1
|
Yu S, McWilliams JC, Dirat O, Dobo KL, Kalgutkar AS, Kenyon MO, Martin MT, Watt ED, Schuler M. A Kinetic Model for Assessing Potential Nitrosamine Carcinogenicity. Chem Res Toxicol 2024; 37:1382-1393. [PMID: 39075630 DOI: 10.1021/acs.chemrestox.4c00133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Understanding the potential carcinogenic potency of nitrosamines is necessary to setting acceptable intake limits. Nitrosamines and the components that can form them are commonly present in food, water, cosmetics, and tobacco. The recent observation of nitrosamines in pharmaceuticals highlighted the need for effective methods to determine acceptable intake limits. Herein, we describe two computational models that utilize properties based upon quantum mechanical calculations in conjunction with mechanistic insights and established data to determine the carcinogenic potency of a variety of common nitrosamines. These models can be applied to experimentally untested nitrosamines to aid in the establishment of acceptable intake limits.
Collapse
Affiliation(s)
- Shu Yu
- Chemical Research and Development, Pfizer Research & Development, Groton, Connecticut 06340, United States
| | - J Christopher McWilliams
- Chemical Research and Development, Pfizer Research & Development, Groton, Connecticut 06340, United States
| | - Olivier Dirat
- CMC Advisory Office, Pfizer Global Regulatory Sciences, Sandwich CT13 9NJ, U.K
| | - Krista L Dobo
- Drug Safety Research and Development, Pfizer Research & Development-Groton Laboratories, Groton, Connecticut 06340, United States
| | - Amit S Kalgutkar
- Pharmacokinetics Dynamics and Metabolism, Pfizer Research & Development, Cambridge, Massachusetts 02139, United States
| | - Michelle O Kenyon
- Drug Safety Research and Development, Pfizer Research & Development-Groton Laboratories, Groton, Connecticut 06340, United States
| | - Matthew T Martin
- Drug Safety Research and Development, Pfizer Research & Development-Groton Laboratories, Groton, Connecticut 06340, United States
| | - Eric D Watt
- Drug Safety Research and Development, Pfizer Research & Development-Groton Laboratories, Groton, Connecticut 06340, United States
| | - Maik Schuler
- Drug Safety Research and Development, Pfizer Research & Development-Groton Laboratories, Groton, Connecticut 06340, United States
| |
Collapse
|
2
|
Kandel SE, Tooker BC, Lampe JN. Drug metabolism of ciprofloxacin, ivacaftor, and raloxifene by Pseudomonas aeruginosa cytochrome P450 CYP107S1. J Biol Chem 2024; 300:107594. [PMID: 39032655 PMCID: PMC11382314 DOI: 10.1016/j.jbc.2024.107594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/29/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024] Open
Abstract
Drug metabolism is one of the main processes governing the pharmacokinetics and toxicity of drugs via their chemical biotransformation and elimination. In humans, the liver, enriched with cytochrome P450 (CYP) enzymes, plays a major metabolic and detoxification role. The gut microbiome and its complex community of microorganisms can also contribute to some extent to drug metabolism. However, during an infection when pathogenic microorganisms invade the host, our knowledge of the impact on drug metabolism by this pathobiome remains limited. The intrinsic resistance mechanisms and rapid metabolic adaptation to new environments often allow the human bacterial pathogens to persist, despite the many antibiotic therapies available. Here, we demonstrate that a bacterial CYP enzyme, CYP107S1, from Pseudomonas aeruginosa, a predominant bacterial pathogen in cystic fibrosis patients, can metabolize multiple drugs from different classes. CYP107S1 demonstrated high substrate promiscuity and allosteric properties much like human hepatic CYP3A4. Our findings demonstrated binding and metabolism by the recombinant CYP107S1 of fluoroquinolone antibiotics (ciprofloxacin and fleroxacin), a cystic fibrosis transmembrane conductance regulator potentiator (ivacaftor), and a selective estrogen receptor modulator antimicrobial adjuvant (raloxifene). Our in vitro metabolism data were further corroborated by molecular docking of each drug to the heme active site using a CYP107S1 homology model. Our findings raise the potential for microbial pathogens modulating drug concentrations locally at the site of infection, if not systemically, via CYP-mediated biotransformation reactions. To our knowledge, this is the first report of a CYP enzyme from a known bacterial pathogen that is capable of metabolizing clinically utilized drugs.
Collapse
Affiliation(s)
- Sylvie E Kandel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, Colorado, USA
| | - Brian C Tooker
- Pulmonary Division, Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Jed N Lampe
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, Colorado, USA.
| |
Collapse
|
3
|
Famulari A, Correddu D, Di Nardo G, Gilardi G, Mitrikas G, Chiesa M, García-Rubio I. Heme Spin Distribution in the Substrate-Free and Inhibited Novel CYP116B5hd: A Multifrequency Hyperfine Sublevel Correlation (HYSCORE) Study. Molecules 2024; 29:518. [PMID: 38276601 PMCID: PMC10819608 DOI: 10.3390/molecules29020518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/29/2023] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
The cytochrome P450 family consists of ubiquitous monooxygenases with the potential to perform a wide variety of catalytic applications. Among the members of this family, CYP116B5hd shows a very prominent resistance to peracid damage, a property that makes it a promising tool for fine chemical synthesis using the peroxide shunt. In this meticulous study, we use hyperfine spectroscopy with a multifrequency approach (X- and Q-band) to characterize in detail the electronic structure of the heme iron of CYP116B5hd in the resting state, which provides structural details about its active site. The hyperfine dipole-dipole interaction between the electron and proton nuclear spins allows for the locating of two different protons from the coordinated water and a beta proton from the cysteine axial ligand of heme iron with respect to the magnetic axes centered on the iron. Additionally, since new anti-cancer therapies target the inhibition of P450s, here we use the CYP116B5hd system-imidazole as a model for studying cytochrome P450 inhibition by an azo compound. The effects of the inhibition of protein by imidazole in the active-site geometry and electron spin distribution are presented. The binding of imidazole to CYP116B5hd results in an imidazole-nitrogen axial coordination and a low-spin heme FeIII. HYSCORE experiments were used to detect the hyperfine interactions. The combined interpretation of the gyromagnetic tensor and the hyperfine and quadrupole tensors of magnetic nuclei coupled to the iron electron spin allowed us to obtain a precise picture of the active-site geometry, including the orientation of the semi-occupied orbitals and magnetic axes, which coincide with the porphyrin N-Fe-N axes. The electronic structure of the iron does not seem to be affected by imidazole binding. Two different possible coordination geometries of the axial imidazole were observed. The angles between gx (coinciding with one of the N-Fe-N axes) and the projection of the imidazole plane on the heme were determined to be -60° and -25° for each of the two possibilities via measurement of the hyperfine structure of the axially coordinated 14N.
Collapse
Affiliation(s)
- Antonino Famulari
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain;
- Department of Chemistry, University of Turin, Via Giuria 9, 10125 Torino, Italy;
| | - Danilo Correddu
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy (G.D.N.); (G.G.)
| | - Giovanna Di Nardo
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy (G.D.N.); (G.G.)
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy (G.D.N.); (G.G.)
| | - George Mitrikas
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, 15341 Athens, Greece;
| | - Mario Chiesa
- Department of Chemistry, University of Turin, Via Giuria 9, 10125 Torino, Italy;
| | - Inés García-Rubio
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain;
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
4
|
Paragas EM, Choughule K, Jones JP, Barr JT. Enzyme Kinetics, Pharmacokinetics, and Inhibition of Aldehyde Oxidase. Methods Mol Biol 2021; 2342:257-284. [PMID: 34272698 DOI: 10.1007/978-1-0716-1554-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Aldehyde oxidase (AO) has emerged as an important drug metabolizing enzyme over the last decade. Several compounds have failed in the clinic because the clearance or toxicity was underestimated by preclinical species. Human AO is much more active than rodent AO, and dogs do not have functional AO. Metabolic products from AO-catalyzed oxidation are generally nonreactive and often they have much lower solubility. AO metabolism is not limited to oxidation as AO can also catalyze reduction of oxygen and nitrite. Reduction of oxygen leads to the reactive oxygen species (ROS) superoxide radical anion and hydrogen peroxide. Reduction of nitrite leads to the formation of nitric oxide with potential pharmacological implications. AO is also reported to catalyze the reductive metabolism of nitro-compounds, N-oxides, sulfoxides, isoxazoles, isothiazoles, nitrite, and hydroxamic acids. These reductive transformations may cause toxicity due to the formation of reactive metabolites. Moreover, the inhibition kinetics are complex, and multiple probe substrates should be used when assessing the potential for DDIs. Finally, AO appears to be amenable to computational predictions of both regioselectivity and rates of reaction, which holds promise for virtual screening.
Collapse
Affiliation(s)
- Erickson M Paragas
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Kanika Choughule
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck, Boston, MA, USA
| | - Jeffrey P Jones
- Department of Chemistry, Washington State University, Pullman, WA, USA
| | - John T Barr
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck, South San Francisco, CA, USA.
| |
Collapse
|
5
|
Podgorski MN, Harbort JS, Coleman T, Stok JE, Yorke JA, Wong LL, Bruning JB, Bernhardt PV, De Voss JJ, Harmer JR, Bell SG. Biophysical Techniques for Distinguishing Ligand Binding Modes in Cytochrome P450 Monooxygenases. Biochemistry 2020; 59:1038-1050. [PMID: 32058707 DOI: 10.1021/acs.biochem.0c00027] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The cytochrome P450 superfamily of heme monooxygenases catalyzes important chemical reactions across nature. The changes in the optical spectra of these enzymes, induced by the addition of substrates or inhibitors, are critical for assessing how these molecules bind to the P450, enhancing or inhibiting the catalytic cycle. Here we use the bacterial CYP199A4 enzyme (Uniprot entry Q2IUO2), from Rhodopseudomonas palustris HaA2, and a range of substituted benzoic acids to investigate different binding modes. 4-Methoxybenzoic acid elicits an archetypal type I spectral response due to a ≥95% switch from the low- to high-spin state with concomitant dissociation of the sixth aqua ligand. 4-(Pyridin-3-yl)- and 4-(pyridin-2-yl)benzoic acid induced different type II ultraviolet-visible (UV-vis) spectral responses in CYP199A4. The former induced a greater red shift in the Soret wavelength (424 nm vs 422 nm) along with a larger overall absorbance change and other differences in the α-, β-, and δ-bands. There were also variations in the ferrous UV-vis spectra of these two substrate-bound forms with a spectrum indicative of Fe-N bond formation with 4-(pyridin-3-yl)benzoic acid. The crystal structures of CYP199A4, with the pyridinyl compounds bound, revealed that while the nitrogen of 4-(pyridin-3-yl)benzoic acid is coordinated to the heme, with 4-(pyridin-2-yl)benzoic acid an aqua ligand remains. Continuous wave and pulse electron paramagnetic resonance data in frozen solution revealed that the substrates are bound in the active site in a form consistent with the crystal structures. The redox potential of each CYP199A4-substrate combination was measured, allowing correlation among binding modes, spectroscopic properties, and the observed biochemical activity.
Collapse
Affiliation(s)
- Matthew N Podgorski
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| | - Joshua S Harbort
- Center for Advanced Imaging, University of Queensland, Brisbane, QLD 4072, Australia
| | - Tom Coleman
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| | - Jeanette E Stok
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Jake A Yorke
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K
| | - Luet-Lok Wong
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K
| | - John B Bruning
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Paul V Bernhardt
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - James J De Voss
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Jeffrey R Harmer
- Center for Advanced Imaging, University of Queensland, Brisbane, QLD 4072, Australia
| | - Stephen G Bell
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
6
|
Ortega Ugalde S, Luirink RA, Geerke DP, Vermeulen NPE, Bitter W, Commandeur JNM. Engineering a self-sufficient Mycobacterium tuberculosis CYP130 by gene fusion with the reductase-domain of CYP102A1 from Bacillus megaterium. J Inorg Biochem 2017; 180:47-53. [PMID: 29232638 DOI: 10.1016/j.jinorgbio.2017.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/25/2017] [Accepted: 12/04/2017] [Indexed: 11/26/2022]
Abstract
CYP130 belongs to the subset of cytochrome P450s from Mycobacterium tuberculosis (Mtb) that have been structurally characterized. Despite several efforts for its functional characterization, CYP130 is still considered an orphan enzyme for which no endogenous or exogenous substrate has been identified. In addition, functional redox-partners for CYP130 have not been clearly established yet, hampering the elucidation of its physiological role. In the present study, a catalytically active fusion protein involving CYP130 and the NADPH reductase-domain of CYP102A1 from Bacillus megaterium was created. By screening a panel of known substrates of human P450s, dextromethorphan N-demethylation was identified as a reaction catalyzed by CYP130. The fusion enzyme showed higher catalytic activity, when compared to CYP130 reconstituted with a selection of non-native redox-partners. Molecular dynamics simulation studies based on the crystal structure of CYP130 revealed two primary docking poses of dextromethorphan within the active site consistent with the experimentally observed N-demethylation reaction during the entire molecular dynamics simulation. The dextromethorphan N-demethylation reaction was strongly inhibited by azole-drugs and maybe applied to identify mechanism-based inhibitors of CYP130. Furthermore, the present active CYP130-fusion protein may facilitate the identification of endogenous substrates from Mtb.
Collapse
Affiliation(s)
- Sandra Ortega Ugalde
- Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Rosa A Luirink
- Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Daan P Geerke
- Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Nico P E Vermeulen
- Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Wilbert Bitter
- Division of Molecular Microbiology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Jan N M Commandeur
- Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Kavanagh ME, Chenge J, Zoufir A, McLean KJ, Coyne AG, Bender A, Munro AW, Abell C. Fragment Profiling Approach to Inhibitors of the Orphan M. tuberculosis P450 CYP144A1. Biochemistry 2017; 56:1559-1572. [PMID: 28169518 DOI: 10.1021/acs.biochem.6b00954] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Similarity between the ligand binding profiles of enzymes may aid functional characterization and be of greater relevance to inhibitor development than sequence similarity or structural homology. Fragment screening is an efficient approach for characterization of the ligand binding profile of an enzyme and has been applied here to study the family of cytochrome P450 enzymes (P450s) expressed by Mycobacterium tuberculosis (Mtb). The Mtb P450s have important roles in bacterial virulence, survival, and pathogenicity. Comparing the fragment profiles of seven of these enzymes revealed that P450s which share a similar biological function have significantly similar fragment profiles, whereas functionally unrelated or orphan P450s exhibit distinct ligand binding properties, despite overall high structural homology. Chemical structures that exhibit promiscuous binding between enzymes have been identified, as have selective fragments that could provide leads for inhibitor development. The similarity between the fragment binding profiles of the orphan enzyme CYP144A1 and CYP121A1, a characterized enzyme that is important for Mtb viability, provides a case study illustrating the subsequent identification of novel CYP144A1 ligands. The different binding modes of these compounds to CYP144A1 provide insight into structural and dynamic aspects of the enzyme, possible biological function, and provide the opportunity to develop inhibitors. Expanding this fragment profiling approach to include a greater number of functionally characterized and orphan proteins may provide a valuable resource for understanding enzyme-ligand interactions.
Collapse
Affiliation(s)
- Madeline E Kavanagh
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Jude Chenge
- Centre for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester , Manchester M1 7DN, United Kingdom
| | - Azedine Zoufir
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Kirsty J McLean
- Centre for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester , Manchester M1 7DN, United Kingdom
| | - Anthony G Coyne
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Andreas Bender
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Andrew W Munro
- Centre for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester , Manchester M1 7DN, United Kingdom
| | - Chris Abell
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
8
|
Conner KP, Cruce AA, Krzyaniak MD, Schimpf AM, Frank DJ, Ortiz de Montellano P, Atkins WM, Bowman MK. Drug modulation of water-heme interactions in low-spin P450 complexes of CYP2C9d and CYP125A1. Biochemistry 2015; 54:1198-207. [PMID: 25591012 DOI: 10.1021/bi501402k] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Azoles and pyridines are commonly incorporated into small molecule inhibitor scaffolds that target cytochromes P450 (CYPs) as a strategy to increase drug binding affinity, impart isoform-dependent selectivity, and improve metabolic stability. Optical absorbance spectra of the CYP-inhibitor complex are widely used to infer whether these inhibitors are ligated directly to the heme iron as catalytically inert, low-spin (type II) complexes. Here, we show that the low-spin complex between a drug-metabolizing CYP2C9 variant and 4-(3-phenylpropyl)-1H-1,2,3-triazole (PPT) retains an axial water ligand despite exhibiting elements of "classic" type II optical behavior. Hydrogens of the axial water ligand are observed by pulsed electron paramagnetic resonance (EPR) spectroscopy for both inhibitor-free and inhibitor-bound species and show that inhibitor binding does not displace the axial water. A (15)N label incorporated into PPT is 0.444 nm from the heme iron, showing that PPT is also in the active site. The reverse type I inhibitor, LP10, of CYP125A1 from Mycobacterium tuberculosis, known from X-ray crystal structures to form a low-spin water-bridged complex, is found by EPR and by visible and near-infrared magnetic circular dichroism spectroscopy to retain the axial water ligand in the complex in solution.
Collapse
Affiliation(s)
- Kip P Conner
- Department of Medicinal Chemistry, Box 357610, and Department of Chemistry, Box 351700, University of Washington , Seattle, Washington 98195, United States
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Sevrioukova IF, Poulos TL. Current Approaches for Investigating and Predicting Cytochrome P450 3A4-Ligand Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 851:83-105. [PMID: 26002732 DOI: 10.1007/978-3-319-16009-2_3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cytochrome P450 3A4 (CYP3A4) is the major and most important drug-metabolizing enzyme in humans that oxidizes and clears over a half of all administered pharmaceuticals. This is possible because CYP3A4 is promiscuous with respect to substrate binding and has the ability to catalyze diverse oxidative chemistries in addition to traditional hydroxylation reactions. Furthermore, CYP3A4 binds and oxidizes a number of substrates in a cooperative manner and can be both induced and inactivated by drugs. In vivo, CYP3A4 inhibition could lead to undesired drug-drug interactions and drug toxicity, a major reason for late-stage clinical failures and withdrawal of marketed pharmaceuticals. Owing to its central role in drug metabolism, many aspects of CYP3A4 catalysis have been extensively studied by various techniques. Here, we give an overview of experimental and theoretical methods currently used for investigation and prediction of CYP3A4-ligand interactions, a defining factor in drug metabolism, with an emphasis on the problems addressed and conclusions derived from the studies.
Collapse
Affiliation(s)
- Irina F Sevrioukova
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA,
| | | |
Collapse
|
10
|
Use of chemical auxiliaries to control p450 enzymes for predictable oxidations at unactivated C-h bonds of substrates. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 851:209-28. [PMID: 26002737 DOI: 10.1007/978-3-319-16009-2_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cytochrome P450 enzymes (P450s) have the ability to oxidize unactivated C-H bonds of substrates with remarkable regio- and stereoselectivity. Comparable selectivity for chemical oxidizing agents is typically difficult to achieve. Hence, there is an interest in exploiting P450s as potential biocatalysts. Despite their impressive attributes, the current use of P450s as biocatalysts is limited. While bacterial P450 enzymes typically show higher activity, they tend to be highly selective for one or a few substrates. On the other hand, mammalian P450s, especially the drug-metabolizing enzymes, display astonishing substrate promiscuity. However, product prediction continues to be challenging. This review discusses the use of small molecules for controlling P450 substrate specificity and product selectivity. The focus will be on two approaches in the area: (1) the use of decoy molecules, and (2) the application of substrate engineering to control oxidation by the enzyme.
Collapse
|
11
|
Polic V, Auclair K. Controlling substrate specificity and product regio- and stereo-selectivities of P450 enzymes without mutagenesis. Bioorg Med Chem 2014; 22:5547-54. [PMID: 25035263 PMCID: PMC5177023 DOI: 10.1016/j.bmc.2014.06.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 06/12/2014] [Accepted: 06/17/2014] [Indexed: 01/25/2023]
Abstract
P450 enzymes (P450s) are well known for their ability to oxidize unactivated CH bonds with high regio- and stereoselectivity. Hence, there is emerging interest in exploiting P450s as potential biocatalysts. Although bacterial P450s typically show higher activity than their mammalian counterparts, they tend to be more substrate selective. Most drug-metabolizing P450s on the other hand, display remarkable substrate promiscuity, yet product prediction remains challenging. Protein engineering is one established strategy to overcome these issues. A less explored, yet promising alternative involves substrate engineering. This review discusses the use of small molecules for controlling the substrate specificity and product selectivity of P450s. The focus is on two approaches, one taking advantage of non-covalent decoy molecules, and the other involving covalent substrate modifications.
Collapse
Affiliation(s)
- Vanja Polic
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Karine Auclair
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada.
| |
Collapse
|
12
|
Carosati E. Modelling cytochromes P450 binding modes to predict P450 inhibition, metabolic stability and isoform selectivity. DRUG DISCOVERY TODAY. TECHNOLOGIES 2014; 10:e167-75. [PMID: 24050246 DOI: 10.1016/j.ddtec.2012.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The cytochromes P450 (P450) superfamily is a diverse group of enzymes involved in the metabolism of xenobiotics, whose orientations within the catalytic site can lead to different binding modes, namely productive, nonproductive, and inhibitory. This article collects the most recent approaches that individually study P450- ligand interactions, including a novel in silico technology, developed in the framework of the Human Cytochrome P450 Consortium initiative, that provides reliable in silico predictions of P450 inhibition, metabolic stability and isoform selectivity.
Collapse
|
13
|
Barr JT, Choughule K, Jones JP. Enzyme kinetics, inhibition, and regioselectivity of aldehyde oxidase. Methods Mol Biol 2014; 1113:167-186. [PMID: 24523113 DOI: 10.1007/978-1-62703-758-7_9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The aldehyde oxidase (AO) enzyme family plays an increasing role in drug development. However, a number of compounds that are AO substrates have failed in the clinic because the clearance or toxicity is underestimated by preclinical species. Human AO is much more active than rodent AO, and dogs do not have functional AO. While AOs normally make non-reactive metabolites such as lactams, the metabolic products often have much lower solubility that can lead to renal failure. While an endogenous substrate for the oxidation reaction is not known, electron acceptors for the reductive part of the reaction include oxygen and nitrites. Reduction of oxygen leads to the reactive oxygen species (ROS) superoxide radical anion, and hydrogen peroxide. Reduction of nitrite leads to the formation of nitric oxide with potential pharmacological implications. To date, no clinically important drug-drug interactions (DDIs) have been observed for AOs. However, the inhibition kinetics are complex, and multiple probe substrates should be used when assessing the potential for DDIs. Finally, AO appears to be amenable to computational predictions of both regioselectivity and rates of reaction, which holds promise for virtual screening.
Collapse
Affiliation(s)
- John T Barr
- Department of Chemistry, Washington State University, Pullman, WA, USA
| | | | | |
Collapse
|
14
|
Shah MB, Kufareva I, Pascual J, Zhang Q, Stout CD, Halpert JR. A structural snapshot of CYP2B4 in complex with paroxetine provides insights into ligand binding and clusters of conformational states. J Pharmacol Exp Ther 2013; 346:113-20. [PMID: 23633618 DOI: 10.1124/jpet.113.204776] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
An X-ray crystal structure of CYP2B4 in complex with the drug paroxetine [(3S,4R)-3-[(2H-1,3-benzodioxol-5-yloxy)methyl]-4-(4-fluorophenyl)piperidine] was solved at 2.14 Å resolution. The structure revealed a conformation intermediate to that of the recently solved complex with amlodipine and that of the more compact complex with 4-(4-chlorophenyl)imidazole in terms of the placement of the F-G cassette. Moreover, comparison of the new structure with 15 previously solved structures of CYP2B4 revealed some new insights into the determinants of active-site size and shape. The 2B4-paroxetine structure is nearly superimposable on a previously solved closed structure in a ligand-free state. Despite the overall conformational similarity among multiple closed structures, the active-site cavity volume of the paroxetine complex is enlarged. Further analysis of the accessible space and binding pocket near the heme reveals a new subchamber that resulted from the movement of secondary structural elements and rearrangements of active-site side chains. Overall, the results from the comparison of all 16 structures of CYP2B4 demonstrate a cluster of protein conformations that were observed in the presence or absence of various ligands.
Collapse
Affiliation(s)
- Manish B Shah
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, Mail Code 0703, La Jolla, CA 92093-0703, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Jett JE, Lederman D, Wollenberg LA, Li D, Flora DR, Bostick CD, Tracy TS, Gannett PM. Measurement of electron transfer through cytochrome P450 protein on nanopillars and the effect of bound substrates. J Am Chem Soc 2013; 135:3834-40. [PMID: 23427827 PMCID: PMC3876957 DOI: 10.1021/ja309104g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electron transfer in cytochrome P450 enzymes is a fundamental process for activity. It is difficult to measure electron transfer in these enzymes because under the conditions typically used they exist in a variety of states. Using nanotechnology-based techniques, gold conducting nanopillars were constructed in an indexed array. The P450 enzyme CYP2C9 was attached to each of these nanopillars, and conductivity measurements made using conducting probe atomic force microscopy under constant force conditions. The conductivity measurements were made on CYP2C9 alone and with bound substrates, a bound substrate-effector pair, and a bound inhibitor. Fitting of the data with the Poole-Frenkel model indicates a correlation between the barrier height for electron transfer and the ease of CYP2C9-mediated metabolism of the bound substrates, though the spin state of iron is not well correlated. The approach described here should have broad application to the measurement of electron transfer in P450 enzymes and other metalloenzymes.
Collapse
Affiliation(s)
- John E. Jett
- West Virginia University, Basic Pharmaceutical Sciences, Morgantown, WV 26506-9530
| | - David Lederman
- West Virginia University, Department of Physics, Morgantown, WV 26506-6315
| | - Lance A. Wollenberg
- West Virginia University, Basic Pharmaceutical Sciences, Morgantown, WV 26506-9530
| | - Debin Li
- West Virginia University, Department of Physics, Morgantown, WV 26506-6315
| | - Darcy R. Flora
- University of Minnesota, College of Pharmacy, Minneapolis, MN, 55455
| | | | - Timothy S. Tracy
- University of Kentucky, College of Pharmacy, Lexington, KY 40536
| | - Peter M. Gannett
- West Virginia University, Basic Pharmaceutical Sciences, Morgantown, WV 26506-9530
| |
Collapse
|
16
|
Jones JP, Korzekwa KR. Predicting intrinsic clearance for drugs and drug candidates metabolized by aldehyde oxidase. Mol Pharm 2013; 10:1262-8. [PMID: 23363487 DOI: 10.1021/mp300568r] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Metabolism by aldehyde oxidase (AO) has been responsible for a number of drug failures in clinical trials. The main reason is the clearance values for drugs metabolized by AO are underestimated by allometric scaling from preclinical species. Furthermore, in vitro human data also underestimates clearance. We have developed the first in silico models to predict both in vitro and in vivo human intrinsic clearance for 8 drugs with just two chemical descriptors. These models explain a large amount of the variance in the data using two computational estimates of the electronic and steric features of the reaction. The in vivo computational models for human metabolism are better than in vitro preclinical animal testing at predicting human intrinsic clearance. Thus, it appears that AO is amenable to computational prediction of rates, which may be used to guide drug discovery, and predict pharmacokinetics for clinical trials.
Collapse
Affiliation(s)
- Jeffrey P Jones
- Department of Chemistry, Washington State University, Pullman, Washington 99163, USA.
| | | |
Collapse
|
17
|
Mast N, Zheng W, Stout CD, Pikuleva IA. Binding of a cyano- and fluoro-containing drug bicalutamide to cytochrome P450 46A1: unusual features and spectral response. J Biol Chem 2013; 288:4613-24. [PMID: 23288837 DOI: 10.1074/jbc.m112.438754] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytochrome P450 46A1 (CYP46A1) is the cholesterol 24-hydroxylase initiating the major pathways of cholesterol removal from the brain, and bicalutamide (BIC) is a drug of choice for the treatment of progressive androgen-dependent prostate cancer. We evaluated the interactions of BIC with CYP46A1 by x-ray crystallography and by conducting solution and mutagenesis studies. Because BIC is administered to patients as a racemic mixture of the S and R isomers, we studied all three, racemic BIC as well as the S and R isomers. Co-crystallization of CYP46A1 with racemic BIC led to structure determinations at 2.1 Å resolution with the drug complexes exhibiting novel properties. Both BIC isomers bind to the CYP46A1 active site in very similar single orientation and adopt an energetically unfavorable folded conformation. This folded BIC conformation is correlated with drug-induced localized shifts of amino acid side chains in CYP46A1 and unusual interactions in the CYP46A1-BIC complex. One of these interactions involves a water molecule that is coordinated to the P450 heme iron and also hydrogen-bonded to the BIC nitrile. Due to polarization of the water in this environment, the heme elicits previously unreported types of P450 spectral responses. We also observed that access to the P450 active site was affected by differential recognition of S versus R isomers at the CYP46A1 surface arising from BIC conformational polymorphism.
Collapse
Affiliation(s)
- Natalia Mast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
18
|
In vitro metabolism study of the promising anticancer agent the lignan (−)-grandisin. J Pharm Biomed Anal 2013; 72:240-4. [DOI: 10.1016/j.jpba.2012.08.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 08/21/2012] [Accepted: 08/23/2012] [Indexed: 11/30/2022]
|
19
|
Conner KP, Vennam P, Woods CM, Krzyaniak MD, Bowman MK, Atkins WM. 1,2,3-Triazole-heme interactions in cytochrome P450: functionally competent triazole-water-heme complexes. Biochemistry 2012; 51:6441-57. [PMID: 22809252 DOI: 10.1021/bi300744z] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In comparison to imidazole (IMZ) and 1,2,4-triazole (1,2,4-TRZ), the isosteric 1,2,3-triazole (1,2,3-TRZ) is unrepresented among cytochrome P450 (CYP) inhibitors. This is surprising because 1,2,3-TRZs are easily obtained via "click" chemistry. To understand this underrepresentation of 1,2,3-TRZs among CYP inhibitors, thermodynamic and density functional theory computational studies were performed with unsubstituted IMZ, 1,2,4-TRZ, and 1,2,3-TRZ. The results indicate that the lower affinity of 1,2,3-TRZ for the heme iron includes a large unfavorable entropy term likely originating in solvent-1,2,3-TRZ interactions; the difference is not solely due to differences in the enthalpy of heme-ligand interactions. In addition, the 1,2,3-TRZ fragment was incorporated into a well-established CYP3A4 substrate and mechanism-based inactivator, 17-α-ethynylestradiol (17EE), via click chemistry. This derivative, 17-click, yielded optical spectra consistent with low-spin ferric heme iron (type II) in contrast to 17EE, which yields a high-spin complex (type I). Furthermore, the rate of CYP3A4-mediated metabolism of 17-click was comparable to that of 17EE, with a different regioselectivity. Surprisingly, continuous-wave electron paramagnetic resonance (EPR) and HYSCORE EPR spectroscopy indicate that 17-click does not displace water from the sixth axial ligand position of CYP3A4 as expected for a type II ligand. We propose a binding model in which 17-click pendant 1,2,3-TRZ hydrogen bonds with the sixth axial water ligand. The results demonstrate the potential for 1,2,3-TRZ to form metabolically labile water-bridged low-spin heme complexes, consistent with recent evidence that nitrogenous type II ligands of CYPs can be efficiently metabolized. The specific case of [CYP3A4·17-click] highlights the risk of interpreting CYP-ligand complex structure on the basis of optical spectra.
Collapse
Affiliation(s)
- Kip P Conner
- Department of Medicinal Chemistry, Box 357610, University of Washington, Seattle, WA 98195-7610, USA
| | | | | | | | | | | |
Collapse
|
20
|
Wang A, Savas U, Hsu MH, Stout CD, Johnson EF. Crystal structure of human cytochrome P450 2D6 with prinomastat bound. J Biol Chem 2012; 287:10834-43. [PMID: 22308038 DOI: 10.1074/jbc.m111.307918] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Human cytochrome P450 2D6 contributes to the metabolism of >15% of drugs used in clinical practice. This study determined the structure of P450 2D6 complexed with a substrate and potent inhibitor, prinomastat, to 2.85 Å resolution by x-ray crystallography. Prinomastat binding is well defined by electron density maps with its pyridyl nitrogen bound to the heme iron. The structure of ligand-bound P450 2D6 differs significantly from the ligand-free structure reported for the P450 2D6 Met-374 variant (Protein Data Bank code 2F9Q). Superposition of the structures reveals significant differences for β sheet 1, helices A, F, F', G", G, and H as well as the helix B-C loop. The structure of the ligand complex exhibits a closed active site cavity that conforms closely to the shape of prinomastat. The closure of the open cavity seen for the 2F9Q structure reflects a change in the direction and pitch of helix F and introduction of a turn at Gly-218, which is followed by a well defined helix F' that was not observed in the 2F9Q structure. These differences reflect considerable structural flexibility that is likely to contribute to the catalytic versatility of P450 2D6, and this new structure provides an alternative model for in silico studies of substrate interactions with P450 2D6.
Collapse
Affiliation(s)
- An Wang
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
21
|
Foti RS, Rock DA, Han X, Flowers RA, Wienkers LC, Wahlstrom JL. Ligand-based design of a potent and selective inhibitor of cytochrome P450 2C19. J Med Chem 2012; 55:1205-14. [PMID: 22239545 DOI: 10.1021/jm201346g] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A series of omeprazole-based analogues was synthesized and assessed for inhibitory activity against CYP2C19. The data was used to build a CYP2C19 inhibition pharmacophore model for the series. The model was employed to design additional analogues with inhibitory potency against CYP2C19. Upon identifying inhibitors of CYP2C19, ligand-based design shifted to attenuating the rapid clearance observed for many of the inhibitors. While most analogues underwent metabolism on their aliphatic side chain, metabolite identification indicated that for analogues such as compound 30 which contain a heterocycle adjacent to the sulfur moiety, metabolism primarily occurred on the benzimidazole moiety. Compound 30 exhibited improved metabolic stability (Cl(int) = 12.4 mL/min/nmol) and was selective in regard to inhibition of CYP2C19-catalyzed (S)-mephenytoin hydroxylation in human liver microsomes. Finally, representative compounds were docked into a homology model of CYP2C19 in an effort to understand the enzyme-ligand interactions that may lead to favorable inhibition or metabolism properties.
Collapse
Affiliation(s)
- Robert S Foti
- Pharmacokinetics and Drug Metabolism, Amgen Inc., Seattle, Washington 98119, United States
| | | | | | | | | | | |
Collapse
|
22
|
Dahal UP, Joswig-Jones C, Jones JP. Comparative study of the affinity and metabolism of type I and type II binding quinoline carboxamide analogues by cytochrome P450 3A4. J Med Chem 2011; 55:280-90. [PMID: 22087535 DOI: 10.1021/jm201207h] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Compounds that coordinate to the heme-iron of cytochrome P450 (CYP) enzymes are assumed to increase metabolic stability. However, recently we observed that the type II binding quinoline carboxamide (QCA) compounds were metabolically less stable. To test if the higher intrinsic clearance of type II binding compounds relative to type I binding compounds is general for other metabolic transformations, we synthesized a library of QCA compounds that could undergo N-dealkylation, O-dealkylation, benzylic hydroxylation, and aromatic hydroxylation. The results demonstrated that type II binding QCA analogues were metabolically less stable (2- to 12-fold) at subsaturating concentration compared to type I binding counterparts for all the transformations. When the rates of different metabolic transformations between type I and type II binding compounds were compared, they were found to be in the order of N-demethylation > benzylic hydroxylation> O-demethylation > aromatic hydroxylation. Finally, for the QCA analogues with aza-heteroaromatic rings, we did not detect metabolism in aza-aromatic rings (pyridine, pyrazine, pyrimidine), indicating that electronegativity of the nitrogen can change regioselectivity in CYP metabolism.
Collapse
Affiliation(s)
- Upendra P Dahal
- Department of Chemistry, Washington State University, P.O. Box 644630, Pullman, Washington 99164-4630, United States
| | | | | |
Collapse
|
23
|
Peng CC, Shi W, Lutz JD, Kunze KL, Liu JO, Nelson WL, Isoherranen N. Stereospecific metabolism of itraconazole by CYP3A4: dioxolane ring scission of azole antifungals. Drug Metab Dispos 2011; 40:426-35. [PMID: 22106171 DOI: 10.1124/dmd.111.042739] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Itraconazole (ITZ) is a mixture of four cis-stereoisomers that inhibit CYP3A4 potently and coordinate CYP3A4 heme via the triazole nitrogen. However, (2R,4S,2'R)-ITZ and (2R,4S,2'S)-ITZ also undergo stereoselective sequential metabolism by CYP3A4 at a site distant from the triazole ring to 3'-OH-ITZ, keto-ITZ, and N-desalkyl-ITZ. This stereoselective metabolism demonstrates specific interactions of ITZ within the CYP3A4 active site. To further investigate this process, the binding and metabolism of the four trans-ITZ stereoisomers by CYP3A4 were characterized. All four trans-ITZ stereoisomers were tight binding inhibitors of CYP3A4-mediated midazolam hydroxylation (IC(50) 16-26 nM), and each gave a type II spectrum upon binding to CYP3A4. However, instead of formation of 3'-OH-ITZ, they were oxidized at the dioxolane ring, leading to ring scission and formation of two new metabolites of ITZ. These two metabolites were also formed from the four cis-ITZ stereoisomers, although not as efficiently. The catalytic rates of dioxolane ring scission were similar to the dissociation rates of ITZ stereoisomers from CYP3A4, suggesting that the heme iron is reduced while the triazole moiety coordinates to it and no dissociation of ITZ is necessary before catalysis. The triazole containing metabolite [1-(2,4-dichlorophenyl)-2-(1H-1,2,4-triazol-1-yl)ethanone] also inhibited CYP3A4 (IC(50) >15 μM) and showed type II binding with CYP3A4. The dioxolane ring scission appears to be clinically relevant because this metabolite was detected in urine samples from subjects that had been administered the mixture of cis-ITZ isomers. These data suggest that the dioxolane ring scission is a metabolic pathway for drugs that contain this moiety.
Collapse
Affiliation(s)
- Chi-Chi Peng
- Department of Pharmaceutics, University of Washington, P.O. Box 357610, Seattle, Washington 98103, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Dahal UP, Jones JP, Davis JA, Rock DA. Small molecule quantification by liquid chromatography-mass spectrometry for metabolites of drugs and drug candidates. Drug Metab Dispos 2011; 39:2355-60. [PMID: 21937735 DOI: 10.1124/dmd.111.040865] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Identification and quantification of the metabolites of drugs and drug candidates are routinely performed using liquid chromatography-mass spectrometry (LC-MS). The best practice is to generate a standard curve with the metabolite versus the internal standard. However, to avoid the difficulties in metabolite synthesis, standard curves are sometimes prepared using the substrate, assuming that the signal for substrate and the metabolite will be equivalent. We have tested the errors associated with this assumption using a series of very similar compounds that undergo common metabolic reactions using both conventional flow electrospray ionization LC-MS and low-flow captive spray ionization (CSI) LC-MS. The differences in standard curves for four different types of transformations (O-demethylation, N-demethylation, aromatic hydroxylation, and benzylic hydroxylation) are presented. The results demonstrate that the signals of the substrates compared with those of the metabolites are statistically different in 18 of the 20 substrate-metabolite combinations for both methods. The ratio of the slopes of the standard curves varied up to 4-fold but was slightly less for the CSI method.
Collapse
Affiliation(s)
- Upendra P Dahal
- Department of Chemistry, Washington State University, Pullman, WA 99164-4630, USA
| | | | | | | |
Collapse
|