1
|
Pharmacotherapy for metabolic and cellular stress in degenerative retinal diseases. Drug Discov Today 2019; 25:292-304. [PMID: 31809750 DOI: 10.1016/j.drudis.2019.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/08/2019] [Accepted: 11/26/2019] [Indexed: 12/13/2022]
Abstract
Retinal photoreceptors continually endure stresses associated with prolonged light exposure and the metabolic demands of dark adaptation. Although healthy photoreceptors are able to withstand these stresses for several decades, the disease-affected retina functions at a reduced capacity and is at an increased risk for dysfunction. To alleviate cellular and metabolic stressors in degenerative retinal diseases, a new class of drugs that modulate the metabolic activity of the retina have been developed. A clinical candidate in this class (emixustat) has been shown to reduce retinal pathology in various animal models of human retinal disease and is currently under clinical study. Here, we describe the pharmacological properties of emixustat, its mechanisms of action, and potential for use in the treatment of specific retinal diseases.
Collapse
|
2
|
Rühl R, Krezel W, de Lera AR. 9-Cis-13,14-dihydroretinoic acid, a new endogenous mammalian ligand of retinoid X receptor and the active ligand of a potential new vitamin A category: vitamin A5. Nutr Rev 2019; 76:929-941. [PMID: 30358857 DOI: 10.1093/nutrit/nuy057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The identity of the endogenous RXR ligand has not been conclusively determined, even though several compounds of natural origin, including retinoids and fatty acids, have been postulated to fulfill this role. Filling this gap, 9-cis-13,14-dihydroretinoic acid (9CDHRA) was identified as an endogenous RXR ligand in mice. This review examines the physiological relevance of various potential endogenous RXR ligands, especially 9CDHRA. The elusive steps in the metabolic synthesis of 9CDHRA, as well as the nutritional/nutrimetabolic origin of 9CDHRA, are also explored, along with the suitability of the ligand to be the representative member of a novel vitamin A class (vitamin A5).
Collapse
Affiliation(s)
- Ralph Rühl
- Paprika Bioanalytics BT, Debrecen, Hungary
| | - Wojciech Krezel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Inserm, Centre National Recherche Scientifique (CNRS), Université de Strasbourg, Illkirch, France.,Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Angel R de Lera
- Departamento de Química Orgánica, Facultad de Química, Centro De Investigaciones Biomédicasand Instituto de Investigación Biomédica de Vigo, Universidade de Vigo, Campus Lagoas-Marcosende, Vigo, Spain
| |
Collapse
|
3
|
Structural biology of 11- cis-retinaldehyde production in the classical visual cycle. Biochem J 2018; 475:3171-3188. [PMID: 30352831 DOI: 10.1042/bcj20180193] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/20/2018] [Accepted: 09/26/2018] [Indexed: 12/21/2022]
Abstract
The vitamin A derivative 11-cis-retinaldehyde plays a pivotal role in vertebrate vision by serving as the chromophore of rod and cone visual pigments. In the initial step of vision, a photon is absorbed by this chromophore resulting in its isomerization to an all-trans state and consequent activation of the visual pigment and phototransduction cascade. Spent chromophore is released from the pigments through hydrolysis. Subsequent photon detection requires the delivery of regenerated 11-cis-retinaldehyde to the visual pigment. This trans-cis conversion is achieved through a process known as the visual cycle. In this review, we will discuss the enzymes, binding proteins and transporters that enable the visual pigment renewal process with a focus on advances made during the past decade in our understanding of their structural biology.
Collapse
|
4
|
Lucock M, Jones P, Martin C, Yates Z, Veysey M, Furst J, Beckett E. Photobiology of vitamins. Nutr Rev 2018; 76:512-525. [DOI: 10.1093/nutrit/nuy013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Mark Lucock
- School of Environmental & Life Sciences, University of Newcastle, New South Wales, Australia
| | - Patrice Jones
- School of Environmental & Life Sciences, University of Newcastle, New South Wales, Australia
| | - Charlotte Martin
- School of Environmental & Life Sciences, University of Newcastle, New South Wales, Australia
| | - Zoe Yates
- School of Biomedical Sciences & Pharmacy, University of Newcastle, New South Wales, Australia
| | - Martin Veysey
- Hull-York Medical School, University of York, Heslington, York, United Kingdom
| | - John Furst
- School of Mathematical & Physical Sciences, University of Newcastle, Ourimbah, New South Wales, Australia
| | - Emma Beckett
- School of Environmental & Life Sciences, University of Newcastle, New South Wales, Australia
- School of Medicine & Public Health, University of Newcastle, New South Wales, Australia
| |
Collapse
|
5
|
Moran NE, Cichon MJ, Riedl KM, Grainger EM, Schwartz SJ, Novotny JA, Erdman JW, Clinton SK. Compartmental and noncompartmental modeling of ¹³C-lycopene absorption, isomerization, and distribution kinetics in healthy adults. Am J Clin Nutr 2015; 102:1436-49. [PMID: 26561629 PMCID: PMC4658456 DOI: 10.3945/ajcn.114.103143] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 09/28/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Lycopene, which is a red carotenoid in tomatoes, has been hypothesized to mediate disease-preventive effects associated with tomato consumption. Lycopene is consumed primarily as the all-trans geometric isomer in foods, whereas human plasma and tissues show greater proportions of cis isomers. OBJECTIVE With the use of compartmental modeling and stable isotope technology, we determined whether endogenous all-trans-to-cis-lycopene isomerization or isomeric-bioavailability differences underlie the greater proportion of lycopene cis isomers in human tissues than in tomato foods. DESIGN Healthy men (n = 4) and women (n = 4) consumed (13)C-lycopene (10.2 mg; 82% all-trans and 18% cis), and plasma was collected over 28 d. Unlabeled and (13)C-labeled total lycopene and lycopene-isomer plasma concentrations, which were measured with the use of high-performance liquid chromatography-mass spectrometry, were fit to a 7-compartment model. RESULTS Subjects absorbed a mean ± SEM of 23% ± 6% of the lycopene. The proportion of plasma cis-(13)C-lycopene isomers increased over time, and all-trans had a shorter half-life than that of cis isomers (5.3 ± 0.3 and 8.8 ± 0.6 d, respectively; P < 0.001) and an earlier time to reach maximal plasma concentration than that of cis isomers (28 ± 7 and 48 ± 9 h, respectively). A compartmental model that allowed for interindividual differences in cis- and all-trans-lycopene bioavailability and endogenous trans-to-cis-lycopene isomerization was predictive of plasma (13)C and unlabeled cis- and all-trans-lycopene concentrations. Although the bioavailability of cis (24.5% ± 6%) and all-trans (23.2% ± 8%) isomers did not differ, endogenous isomerization (0.97 ± 0.25 μmol/d in the fast-turnover tissue lycopene pool) drove tissue and plasma isomeric profiles. CONCLUSION (13)C-Lycopene combined with physiologic compartmental modeling provides a strategy for following complex in vivo metabolic processes in humans and reveals that postabsorptive trans-to-cis-lycopene isomerization, and not the differential bioavailability of isomers, drives tissue and plasma enrichment of cis-lycopene. This trial was registered at clinicaltrials.gov as NCT01692340.
Collapse
Affiliation(s)
- Nancy E Moran
- The Ohio State University Comprehensive Cancer Center
| | | | - Kenneth M Riedl
- The Ohio State University Comprehensive Cancer Center, Departments of Food Science and Technology
| | | | - Steven J Schwartz
- The Ohio State University Comprehensive Cancer Center, Departments of Food Science and Technology
| | | | - John W Erdman
- Department of Food Science and Human Nutrition and Division of Nutritional Sciences, The University of Illinois, Urbana, IL
| | - Steven K Clinton
- The Ohio State University Comprehensive Cancer Center, Internal Medicine-Division of Medical Oncology, and The James Cancer Hospital, The Ohio State University, Columbus, OH;
| |
Collapse
|
6
|
Structural insights on cholesterol endosynthesis: Binding of squalene and 2,3-oxidosqualene to supernatant protein factor. J Struct Biol 2015; 190:261-70. [DOI: 10.1016/j.jsb.2015.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/08/2015] [Accepted: 05/11/2015] [Indexed: 11/24/2022]
|
7
|
Brindle E, Stevens D, Crudder C, Levin CE, Garrett D, Lyman C, Boyle DS. A multiplex immunoassay method for simultaneous quantification of iron, vitamin A and inflammation status markers. PLoS One 2014; 9:e115164. [PMID: 25525806 PMCID: PMC4272301 DOI: 10.1371/journal.pone.0115164] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 11/19/2014] [Indexed: 12/14/2022] Open
Abstract
Deficiencies of vitamin A and iron affect a significant portion of the world's population, and efforts to characterize patterns of these deficiencies are hampered by a lack of measurement tools appropriate for large-scale population-based surveys. Vitamin A and iron are not easily measured directly, so reliable proxy markers for deficiency status have been identified and adopted. Measurement of inflammatory markers is necessary to interpret vitamin A and iron status markers, because circulating levels are altered by inflammation. We developed a multiplex immunoassay method for simultaneous measurement of five markers relevant to assessing inflammation, vitamin A and iron status: α-1-acid glycoprotein, C-reactive protein, retinol binding protein 4, ferritin and soluble transferrin receptor. Serum and plasma specimens were used to optimize the assay protocol. To evaluate assay performance, plasma from 72 volunteers was assayed using the multiplex technique and compared to conventional immunoassay methods for each of the five markers. Results of the new and conventional assay methods were highly correlated (Pearson Correlations of 0.606 to 0.991, p<.0001). Inter-assay imprecision for the multiplex panel varied from 1% to 8%, and all samples fell within the limits of quantification for all assays at a single dilution. Absolute values given by the multiplex and conventional assays differed, indicating a need for further work to devise a new standard curve. This multiplexed micronutrient immunoassay technique has excellent potential as a cost effective tool for use in large-scale deficiency assessment efforts.
Collapse
Affiliation(s)
- Eleanor Brindle
- Center for Studies in Demography and Ecology, University of Washington, 218D Raitt Hall, Box 353412, Seattle, Washington, United States of America
| | - Daniel Stevens
- PATH, 2201 Westlake Avenue, Suite 200, Seattle, Washington, United States of America
| | - Christopher Crudder
- PATH, 2201 Westlake Avenue, Suite 200, Seattle, Washington, United States of America
| | - Carol E. Levin
- Disease Control Priorities Network, University of Washington, 325 Ninth Avenue, Box 359931, Seattle, Washington, United States of America
| | - Dean Garrett
- PATH, 2201 Westlake Avenue, Suite 200, Seattle, Washington, United States of America
- ICF International, 530 Gaither Road, Suite 500, Rockville, Maryland 20850, United States of America
| | - Chris Lyman
- Quansys Biosciences, 365 N. 600 W, Logan, Utah 84321, United States of America
| | - David S. Boyle
- PATH, 2201 Westlake Avenue, Suite 200, Seattle, Washington, United States of America
| |
Collapse
|
8
|
Lhor M, Salesse C. Retinol dehydrogenases: membrane-bound enzymes for the visual function. Biochem Cell Biol 2014; 92:510-23. [PMID: 25357265 DOI: 10.1139/bcb-2014-0082] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Retinoid metabolism is important for many physiological functions, such as differenciation, growth, and vision. In the visual context, after the absorption of light in rod photoreceptors by the visual pigment rhodopsin, 11-cis retinal is isomerized to all-trans retinal. This retinoid subsequently undergoes a series of modifications during the visual cycle through a cascade of reactions occurring in photoreceptors and in the retinal pigment epithelium. Retinol dehydrogenases (RDHs) are enzymes responsible for crucial steps of this visual cycle. They belong to a large family of proteins designated as short-chain dehydrogenases/reductases. The structure of these RDHs has been predicted using modern bioinformatics tools, which allowed to propose models with similar structures including a common Rossman fold. These enzymes undergo oxidoreduction reactions, whose direction is dictated by the preference and concentration of their individual cofactor (NAD(H)/NADP(H)). This review presents the current state of knowledge on functional and structural features of RDHs involved in the visual cycle as well as knockout models. RDHs are described as integral or peripheral enzymes. A topology model of the membrane binding of these RDHs via their N- and (or) C-terminal domain has been proposed on the basis of their individual properties. Membrane binding is a crucial issue for these enzymes because of the high hydrophobicity of their retinoid substrates.
Collapse
Affiliation(s)
- Mustapha Lhor
- a CUO-Recherche, Centre de recherche du CHU de Québec, Hôpital du Saint Sacrement, Département d'ophtalmologie, Faculté de médicine, Université Laval, Québec, QC G1S 4L8, Canada
| | | |
Collapse
|
9
|
Bolze CS, Helbling RE, Owen RL, Pearson AR, Pompidor G, Dworkowski F, Fuchs MR, Furrer J, Golczak M, Palczewski K, Cascella M, Stocker A. Human cellular retinaldehyde-binding protein has secondary thermal 9-cis-retinal isomerase activity. J Am Chem Soc 2014; 136:137-46. [PMID: 24328211 PMCID: PMC3936205 DOI: 10.1021/ja411366w] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cellular retinaldehyde-binding protein (CRALBP) chaperones 11-cis-retinal to convert opsin receptor molecules into photosensitive retinoid pigments of the eye. We report a thermal secondary isomerase activity of CRALBP when bound to 9-cis-retinal. UV/vis and (1)H NMR spectroscopy were used to characterize the product as 9,13-dicis-retinal. The X-ray structure of the CRALBP mutant R234W:9-cis-retinal complex at 1.9 Å resolution revealed a niche in the binding pocket for 9-cis-aldehyde different from that reported for 11-cis-retinal. Combined computational, kinetic, and structural data lead us to propose an isomerization mechanism catalyzed by a network of buried waters. Our findings highlight a specific role of water molecules in both CRALBP-assisted specificity toward 9-cis-retinal and its thermal isomerase activity yielding 9,13-dicis-retinal. Kinetic data from two point mutants of CRALBP support an essential role of Glu202 as the initial proton donor in this isomerization reaction.
Collapse
Affiliation(s)
- Christin S. Bolze
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Rachel E. Helbling
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Robin L. Owen
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, United Kingdom
| | - Arwen R. Pearson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Guillaume Pompidor
- Swiss Light Source, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Florian Dworkowski
- Swiss Light Source, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Martin R. Fuchs
- Swiss Light Source, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Julien Furrer
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Marcin Golczak
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 2109 Adelbert Rd, Cleveland, OH 44106-4965, USA
| | - Krzysztof Palczewski
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 2109 Adelbert Rd, Cleveland, OH 44106-4965, USA
| | - Michele Cascella
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Achim Stocker
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| |
Collapse
|
10
|
Affiliation(s)
- Johannes von Lintig
- Case Western Reserve University, School of Medicine, Department of Pharmacology, Wood Bldg. 333, USA.
| | | |
Collapse
|