1
|
Ekanayake KB, Mahawaththa MC, Qianzhu H, Abdelkader EH, George J, Ullrich S, Murphy RB, Fry SE, Johansen-Leete J, Payne RJ, Nitsche C, Huber T, Otting G. Probing Ligand Binding Sites on Large Proteins by Nuclear Magnetic Resonance Spectroscopy of Genetically Encoded Non-Canonical Amino Acids. J Med Chem 2023; 66:5289-5304. [PMID: 36920850 DOI: 10.1021/acs.jmedchem.3c00222] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
N6-(((trimethylsilyl)-methoxy)carbonyl)-l-lysine (TMSK) and N6-trifluoroacetyl-l-lysine (TFAK) are non-canonical amino acids, which can be installed in proteins by genetic encoding. In addition, we describe a new aminoacyl-tRNA synthetase specific for N6-(((trimethylsilyl)methyl)-carbamoyl)-l-lysine (TMSNK), which is chemically more stable than TMSK. Using the dimeric SARS-CoV-2 main protease (Mpro) as a model system with three different ligands, we show that the 1H and 19F nuclei of the solvent-exposed trimethylsilyl and CF3 groups produce intense signals in the nuclear magnetic resonance (NMR) spectrum. Their response to active-site ligands differed significantly when positioned near rather than far from the active site. Conversely, the NMR probes failed to confirm the previously reported binding site of the ligand pelitinib, which was found to enhance the activity of Mpro by promoting the formation of the enzymatically active dimer. In summary, the amino acids TMSK, TMSNK, and TFAK open an attractive path for site-specific NMR analysis of ligand binding to large proteins of limited stability and at low concentrations.
Collapse
Affiliation(s)
- Kasuni B Ekanayake
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Research School of Chemistry, Australian National University, Acton, Canberra, Australian Capital Territory 2601, Australia
| | - Mithun C Mahawaththa
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Research School of Chemistry, Australian National University, Acton, Canberra, Australian Capital Territory 2601, Australia
| | - Haocheng Qianzhu
- Research School of Chemistry, Australian National University, Acton, Canberra 2601, Australia
| | - Elwy H Abdelkader
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Research School of Chemistry, Australian National University, Acton, Canberra, Australian Capital Territory 2601, Australia
| | - Josemon George
- Research School of Chemistry, Australian National University, Acton, Canberra 2601, Australia
| | - Sven Ullrich
- Research School of Chemistry, Australian National University, Acton, Canberra 2601, Australia
| | - Rhys B Murphy
- Research School of Chemistry, Australian National University, Acton, Canberra 2601, Australia
| | - Sarah E Fry
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales 2006, Australia
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jason Johansen-Leete
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales 2006, Australia
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Richard J Payne
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales 2006, Australia
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University, Acton, Canberra 2601, Australia
| | - Thomas Huber
- Research School of Chemistry, Australian National University, Acton, Canberra 2601, Australia
| | - Gottfried Otting
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Research School of Chemistry, Australian National University, Acton, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
2
|
Buratti E, Tavagnacco L, Zanatta M, Chiessi E, Buoso S, Franco S, Ruzicka B, Angelini R, Orecchini A, Bertoldo M, Zaccarelli E. The role of polymer structure on water confinement in poly(N-isopropylacrylamide) dispersions. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
3
|
Reif B. Deuteration for High-Resolution Detection of Protons in Protein Magic Angle Spinning (MAS) Solid-State NMR. Chem Rev 2021; 122:10019-10035. [PMID: 34870415 DOI: 10.1021/acs.chemrev.1c00681] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proton detection developed in the last 20 years as the method of choice to study biomolecules in the solid state. In perdeuterated proteins, proton dipolar interactions are strongly attenuated, which allows yielding of high-resolution proton spectra. Perdeuteration and backsubstitution of exchangeable protons is essential if samples are rotated with MAS rotation frequencies below 60 kHz. Protonated samples can be investigated directly without spin dilution using proton detection methods in case the MAS frequency exceeds 110 kHz. This review summarizes labeling strategies and the spectroscopic methods to perform experiments that yield assignments, quantitative information on structure, and dynamics using perdeuterated samples. Techniques for solvent suppression, H/D exchange, and deuterium spectroscopy are discussed. Finally, experimental and theoretical results that allow estimation of the sensitivity of proton detected experiments as a function of the MAS frequency and the external B0 field in a perdeuterated environment are compiled.
Collapse
Affiliation(s)
- Bernd Reif
- Bayerisches NMR Zentrum (BNMRZ) at the Department of Chemistry, Technische Universität München (TUM), Lichtenbergstr. 4, 85747 Garching, Germany.,Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und Umwelt, Institute of Structural Biology (STB), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| |
Collapse
|
4
|
Abdelkader EH, Qianzhu H, Tan YJ, Adams LA, Huber T, Otting G. Genetic Encoding of N6-(((Trimethylsilyl)methoxy)carbonyl)-l-lysine for NMR Studies of Protein–Protein and Protein–Ligand Interactions. J Am Chem Soc 2021; 143:1133-1143. [DOI: 10.1021/jacs.0c11971] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Elwy H. Abdelkader
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Haocheng Qianzhu
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Yi Jiun Tan
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Luke A. Adams
- ARC Training Centre for Fragment Based Design and Monash Fragment Platform, Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Thomas Huber
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Gottfried Otting
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
5
|
Nichols PJ, Falconer I, Griffin A, Mant C, Hodges R, McKnight CJ, Vögeli B, Vugmeyster L. Deuteration of nonexchangeable protons on proteins affects their thermal stability, side-chain dynamics, and hydrophobicity. Protein Sci 2020; 29:1641-1654. [PMID: 32356390 DOI: 10.1002/pro.3878] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/10/2020] [Accepted: 04/26/2020] [Indexed: 11/06/2022]
Abstract
We have investigated the effect of deuteration of non-exchangeable protons on protein global thermal stability, hydrophobicity, and local flexibility using well-known thermostable model systems such as the villin headpiece subdomain (HP36) and the third immunoglobulin G-binding domain of protein G (GB3). Reversed-phase high-performance liquid chromatography (RP-HPLC) measurements as a function of temperature probe global thermal stability in the presence of acetonitrile, while differential scanning calorimetry determines thermal stability in solution. Both indicate small but measurable changes in the order of several degrees. RP-HPLC also permitted quantification of the effect of deuteration of just three core phenylalanine side chains of HP36. NMR dynamics investigation has focused on methyl axes motions using cross-correlated relaxation measurements. The analysis of order parameters provided a complex picture indicating that deuteration generally increases motional amplitudes of sub-nanosecond motion in GB3 but decreases those in HP36. Combined with earlier dynamics measurements at Cα -Cβ sites and backbone sites of GB3, which probed slower time scales, the results point to the need to probe multiple atoms in the protein and variety of time scales to the discern the full complexity of the effects of deuteration on dynamics.
Collapse
Affiliation(s)
- Parker J Nichols
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Isaac Falconer
- Department of Chemistry, University of Colorado at Denver, Denver, Colorado, USA.,Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Aaron Griffin
- Department of Chemistry, University of Colorado at Denver, Denver, Colorado, USA
| | - Colin Mant
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Robert Hodges
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Christopher J McKnight
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Beat Vögeli
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Liliya Vugmeyster
- Department of Chemistry, University of Colorado at Denver, Denver, Colorado, USA
| |
Collapse
|
6
|
Tai Y, Takaba K, Hanazono Y, Dao HA, Miki K, Takeda K. X-ray crystallographic studies on the hydrogen isotope effects of green fluorescent protein at sub-ångström resolutions. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2019; 75:1096-1106. [PMID: 31793903 DOI: 10.1107/s2059798319014608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/28/2019] [Indexed: 11/10/2022]
Abstract
Hydrogen atoms are critical to the nature and properties of proteins, and thus deuteration has the potential to influence protein function. In fact, it has been reported that some deuterated proteins show different physical and chemical properties to their protiated counterparts. Consequently, it is important to investigate protonation states around the active site when using deuterated proteins. Here, hydrogen isotope effects on the S65T/F99S/M153T/V163A variant of green fluorescent protein (GFP), in which the deprotonated B form is dominant at pH 8.5, were investigated. The pH/pD dependence of the absorption and fluorescence spectra indicates that the protonation state of the chromophore is the same in protiated GFP in H2O and protiated GFP in D2O at pH/pD 8.5, while the pKa of the chromophore became higher in D2O. Indeed, X-ray crystallographic analyses at sub-ångström resolution revealed no apparent changes in the protonation state of the chromophore between the two samples. However, detailed comparisons of the hydrogen OMIT maps revealed that the protonation state of His148 in the vicinity of the chromophore differed between the two samples. This indicates that protonation states around the active site should be carefully adjusted to be the same as those of the protiated protein when neutron crystallographic analyses of proteins are performed.
Collapse
Affiliation(s)
- Yang Tai
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kiyofumi Takaba
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yuya Hanazono
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hoang Anh Dao
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kunio Miki
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kazuki Takeda
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
7
|
Opitz C, Ahrné E, Goldie KN, Schmidt A, Grzesiek S. Deuterium induces a distinctive Escherichia coli proteome that correlates with the reduction in growth rate. J Biol Chem 2019; 294:2279-2292. [PMID: 30545941 PMCID: PMC6378978 DOI: 10.1074/jbc.ra118.006914] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/13/2018] [Indexed: 12/14/2022] Open
Abstract
Substitution of protium (H) for deuterium (D) strongly affects biological systems. Whereas higher eukaryotes such as plants and mammals hardly survive a deuterium content of >30%, many microorganisms can grow on fully deuterated media, albeit at reduced rates. Very little is known about how the H/D replacement influences life at the systems level. Here, we used MS-based analysis to follow the adaptation of a large part of the Escherichia coli proteome from growth on a protonated full medium, over a protonated minimal medium, to a completely deuterated minimal medium. We could quantify >1800 proteins under all conditions, several 100 of which exhibited strong regulation during both adaptation processes. The adaptation to minimal medium strongly up-regulated amino acid synthesis and sugar metabolism and down-regulated translational proteins on average by 9%, concomitant with a reduction in growth rate from 1.8 to 0.67 h-1 In contrast, deuteration caused a very wide proteomic response over many cell functional categories, together with an additional down-regulation of the translational proteins by 5%. The latter coincided with a further reduction in growth rate to 0.37 h-1, revealing a clear linear correlation between growth rate and abundance of translational proteins. No significant morphological effects are observed under light and electron microscopies. Across all protein categories, about 80% of the proteins up-regulated under deuteration are enzymes with hydrogen transfer functions. Thus, the H/D kinetic isotope effect appears as the major limiting factor of cellular functions under deuteration.
Collapse
Affiliation(s)
- Christian Opitz
- From the Biozentrum, University of Basel, CH-4056 Basel, Switzerland and
| | - Erik Ahrné
- From the Biozentrum, University of Basel, CH-4056 Basel, Switzerland and
| | - Kenneth N Goldie
- Center for Cellular Imaging and Nanoanalytics, Biozentrum, University of Basel, CH-4058 Basel, Switzerland
| | - Alexander Schmidt
- From the Biozentrum, University of Basel, CH-4056 Basel, Switzerland and
| | - Stephan Grzesiek
- From the Biozentrum, University of Basel, CH-4056 Basel, Switzerland and
| |
Collapse
|
8
|
Vugmeyster L, Griffin A, Ostrovsky D, Bhattacharya S, Nichols PJ, McKnight CJ, Vögeli B. Correlated motions of C'-N and C α-C β pairs in protonated and per-deuterated GB3. JOURNAL OF BIOMOLECULAR NMR 2018; 72:39-54. [PMID: 30121872 PMCID: PMC6218248 DOI: 10.1007/s10858-018-0205-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/09/2018] [Indexed: 06/08/2023]
Abstract
We investigated correlated µs-ms time scale motions of neighboring 13C'-15N and 13Cα-13Cβ nuclei in both protonated and perdeuterated samples of GB3. The techniques employed, NMR relaxation due to cross-correlated chemical shift modulations, specifically target concerted changes in the isotropic chemical shifts of the two nuclei associated with spatial fluctuations. Field-dependence of the relaxation rates permits identification of the parameters defining the chemical exchange rate constant under the assumption of a two-site exchange. The time scale of motions falls into the intermediate to fast regime (with respect to the chemical shift time scale, 100-400 s-1 range) for the 13C'-15N pairs and into the slow to intermediate regime for the 13Cα-13Cβ pairs (about 150 s-1). Comparison of the results obtained for protonated and deuterated GB3 suggests that deuteration has a tendency to reduce these slow scale correlated motions, especially for the 13Cα-13Cβ pairs.
Collapse
Affiliation(s)
- Liliya Vugmeyster
- Department of Chemistry, University of Colorado at Denver, 1201 Larimer Street, Denver, CO, 80204, USA.
| | - Aaron Griffin
- Department of Chemistry, University of Colorado at Denver, 1201 Larimer Street, Denver, CO, 80204, USA
| | - Dmitry Ostrovsky
- Department of Mathematics, University of Colorado at Denver, Denver, CO, 80204, USA
| | | | - Parker J Nichols
- Department of Biochemistry and Molecular Genetics, University of Colorado, School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - C James McKnight
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Beat Vögeli
- Department of Biochemistry and Molecular Genetics, University of Colorado, School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
9
|
Koruza K, Lafumat B, Végvári Á, Knecht W, Fisher S. Deuteration of human carbonic anhydrase for neutron crystallography: Cell culture media, protein thermostability, and crystallization behavior. Arch Biochem Biophys 2018. [DOI: 10.1016/j.abb.2018.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
Yee AW, Moulin M, Breteau N, Haertlein M, Mitchell EP, Cooper JB, Boeri Erba E, Forsyth VT. Impact of Deuteration on the Assembly Kinetics of Transthyretin Monitored by Native Mass Spectrometry and Implications for Amyloidoses. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ai Woon Yee
- Life Sciences group, ILL 71 avenue des Martyrs 38042 Grenoble France
- Faculty of Natural SciencesKeele University Staffordshire ST5 5BG UK
| | - Martine Moulin
- Life Sciences group, ILL 71 avenue des Martyrs 38042 Grenoble France
- Faculty of Natural SciencesKeele University Staffordshire ST5 5BG UK
| | - Nina Breteau
- Life Sciences group, ILL 71 avenue des Martyrs 38042 Grenoble France
| | - Michael Haertlein
- Life Sciences group, ILL 71 avenue des Martyrs 38042 Grenoble France
| | - Edward P. Mitchell
- Faculty of Natural SciencesKeele University Staffordshire ST5 5BG UK
- ESRF 71 avenue des Martyrs 38042 Grenoble France
| | - Jonathan B. Cooper
- Laboratory of Protein Crystallography, Drug Discovery GroupWolfson Institute for Biomedical Research, UCL London WC1E 6BT UK
| | - Elisabetta Boeri Erba
- Univ. Grenoble Alpes, IBS 38044 Grenoble France
- CNRS, IBS 38044 Grenoble France
- CEA, IBS 38044 Grenoble France
| | - V. Trevor Forsyth
- Life Sciences group, ILL 71 avenue des Martyrs 38042 Grenoble France
- Faculty of Natural SciencesKeele University Staffordshire ST5 5BG UK
| |
Collapse
|
11
|
Yee AW, Moulin M, Breteau N, Haertlein M, Mitchell EP, Cooper JB, Boeri Erba E, Forsyth VT. Impact of Deuteration on the Assembly Kinetics of Transthyretin Monitored by Native Mass Spectrometry and Implications for Amyloidoses. Angew Chem Int Ed Engl 2016; 55:9292-6. [PMID: 27311939 PMCID: PMC5094506 DOI: 10.1002/anie.201602747] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Indexed: 01/13/2023]
Abstract
It is well established that the formation of transthyretin (TTR) amyloid fibrils is linked to the destabilization and dissociation of its tetrameric structure into insoluble aggregates. Isotope labeling is used for the study of TTR by NMR, neutron diffraction, and mass spectrometry (MS). Here MS, thioflavin T fluorescence, and crystallographic data demonstrate that while the X-ray structures of unlabeled and deuterium-labeled TTR are essentially identical, subunit exchange kinetics and amyloid formation are accelerated for the deuterated protein. However, a slower subunit exchange is noted in deuterated solvent, reflecting the poorer solubility of non-polar protein side chains in such an environment. These observations are important for the interpretation of kinetic studies involving deuteration. The destabilizing effects of TTR deuteration are rather similar in character to those observed for aggressive mutations of TTR such as L55P (associated with familial amyloid polyneuropathy).
Collapse
Affiliation(s)
- Ai Woon Yee
- Life Sciences group, ILL, 71 avenue des Martyrs, 38042, Grenoble, France
- Faculty of Natural Sciences, Keele University, Staffordshire, ST5 5BG, UK
| | - Martine Moulin
- Life Sciences group, ILL, 71 avenue des Martyrs, 38042, Grenoble, France
- Faculty of Natural Sciences, Keele University, Staffordshire, ST5 5BG, UK
| | - Nina Breteau
- Life Sciences group, ILL, 71 avenue des Martyrs, 38042, Grenoble, France
| | - Michael Haertlein
- Life Sciences group, ILL, 71 avenue des Martyrs, 38042, Grenoble, France
| | - Edward P Mitchell
- Faculty of Natural Sciences, Keele University, Staffordshire, ST5 5BG, UK
- ESRF, 71 avenue des Martyrs, 38042, Grenoble, France
| | - Jonathan B Cooper
- Laboratory of Protein Crystallography, Drug Discovery Group, Wolfson Institute for Biomedical Research, UCL, London, WC1E 6BT, UK
| | - Elisabetta Boeri Erba
- Univ. Grenoble Alpes, IBS, 38044, Grenoble, France.
- CNRS, IBS, 38044, Grenoble, France.
- CEA, IBS, 38044, Grenoble, France.
| | - V Trevor Forsyth
- Life Sciences group, ILL, 71 avenue des Martyrs, 38042, Grenoble, France.
- Faculty of Natural Sciences, Keele University, Staffordshire, ST5 5BG, UK.
| |
Collapse
|
12
|
Chen WN, Kuppan KV, Lee MD, Jaudzems K, Huber T, Otting G. O-tert-Butyltyrosine, an NMR tag for high-molecular-weight systems and measurements of submicromolar ligand binding affinities. J Am Chem Soc 2015; 137:4581-6. [PMID: 25789794 DOI: 10.1021/jacs.5b01918] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
O-tert-Butyltyrosine (Tby) is an unnatural amino acid that can be site-specifically incorporated into proteins using established orthogonal aminoacyl-tRNA synthetase/tRNA systems. Here we show that the tert-butyl group presents an outstanding NMR tag that can readily be observed in one-dimensional (1)H NMR spectra without any isotope labeling. Owing to rapid bond rotations and the chemical equivalence of the protons of a solvent-exposed tert-butyl group from Tby, the singlet resonance from the tert-butyl group generates an easily detectable narrow signal in a spectral region with limited overlap with other methyl resonances. The potential of the tert-butyl (1)H NMR signal in protein research is illustrated by the observation and assignment of two resonances in the Bacillus stearothermophilus DnaB hexamer (320 kDa), demonstrating that this protein preferentially assumes a 3-fold rather than 6-fold symmetry in solution, and by the quantitative measurement of the submicromolar dissociation constant Kd (0.2 μM) of the complex between glutamate and the Escherichia coli aspartate/glutamate binding protein (DEBP, 32 kDa). The outstanding signal height of the (1)H NMR signal of the Tby tert-butyl group allows Kd measurements using less concentrated protein solutions than usual, providing access to Kd values 1 order of magnitude lower than established NMR methods that employ direct protein detection for Kd measurements.
Collapse
Affiliation(s)
- Wan-Na Chen
- †Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Kekini Vahini Kuppan
- †Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Michael David Lee
- ‡Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia
| | | | - Thomas Huber
- †Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Gottfried Otting
- †Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
13
|
Lee CR, Park YH, Kim M, Kim YR, Park S, Peterkofsky A, Seok YJ. Reciprocal regulation of the autophosphorylation of enzyme INtr by glutamine and α-ketoglutarate in Escherichia coli. Mol Microbiol 2013; 88:473-85. [PMID: 23517463 DOI: 10.1111/mmi.12196] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2013] [Indexed: 11/28/2022]
Abstract
In addition to the phosphoenolpyruvate:sugar phosphotransferase system (sugar PTS), most proteobacteria possess a paralogous system (nitrogen phosphotransferase system, PTS(Ntr)). The first proteins in both pathways are enzymes (enzyme I(sugar) and enzyme I(Ntr)) that can be autophosphorylated by phosphoenolpyruvate. The most striking difference between enzyme I(sugar) and enzyme I(Ntr) is the presence of a GAF domain at the N-terminus of enzyme I(Ntr). Since the PTS(Ntr) was identified in 1995, it has been implicated in a variety of cellular processes in many proteobacteria and many of these regulations have been shown to be dependent on the phosphorylation state of PTS(Ntr) components. However, there has been little evidence that any component of this so-called PTS(Ntr) is directly involved in nitrogen metabolism. Moreover, a signal regulating the phosphorylation state of the PTS(Ntr) had not been uncovered. Here, we demonstrate that glutamine and α-ketoglutarate, the canonical signals of nitrogen availability, reciprocally regulate the phosphorylation state of the PTS(Ntr) by direct effects on enzyme I(Ntr) autophosphorylation and the GAF signal transduction domain is necessary for the regulation of enzyme I(Ntr) activity by the two signal molecules. Taken together, our results suggest that the PTS(Ntr) senses nitrogen availability.
Collapse
Affiliation(s)
- Chang-Ro Lee
- Department of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 151-742, Korea
| | | | | | | | | | | | | |
Collapse
|