responsible for differences in ligand-binding affinities, such as mutation in the purine-binding site and in the second phosphate-binding site. The PCA analysis suggests a different behavior for each subunit in the trimer structure.
Collapse
Affiliation(s)
- Luis Fernando Saraiva Macedo Timmers
- Faculdade de Biociências, Laboratório de Bioquímica Estrutural, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre-RS, Brazil.
| | | | | | | | | | | |
Collapse
|