1
|
Jiang TY, Cui XW, Zeng TM, Pan YF, Lin YK, Feng XF, Tan YX, Yuan ZG, Dong LW, Wang HY. PTEN deficiency facilitates gemcitabine efficacy in cancer by modulating the phosphorylation of PP2Ac and DCK. Sci Transl Med 2023; 15:eadd7464. [PMID: 37437018 DOI: 10.1126/scitranslmed.add7464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 06/22/2023] [Indexed: 07/14/2023]
Abstract
Gemcitabine is a nucleoside analog that has been successfully used in the treatment of multiple cancers. However, intrinsic or acquired resistance reduces the chemotherapeutic potential of gemcitabine. Here, we revealed a previously unappreciated mechanism by which phosphatase and tensin homolog (PTEN), one of the most frequently mutated genes in human cancers, dominates the decision-making process that is central to the regulation of gemcitabine efficacy in cholangiocarcinoma (CCA). By investigating a gemcitabine-treated CCA cohort, we found that PTEN deficiency was correlated with the improved efficacy of gemcitabine-based chemotherapy. Using cell-based drug sensitivity assays, cell line-derived xenograft, and patient-derived xenograft models, we further confirmed that PTEN deficiency or genetic-engineering down-regulation of PTEN facilitated gemcitabine efficacy both in vitro and in vivo. Mechanistically, PTEN directly binds to and dephosphorylates the C terminus of the catalytic subunit of protein phosphatase 2A (PP2Ac) to increase its enzymatic activity, which further dephosphorylates deoxycytidine kinase (DCK) at Ser74 to diminish gemcitabine efficacy. Therefore, PTEN deficiency and high phosphorylation of DCK predict a better response to gemcitabine-based chemotherapy in CCA. We speculate that the combination of PP2A inhibitor and gemcitabine in PTEN-positive tumors could avoid the resistance of gemcitabine, which would benefit a large population of patients with cancer receiving gemcitabine or other nucleoside analogs.
Collapse
Affiliation(s)
- Tian-Yi Jiang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, the Naval Medical University, Shanghai 200438, China
- National Center for Liver Cancer, the Naval Medical University, Shanghai 201805, China
| | - Xiao-Wen Cui
- National Center for Liver Cancer, the Naval Medical University, Shanghai 201805, China
- Department of Oncology, Eastern Hepatobiliary Surgery Hospital, the Naval Medical University, Shanghai 201805, China
| | - Tian-Mei Zeng
- Department of Oncology, Eastern Hepatobiliary Surgery Hospital, the Naval Medical University, Shanghai 201805, China
| | - Yu-Fei Pan
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, the Naval Medical University, Shanghai 200438, China
- National Center for Liver Cancer, the Naval Medical University, Shanghai 201805, China
| | - Yun-Kai Lin
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, the Naval Medical University, Shanghai 200438, China
- National Center for Liver Cancer, the Naval Medical University, Shanghai 201805, China
| | - Xiao-Fan Feng
- National Center for Liver Cancer, the Naval Medical University, Shanghai 201805, China
| | - Ye-Xiong Tan
- National Center for Liver Cancer, the Naval Medical University, Shanghai 201805, China
| | - Zhen-Gang Yuan
- Department of Oncology, Eastern Hepatobiliary Surgery Hospital, the Naval Medical University, Shanghai 201805, China
| | - Li-Wei Dong
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, the Naval Medical University, Shanghai 200438, China
- National Center for Liver Cancer, the Naval Medical University, Shanghai 201805, China
| | - Hong-Yang Wang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, the Naval Medical University, Shanghai 200438, China
- National Center for Liver Cancer, the Naval Medical University, Shanghai 201805, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Shanghai Key Laboratory of Hepatobiliary Tumor Biology, Shanghai, 200438, China
- Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, the Naval Medical University and Ministry of Education, Shanghai 200438, China
| |
Collapse
|
2
|
Xu P, Ianes C, Gärtner F, Liu C, Burster T, Bakulev V, Rachidi N, Knippschild U, Bischof J. Structure, regulation, and (patho-)physiological functions of the stress-induced protein kinase CK1 delta (CSNK1D). Gene 2019; 715:144005. [PMID: 31376410 PMCID: PMC7939460 DOI: 10.1016/j.gene.2019.144005] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 12/11/2022]
Abstract
Members of the highly conserved pleiotropic CK1 family of serine/threonine-specific kinases are tightly regulated in the cell and play crucial regulatory roles in multiple cellular processes from protozoa to human. Since their dysregulation as well as mutations within their coding regions contribute to the development of various different pathologies, including cancer and neurodegenerative diseases, they have become interesting new drug targets within the last decade. However, to develop optimized CK1 isoform-specific therapeutics in personalized therapy concepts, a detailed knowledge of the regulation and functions of the different CK1 isoforms, their various splice variants and orthologs is mandatory. In this review we will focus on the stress-induced CK1 isoform delta (CK1δ), thereby addressing its regulation, physiological functions, the consequences of its deregulation for the development and progression of diseases, and its potential as therapeutic drug target.
Collapse
Affiliation(s)
- Pengfei Xu
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Chiara Ianes
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Fabian Gärtner
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Congxing Liu
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Timo Burster
- Department of Biology, School of Science and Technology, Nazarbayev University, 53 Kabanbay Batyr Ave, Nur-Sultan 020000, Kazakhstan.
| | - Vasiliy Bakulev
- Ural Federal University named after the first President of Russia B. N. Eltsin, Technology for Organic Synthesis Laboratory, 19 Mirastr., 620002 Ekaterinburg, Russia.
| | - Najma Rachidi
- Unité de Parasitologie Moléculaire et Signalisation, Department of Parasites and Insect Vectors, Institut Pasteur and INSERM U1201, 25-28 Rue du Dr Roux, 75015 Paris, France.
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Joachim Bischof
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| |
Collapse
|
3
|
Zhong R, Liang B, Xin R, Zhu X, Liu Z, Chen Q, Hou Y, Jin Z, Qi M, Ma S, Liu X. Deoxycytidine kinase participates in the regulation of radiation-induced autophagy and apoptosis in breast cancer cells. Int J Oncol 2018; 52:1000-1010. [PMID: 29393406 DOI: 10.3892/ijo.2018.4250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/04/2018] [Indexed: 11/05/2022] Open
Abstract
Deoxycytidine kinase (dCK) is a rate limiting enzyme critical for the phosphorylation of endogenous deoxynucleosides and for the anti‑tumor activity of many nucleoside analogs. dCK is activated in response to ionizing radiation (IR) and it is required for the G2/M checkpoint induced by IR. However, whether dCK plays a role in radiation-induced autophagy and apoptosis is less clear. In this study, we reported that dCK decreased IR-induced total cell death and apoptosis, and increased IR-induced autophagy in SKBR3 and MDA‑MB‑231 breast cancer cell lines. A molecular switch exists between apoptosis and autophagy. We further demonstrated that serine 74 phosphorylation was required for the regulation of autophagy. In dCK wild‑type (WT) or dCK S74E (mutant) MDA‑MB‑231 cell models, the expression levels of phospho-Akt, phospho-mammalian target of rapamycin (mTOR) and phospho-P70S6K significantly decreased following exposure to IR. Moreover, the ratio of Bcl‑2/Beclin1 (BECN1) significantly decreased in the S74E mutant cells; however, no change was observed in the ratio of Bcl‑2/BAX. Taken together, our findings indicate that phosphorylated and activated dCK inhibits IR-induced total cell death and apoptosis, and promotes IR-induced autophagy through the mTOR pathway and by inhibiting the binding of Bcl‑2 protein to BECN1.
Collapse
Affiliation(s)
- Rui Zhong
- Cancer Translational Medicine Laboratory, Jilin Provincial Cancer Hospital, Changchun, Jilin 130012, P.R. China
| | - Bing Liang
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Rui Xin
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xuanji Zhu
- Medical Records Room, The First Hospital Affiliated to Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhuo Liu
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Qiao Chen
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yufei Hou
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhao Jin
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Mu Qi
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shumei Ma
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiaodong Liu
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| |
Collapse
|
4
|
The Role of Deoxycytidine Kinase (dCK) in Radiation-Induced Cell Death. Int J Mol Sci 2016; 17:ijms17111939. [PMID: 27879648 PMCID: PMC5133934 DOI: 10.3390/ijms17111939] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/12/2016] [Accepted: 11/14/2016] [Indexed: 12/26/2022] Open
Abstract
Deoxycytidine kinase (dCK) is a key enzyme in deoxyribonucleoside salvage and the anti-tumor activity for many nucleoside analogs. dCK is activated in response to ionizing radiation (IR)-induced DNA damage and it is phosphorylated on Serine 74 by the Ataxia-Telangiectasia Mutated (ATM) kinase in order to activate the cell cycle G2/M checkpoint. However, whether dCK plays a role in radiation-induced cell death is less clear. In this study, we genetically modified dCK expression by knocking down or expressing a WT (wild-type), S74A (abrogates phosphorylation) and S74E (mimics phosphorylation) of dCK. We found that dCK could decrease IR-induced total cell death and apoptosis. Moreover, dCK increased IR-induced autophagy and dCK-S74 is required for it. Western blotting showed that the ratio of phospho-Akt/Akt, phospho-mTOR/mTOR, phospho-P70S6K/P70S6K significantly decreased in dCK-WT and dCK-S74E cells than that in dCK-S74A cells following IR treatment. Reciprocal experiment by co-immunoprecipitation showed that mTOR can interact with wild-type dCK. IR increased polyploidy and decreased G2/M arrest in dCK knock-down cells as compared with control cells. Taken together, phosphorylated and activated dCK can inhibit IR-induced cell death including apoptosis and mitotic catastrophe, and promote IR-induced autophagy through PI3K/Akt/mTOR pathway.
Collapse
|
5
|
Beyaert M, Starczewska E, Van Den Neste E, Bontemps F. A crucial role for ATR in the regulation of deoxycytidine kinase activity. Biochem Pharmacol 2016; 100:40-50. [DOI: 10.1016/j.bcp.2015.11.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/20/2015] [Indexed: 11/15/2022]
|
6
|
Amsailale R, Beyaert M, Smal C, Janssens V, Van Den Neste E, Bontemps F. Protein phosphatase 2A regulates deoxycytidine kinase activityviaSer-74 dephosphorylation. FEBS Lett 2014; 588:727-32. [DOI: 10.1016/j.febslet.2014.01.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/10/2013] [Accepted: 01/08/2014] [Indexed: 10/25/2022]
|
7
|
Lee MW, Parker WB, Xu B. New insights into the synergism of nucleoside analogs with radiotherapy. Radiat Oncol 2013; 8:223. [PMID: 24066967 PMCID: PMC3851323 DOI: 10.1186/1748-717x-8-223] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 09/24/2013] [Indexed: 11/18/2022] Open
Abstract
Nucleoside analogs have been frequently used in combination with radiotherapy in the clinical setting, as it has long been understood that inhibition of DNA repair pathways is an important means by which many nucleoside analogs synergize. Recent advances in our understanding of the structure and function of deoxycytidine kinase (dCK), a critical enzyme required for the anti-tumor activity for many nucleoside analogs, have clarified the mechanistic role this kinase plays in chemo- and radio-sensitization. A heretofore unrecognized role of dCK in the DNA damage response and cell cycle machinery has helped explain the synergistic effect of these agents with radiotherapy. Since most currently employed nucleoside analogs are primarily activated by dCK, these findings lend fresh impetus to efforts focused on profiling and modulating dCK expression and activity in tumors. In this review we will briefly review the pharmacology and biochemistry of the major nucleoside analogs in clinical use that are activated by dCK. This will be followed by discussions of recent advances in our understanding of dCK activation via post-translational modifications in response to radiation and current strategies aimed at enhancing this activity in cancer cells.
Collapse
Affiliation(s)
- Michael W Lee
- Department of Medical Education, College of Medicine, University of Central Florida, 6850 Lake Nona Blvd,, Orlando, FL 32827, USA.
| | | | | |
Collapse
|
8
|
Yang C, Lee M, Hao J, Cui X, Guo X, Smal C, Bontemps F, Ma S, Liu X, Engler D, Parker WB, Xu B. Deoxycytidine kinase regulates the G2/M checkpoint through interaction with cyclin-dependent kinase 1 in response to DNA damage. Nucleic Acids Res 2012; 40:9621-32. [PMID: 22850745 PMCID: PMC3479177 DOI: 10.1093/nar/gks707] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Deoxycytidine kinase (dCK) is a rate limiting enzyme critical for phosphorylation of endogenous deoxynucleosides for DNA synthesis and exogenous nucleoside analogues for anticancer and antiviral drug actions. dCK is activated in response to DNA damage; however, how it functions in the DNA damage response is largely unknown. Here, we report that dCK is required for the G2/M checkpoint in response to DNA damage induced by ionizing radiation (IR). We demonstrate that the ataxia–telangiectasia-mutated (ATM) kinase phosphorylates dCK on Serine 74 to activate it in response to DNA damage. We further demonstrate that Serine 74 phosphorylation is required for initiation of the G2/M checkpoint. Using mass spectrometry, we identified a protein complex associated with dCK in response to DNA damage. We demonstrate that dCK interacts with cyclin-dependent kinase 1 (Cdk1) after IR and that the interaction inhibits Cdk1 activity both in vitro and in vivo. Together, our results highlight the novel function of dCK and provide molecular insights into the G2/M checkpoint regulation in response to DNA damage.
Collapse
Affiliation(s)
- Chunying Yang
- Department of Radiation Oncology, The Methodist Hospital Research Institute, Weill Cornell Medical College, Houston, TX77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Amsailale R, Van Den Neste E, Arts A, Starczewska E, Bontemps F, Smal C. Phosphorylation of deoxycytidine kinase on Ser-74: impact on kinetic properties and nucleoside analog activation in cancer cells. Biochem Pharmacol 2012; 84:43-51. [PMID: 22490700 DOI: 10.1016/j.bcp.2012.03.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 03/23/2012] [Accepted: 03/23/2012] [Indexed: 10/28/2022]
Abstract
Deoxycytidine kinase (dCK) (EC 2.7.1.74) is a key enzyme in the activation of several therapeutic nucleoside analogs (NA). Its activity can be increased in vivo by Ser-74 phosphorylation, a property that could be used for enhancing NA activation and clinical efficacy. In line with this, studies with recombinant dCK showed that mimicking Ser-74 phosphorylation by a S74E mutation increases its activity toward pyrimidine analogs. However, purine analogs had not been investigated. Here, we show that the S74E mutation increased the k(cat) for cladribine (CdA) by 8- or 3-fold, depending on whether the phosphoryl donor was ATP or UTP, for clofarabine (CAFdA) by about 2-fold with both ATP and UTP, and for fludarabine (F-Ara-A) by 2-fold, but only with UTP. However, the catalytic efficiencies (k(cat)/Km) were not, or slightly, increased. The S74E mutation also sensitized dCK to feed-back inhibition by dCTP, regardless of the phosphoryl donor. Importantly, we did not observe an increase of endogenous dCK activity toward purine analogs after in vivo-induced increase of Ser-74 phosphorylation. Accordingly, treatment of CLL cells with aphidicolin, which enhances dCK activity through Ser-74 phosphorylation, did not modify the conversion of CdA or F-Ara-A into their active triphosphate form. Nevertheless, the same treatment enhanced activation of gemcitabine (dFdC) into dFdCTP in CLL as well as in HCT-116 cells and produced synergistic cytotoxicity. We conclude that increasing phosphorylation of dCK on Ser-74 might constitute a valuable strategy to enhance the clinical efficacy of some NA, like dFdC, but not of CdA or F-Ara-A.
Collapse
Affiliation(s)
- Rachid Amsailale
- Laboratory of Physiological Chemistry, de Duve Institute & Université catholique de Louvain, B-1200 Brussels, Belgium
| | | | | | | | | | | |
Collapse
|