1
|
Yuan G, Gao H, Yang T. Exploring the Role of the Plant Actin Cytoskeleton: From Signaling to Cellular Functions. Int J Mol Sci 2023; 24:15480. [PMID: 37895158 PMCID: PMC10607326 DOI: 10.3390/ijms242015480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/06/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
The plant actin cytoskeleton is characterized by the basic properties of dynamic array, which plays a central role in numerous conserved processes that are required for diverse cellular functions. Here, we focus on how actins and actin-related proteins (ARPs), which represent two classical branches of a greatly diverse superfamily of ATPases, are involved in fundamental functions underlying signal regulation of plant growth and development. Moreover, we review the structure, assembly dynamics, and biological functions of filamentous actin (F-actin) from a molecular perspective. The various accessory proteins known as actin-binding proteins (ABPs) partner with F-actin to finely tune actin dynamics, often in response to various cell signaling pathways. Our understanding of the significance of the actin cytoskeleton in vital cellular activities has been furthered by comparison of conserved functions of actin filaments across different species combined with advanced microscopic techniques and experimental methods. We discuss the current model of the plant actin cytoskeleton, followed by examples of the signaling mechanisms under the supervision of F-actin related to cell morphogenesis, polar growth, and cytoplasmic streaming. Determination of the theoretical basis of how the cytoskeleton works is important in itself and is beneficial to future applications aimed at improving crop biomass and production efficiency.
Collapse
Affiliation(s)
| | | | - Tao Yang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (G.Y.); (H.G.)
| |
Collapse
|
2
|
Song Z, Pan F, Lou X, Wang D, Yang C, Zhang B, Zhang H. Genome-wide identification and characterization of Hsp70 gene family in Nicotiana tabacum. Mol Biol Rep 2019; 46:1941-1954. [PMID: 30710231 DOI: 10.1007/s11033-019-04644-7/figures/4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/24/2019] [Indexed: 05/25/2023]
Abstract
Heat shock proteins 70 (Hsp70) constitute a highly conserved protein family of cellular chaperones widely distributed in plants, where they play a fundamental role in response to biotic and abiotic stress. Until now, genome-wide analyses of the Hsp70 gene family have been conducted for some species. However, reports about Hsp70 genes in Nicotiana tabacum are scarce. In this study, we systematically conducted genome-wide identification and expression analysis of the Hsp70 gene family in tobacco, including gene structure, classification, evolutionary relationships, promoters, and transcript levels in response to abiotic stress treatments. In all, 61 Hsp70 members were identified and classified into six groups that were mapped onto 18 chromosomes, where most were distributed on both ends of the chromosome. The conserved structures and motifs of NtHsp70 proteins in the same subfamily were highly consistent. At least 15 pairs of NtHsp70 genes underwent gene duplication by segment and tandem duplications. Most NtHsp70 proteins contained N-terminal hexokinase conserved motifs. Phylogenetic analysis showed that most species expanded according to their own species-specific approach during the evolution of Hsp70s. Tissue-specific expression analysis indicated that all NtHsp70 genes were involved in at least one or more abiotic stress responses, highlighting the wide participation of NtHsp70 genes in environmental adaptation. This is the first genome-wide analysis of Hsp70 in N. tabacum. These results indicate that each NtHsp70 member fulfilled distinct functions in response to various abiotic stresses.
Collapse
Affiliation(s)
- Zhaopeng Song
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| | - Feilong Pan
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| | - Xiaoping Lou
- China Tobacco Zhejiang Industrial Co., Ltd, Hangzhou, China
| | - Daibin Wang
- Chongqing Tobacco Science Research Institute, Chongqing, China
| | - Chao Yang
- Chongqing Tobacco Science Research Institute, Chongqing, China
| | - Baoquan Zhang
- China Tobacco Zhejiang Industrial Co., Ltd, Hangzhou, China
| | - Hongying Zhang
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
3
|
Song Z, Pan F, Lou X, Wang D, Yang C, Zhang B, Zhang H. Genome-wide identification and characterization of Hsp70 gene family in Nicotiana tabacum. Mol Biol Rep 2019; 46:1941-1954. [PMID: 30710231 DOI: 10.1007/s11033-019-04644-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/24/2019] [Indexed: 12/13/2022]
Abstract
Heat shock proteins 70 (Hsp70) constitute a highly conserved protein family of cellular chaperones widely distributed in plants, where they play a fundamental role in response to biotic and abiotic stress. Until now, genome-wide analyses of the Hsp70 gene family have been conducted for some species. However, reports about Hsp70 genes in Nicotiana tabacum are scarce. In this study, we systematically conducted genome-wide identification and expression analysis of the Hsp70 gene family in tobacco, including gene structure, classification, evolutionary relationships, promoters, and transcript levels in response to abiotic stress treatments. In all, 61 Hsp70 members were identified and classified into six groups that were mapped onto 18 chromosomes, where most were distributed on both ends of the chromosome. The conserved structures and motifs of NtHsp70 proteins in the same subfamily were highly consistent. At least 15 pairs of NtHsp70 genes underwent gene duplication by segment and tandem duplications. Most NtHsp70 proteins contained N-terminal hexokinase conserved motifs. Phylogenetic analysis showed that most species expanded according to their own species-specific approach during the evolution of Hsp70s. Tissue-specific expression analysis indicated that all NtHsp70 genes were involved in at least one or more abiotic stress responses, highlighting the wide participation of NtHsp70 genes in environmental adaptation. This is the first genome-wide analysis of Hsp70 in N. tabacum. These results indicate that each NtHsp70 member fulfilled distinct functions in response to various abiotic stresses.
Collapse
Affiliation(s)
- Zhaopeng Song
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| | - Feilong Pan
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| | - Xiaoping Lou
- China Tobacco Zhejiang Industrial Co., Ltd, Hangzhou, China
| | - Daibin Wang
- Chongqing Tobacco Science Research Institute, Chongqing, China
| | - Chao Yang
- Chongqing Tobacco Science Research Institute, Chongqing, China
| | - Baoquan Zhang
- China Tobacco Zhejiang Industrial Co., Ltd, Hangzhou, China
| | - Hongying Zhang
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
4
|
Hartley CJ, French NG, Scoble JA, Williams CC, Churches QI, Frazer AR, Taylor MC, Coia G, Simpson G, Turner NJ, Scott C. Sugar analog synthesis by in vitro biocatalytic cascade: A comparison of alternative enzyme complements for dihydroxyacetone phosphate production as a precursor to rare chiral sugar synthesis. PLoS One 2017; 12:e0184183. [PMID: 29112947 PMCID: PMC5675407 DOI: 10.1371/journal.pone.0184183] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 08/18/2017] [Indexed: 11/19/2022] Open
Abstract
Carbon-carbon bond formation is one of the most challenging reactions in synthetic organic chemistry, and aldol reactions catalysed by dihydroxyacetone phosphate-dependent aldolases provide a powerful biocatalytic tool for combining C-C bond formation with the generation of two new stereo-centres, with access to all four possible stereoisomers of a compound. Dihydroxyacetone phosphate (DHAP) is unstable so the provision of DHAP for DHAP-dependent aldolases in biocatalytic processes remains complicated. Our research has investigated the efficiency of several different enzymatic cascades for the conversion of glycerol to DHAP, including characterising new candidate enzymes for some of the reaction steps. The most efficient cascade for DHAP production, comprising a one-pot four-enzyme reaction with glycerol kinase, acetate kinase, glycerophosphate oxidase and catalase, was coupled with a DHAP-dependent fructose-1,6-biphosphate aldolase enzyme to demonstrate the production of several rare chiral sugars. The limitation of batch biocatalysis for these reactions and the potential for improvement using kinetic modelling and flow biocatalysis systems is discussed.
Collapse
Affiliation(s)
- Carol J. Hartley
- CSIRO Land and Water, Black Mountain Laboratories, Canberra, Australia
| | - Nigel G. French
- CSIRO Land and Water, Black Mountain Laboratories, Canberra, Australia
| | | | | | | | - Andrew R. Frazer
- School of Chemistry, CoEBio3, University of Manchester, Manchester, United Kingdom
| | - Matthew C. Taylor
- CSIRO Land and Water, Black Mountain Laboratories, Canberra, Australia
| | - Greg Coia
- CSIRO Manufacturing, Parkville, Melbourne, Australia
| | | | - Nicholas J. Turner
- School of Chemistry, CoEBio3, University of Manchester, Manchester, United Kingdom
| | - Colin Scott
- CSIRO Land and Water, Black Mountain Laboratories, Canberra, Australia
| |
Collapse
|
5
|
Ito F, Miyake M, Fushinobu S, Nakamura S, Shimizu K, Wakagi T. Engineering the allosteric properties of archaeal non-phosphorylating glyceraldehyde-3-phosphate dehydrogenases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:759-66. [DOI: 10.1016/j.bbapap.2014.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 01/22/2014] [Accepted: 01/25/2014] [Indexed: 11/25/2022]
|
6
|
Oligomeric interactions provide alternatives to direct steric modes of control of sugar kinase/actin/hsp70 superfamily functions by heterotropic allosteric effectors: inhibition of E. coli glycerol kinase. Arch Biochem Biophys 2009; 492:29-39. [PMID: 19819219 DOI: 10.1016/j.abb.2009.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 10/01/2009] [Accepted: 10/02/2009] [Indexed: 11/21/2022]
Abstract
Unlike those for monomeric superfamily members, heterotropic allosteric effectors of the tetrameric Escherichia coli glycerol kinase (EGK) bind to only one of the two domains that define the catalytic cleft and far from the active site. An R369A amino acid substitution removes oligomeric interactions of a novel mini domain-swap loop of one subunit with the catalytic site of another subunit, and an A65T substitution perturbs oligomeric interactions in a second interface. Linked-functions enzyme kinetics, analytical ultracentrifugation, and FRET are used to assess effects of these substitutions on the allosteric control of catalysis. Inhibition by phosphotransferase system protein IIA(Glc) is reduced by the R369A substitution, and inhibition by fructose 1,6-bisphosphate is abolished by the A65T substitution. The oligomeric interactions enable the heterotropic allosteric effectors to act on both domains and modulate the catalytic cleft closure despite binding to only one domain.
Collapse
|