1
|
Darbyshire AL, Mothersole RG, Wolthers KR. A Fold Type II PLP-Dependent Enzyme from Fusobacterium nucleatum Functions as a Serine Synthase and Cysteine Synthase. Biochemistry 2021; 60:524-536. [PMID: 33539704 DOI: 10.1021/acs.biochem.0c00902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Serine synthase (SS) from Fusobacterium nucleatum is a fold type II pyridoxal 5'-phosphate (PLP)-dependent enzyme that catalyzes the β-replacement of l-cysteine with water to form l-serine and H2S. Herein, we show that SS can also function as a cysteine synthase, catalyzing the β-replacement of l-serine with bisulfide to produce l-cysteine and H2O. The forward (serine synthase) and reverse (cysteine synthase) reactions occur with comparable turnover numbers and catalytic efficiencies for the amino acid substrate. Reaction of SS with l-cysteine leads to transient formation of a quinonoid species, suggesting that deprotonation of the Cα and β-elimination of the thiolate group from l-cysteine occur via a stepwise mechanism. In contrast, the quinonoid species was not detected in the formation of the α-aminoacrylate intermediate following reaction of SS with l-serine. A key active site residue, D232, was shown to stabilize the more chemically reactive ketoenamine PLP tautomer and also function as an acid/base catalyst in the forward and reverse reactions. Fluorescence resonance energy transfer between PLP and W99, the enzyme's only tryptophan residue, supports ligand-induced closure of the active site, which shields the PLP cofactor from the solvent and increases the basicity of D232. These results provide new insight into amino acid metabolism in F. nucleatum and highlight the multiple catalytic roles of D232 in a new member of the fold type II family of PLP-dependent enzymes.
Collapse
Affiliation(s)
- Amanda L Darbyshire
- Department of Chemistry, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, BC V1V 1V7, Canada
| | - Robert G Mothersole
- Department of Chemistry, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, BC V1V 1V7, Canada
| | - Kirsten R Wolthers
- Department of Chemistry, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
2
|
Mothersole RG, Billett CR, Saini G, Mothersole MK, Darbyshire AL, Wolthers KR. S224 Presents a Catalytic Trade-off in PLP-Dependent l-Lanthionine Synthase from Fusobacterium nucleatum. Biochemistry 2020; 59:4250-4261. [PMID: 33112129 DOI: 10.1021/acs.biochem.0c00683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lanthionine synthase from the oral bacterium Fusobacterium nucleatum is a fold type II pyridoxal-5'-phosphate (PLP)-dependent enzyme that catalyzes the β-replacement of l-cysteine by a second molecule of l-cysteine to form H2S and l-lanthionine. The meso-isomer of the latter product is incorporated into the F. nucleatum peptidoglycan layer. Herein, we investigated the catalytic role of S224, which engages in hydrogen-bond contact with the terminal carboxylate of l-lanthionine in the closed conformation of the enzyme. Unexpectedly, the S224A variant elicited a 7-fold increase in the turnover rate for H2S and lanthionine formation and a 70-fold faster rate constant for the formation of the α-aminoacrylate intermediate compared to the wild-type enzyme. Presteady state kinetic analysis further showed that the reaction between S224A and l-cysteine leads to the formation of the more reactive ketoenamine tautomer of the α-aminoacrylate. The α-aminoacrylate with the protonated Schiff base is not an observable intermediate in the analogous reaction with the wild type, which may account for its attenuated kinetic properties. However, the S224A substitution is detrimental to other aspects of the catalytic cycle; it facilitates the α,β-elimination of l-lanthionine, and it weakens the enzyme's catalytic preference for the formation of l-lanthionine over that of l-cystathionine.
Collapse
Affiliation(s)
- Robert G Mothersole
- Department of Chemistry, The University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, British Columbia V1V1V7, Canada
| | - Cory R Billett
- Department of Chemistry, The University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, British Columbia V1V1V7, Canada
| | - Gurpreet Saini
- Department of Chemistry, The University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, British Columbia V1V1V7, Canada
| | - Mina K Mothersole
- Department of Chemistry, The University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, British Columbia V1V1V7, Canada
| | - Amanda L Darbyshire
- Department of Chemistry, The University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, British Columbia V1V1V7, Canada
| | - Kirsten R Wolthers
- Department of Chemistry, The University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, British Columbia V1V1V7, Canada
| |
Collapse
|
3
|
Malatesta M, Mori G, Acquotti D, Campanini B, Peracchi A, Antin PB, Percudani R. Birth of a pathway for sulfur metabolism in early amniote evolution. Nat Ecol Evol 2020; 4:1239-1246. [PMID: 32601391 PMCID: PMC8364350 DOI: 10.1038/s41559-020-1232-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/22/2020] [Indexed: 11/09/2022]
Abstract
Among amniotes, reptiles and mammals are differently adapted to terrestrial life. It is generally appreciated that terrestrialization required adaptive changes of vertebrate metabolism, particularly in the mode of nitrogen excretion. However, the current paradigm is that metabolic adaptation to life on land did not involve synthesis of enzymatic pathways de novo, but rather repurposing of existing ones. Here, by comparing the inventory of pyridoxal 5'-phosphate-dependent enzymes in different amniotes, we identify in silico a pathway for sulfur metabolism present in chick embryos but not in mammals. Cysteine lyase contains haem and pyridoxal 5'-phosphate co-factors and converts cysteine and sulfite into cysteic acid and hydrogen sulfide, respectively. A specific cysteic acid decarboxylase produces taurine, while hydrogen sulfide is recycled into cysteine by cystathionine beta-synthase. This reaction sequence enables the formation of sulfonated amino acids during embryo development in the egg at no cost of reduced sulfur. The pathway originated around 300 million years ago in a proto-reptile by cystathionine beta-synthase duplication, cysteine lyase neofunctionalization and cysteic acid decarboxylase co-option. Our findings indicate that adaptation to terrestrial life involved innovations in metabolic pathways, and reveal the molecular mechanisms by which such innovations arose in amniote evolution.
Collapse
Affiliation(s)
- Marco Malatesta
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Giulia Mori
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Domenico Acquotti
- Centro Interdipartimentale Misure 'Giuseppe Casnati', University of Parma, Parma, Italy
| | | | - Alessio Peracchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Parker B Antin
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Riccardo Percudani
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy.
| |
Collapse
|
4
|
Franko N, Grammatoglou K, Campanini B, Costantino G, Jirgensons A, Mozzarelli A. Inhibition of O-acetylserine sulfhydrylase by fluoroalanine derivatives. J Enzyme Inhib Med Chem 2018; 33:1343-1351. [PMID: 30251899 PMCID: PMC6161599 DOI: 10.1080/14756366.2018.1504040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
O-acetylserine sulfhydrylase (OASS) is the pyridoxal 5'-phosphate dependent enzyme that catalyses the formation of L-cysteine in bacteria and plants. Its inactivation is pursued as a strategy for the identification of novel antibiotics that, targeting dispensable proteins, holds a great promise for circumventing resistance development. In the present study, we have investigated the reactivity of Salmonella enterica serovar Typhimurium OASS-A and OASS-B isozymes with fluoroalanine derivatives. Monofluoroalanine reacts with OASS-A and OASS-B forming either a stable or a metastable α-aminoacrylate Schiff's base, respectively, as proved by spectral changes. This finding indicates that monofluoroalanine is a substrate analogue, as previously found for other beta-halogenalanine derivatives. Trifluoroalanine caused different and time-dependent absorbance and fluorescence spectral changes for the two isozymes and is associated with irreversible inhibition. The time course of enzyme inactivation was found to be characterised by a biphasic behaviour. Partially distinct inactivation mechanisms for OASS-A and OASS-B are proposed.
Collapse
Affiliation(s)
- Nina Franko
- a Food and Drug Department , University of Parma , Parma , Italy
| | | | | | | | | | - Andrea Mozzarelli
- a Food and Drug Department , University of Parma , Parma , Italy.,c National Research Council , Institute of Biophysics , Pisa , Italy
| |
Collapse
|
5
|
Benoni R, De Bei O, Paredi G, Hayes CS, Franko N, Mozzarelli A, Bettati S, Campanini B. Modulation of Escherichia coli serine acetyltransferase catalytic activity in the cysteine synthase complex. FEBS Lett 2017; 591:1212-1224. [PMID: 28337759 DOI: 10.1002/1873-3468.12630] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/20/2017] [Accepted: 03/16/2017] [Indexed: 11/09/2022]
Abstract
In bacteria and plants, serine acetyltransferase (CysE) and O-acetylserine sulfhydrylase-A sulfhydrylase (CysK) collaborate to synthesize l-Cys from l-Ser. CysE and CysK bind one another with high affinity to form the cysteine synthase complex (CSC). We demonstrate that bacterial CysE is activated when bound to CysK. CysE activation results from the release of substrate inhibition, with the Ki for l-Ser increasing from 4 mm for free CysE to 16 mm for the CSC. Feedback inhibition of CysE by l-Cys is also relieved in the bacterial CSC. These findings suggest that the CysE active site is allosterically altered by CysK to alleviate substrate and feedback inhibition in the context of the CSC.
Collapse
Affiliation(s)
- Roberto Benoni
- Dipartimento di Medicina e Chirurgia, Università di Parma, Italy
| | - Omar De Bei
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Italy
| | - Gianluca Paredi
- Centro Interdipartimentale SITEIA.PARMA, Università di Parma, Italy
| | - Christopher S Hayes
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA.,Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA, USA
| | - Nina Franko
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Italy
| | - Andrea Mozzarelli
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Italy.,INBB (Istituto Nazionale Biostrutture e Biosistemi), Roma, Italy.,Istituto di Biofisica, CNR, Pisa, Italy
| | - Stefano Bettati
- Dipartimento di Medicina e Chirurgia, Università di Parma, Italy.,INBB (Istituto Nazionale Biostrutture e Biosistemi), Roma, Italy
| | - Barbara Campanini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Italy
| |
Collapse
|
6
|
Jia M, Yi H, Chang M, Cao X, Li L, Zhou Z, Pan H, Chen Y, Zhang S, Xu J. Fluorescence kinetics of Trp-Trp dipeptide and its derivatives in water via ultrafast fluorescence spectroscopy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 149:243-8. [PMID: 26111991 DOI: 10.1016/j.jphotobiol.2015.06.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 05/23/2015] [Accepted: 06/16/2015] [Indexed: 11/18/2022]
Abstract
Ultrafast fluorescence dynamics of Tryptophan-Tryptophan (Trp-Trp/Trp2) dipeptide and its derivatives in water have been investigated using a picosecond resolved time correlated single photon counting (TCSPC) apparatus together with a femtosecond resolved upconversion spectrophotofluorometer. The fluorescence decay profiles at multiple wavelengths were fitted by a global analysis technique. Nanosecond fluorescence kinetics of Trp2, N-tert-butyl carbonyl oxygen-N'-aldehyde group-l-tryptophan-l-tryptophan (NBTrp2), l-tryptophan-l-tryptophan methyl ester (Trp2Me), and N-acetyl-l-tryptophan-l-tryptophan methyl ester (NATrp2Me) exhibit multi-exponential decays with the average lifetimes of 1.99, 3.04, 0.72 and 1.22ns, respectively. Due to the intramolecular interaction between two Trp residues, the "water relaxation" lifetime was observed around 4ps, and it is noticed that Trp2 and its derivatives also exhibit a new decay with a lifetime of ∼100ps, while single-Trp fluorescence decay in dipeptides/proteins shows 20-30ps. The intramolecular interaction lifetime constants of Trp2, NBTrp2, Trp2Me and NATrp2Me were then calculated to be 3.64, 0.93, 11.52 and 2.40ns, respectively. Candidate mechanisms (including heterogeneity, solvent relaxation, quasi static self-quenching or ET/PT quenching) have been discussed.
Collapse
Affiliation(s)
- Menghui Jia
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Hua Yi
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Mengfang Chang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Xiaodan Cao
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Lei Li
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Zhongneng Zhou
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Haifeng Pan
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Yan Chen
- Tongji Hospital Affiliated to Tongji University, 389 Xincun Road, Shanghai 200065, China
| | - Sanjun Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China.
| | - Jianhua Xu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| |
Collapse
|
7
|
Asymmetry of the active site loop conformation between subunits of glutamate-1-semialdehyde aminomutase in solution. BIOMED RESEARCH INTERNATIONAL 2013; 2013:353270. [PMID: 23984351 PMCID: PMC3747428 DOI: 10.1155/2013/353270] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 06/27/2013] [Indexed: 02/02/2023]
Abstract
Glutamate-1-semialdehyde aminomutase (GSAM) is a dimeric, pyridoxal 5′-phosphate (PLP)- dependent enzyme catalysing in plants and some bacteria the isomerization of L-glutamate-1-semialdehyde to 5-aminolevulinate, a common precursor of chlorophyll, haem, coenzyme B12, and other tetrapyrrolic compounds. During the catalytic cycle, the coenzyme undergoes conversion from pyridoxamine 5′-phosphate (PMP) to PLP. The entrance of the catalytic site is protected by a loop that is believed to switch from an open to a closed conformation during catalysis. Crystallographic studies indicated that the structure of the mobile loop is related to the form of the cofactor bound to the active site, allowing for asymmetry within the dimer. Since no information on structural and functional asymmetry of the enzyme in solution is available in the literature, we investigated the active site accessibility by determining the cofactor fluorescence quenching of PMP- and PLP-GSAM forms. PLP-GSAM is partially quenched by potassium iodide, suggesting that at least one catalytic site is accessible to the anionic quencher and therefore confirming the asymmetry observed in the crystal structure. Iodide induces release of the cofactor from PMP-GSAM, apparently from only one catalytic site, therefore suggesting an asymmetry also in this form of the enzyme in solution, in contrast with the crystallographic data.
Collapse
|
8
|
Mozzarelli A, Bettati S, Campanini B, Salsi E, Raboni S, Singh R, Spyrakis F, Kumar VP, Cook PF. The multifaceted pyridoxal 5'-phosphate-dependent O-acetylserine sulfhydrylase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1497-510. [PMID: 21549222 DOI: 10.1016/j.bbapap.2011.04.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 04/17/2011] [Accepted: 04/20/2011] [Indexed: 12/14/2022]
Abstract
Cysteine is the final product of the reductive sulfate assimilation pathway in bacteria and plants and serves as the precursor for all sulfur-containing biological compounds, such as methionine, S-adenosyl methionine, iron-sulfur clusters and glutathione. Moreover, in several microorganisms cysteine plays a role as a reducing agent, eventually counteracting host oxidative defense strategies. Cysteine is synthesized by the PLP-dependent O-acetylserine sulfhydrylase, a dimeric enzyme belonging to the fold type II, catalyzing a beta-replacement reaction. In this review, the spectroscopic properties, catalytic mechanism, three-dimensional structure, conformational changes accompanying catalysis, determinants of enzyme stability, role of selected amino acids in catalysis, and the regulation of enzyme activity by ligands and interaction with serine acetyltransferase, the preceding enzyme in the biosynthetic pathway, are described. Given the key biological role played by O-acetylserine sulfhydrylase in bacteria, inhibitors with potential antibiotic activity have been developed. This article is part of a Special Issue entitled: Pyridoxal Phospate Enzymology.
Collapse
Affiliation(s)
- Andrea Mozzarelli
- Department of Biochemistry and Molecular Biology, University of Parma, Parma, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|