1
|
Badr G, El-Hossary FM, Lasheen FEDM, Negm NZ, Khalaf M, Salah M, Sayed LH, Abdel-Maksoud MA, Elminshawy A. Cold atmospheric plasma induces the curing mechanism of diabetic wounds by regulating the oxidative stress mediators iNOS and NO, the pyroptotic mediators NLRP-3, Caspase-1 and IL-1β and the angiogenesis mediators VEGF and Ang-1. Biomed Pharmacother 2023; 169:115934. [PMID: 38000357 DOI: 10.1016/j.biopha.2023.115934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/12/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023] Open
Abstract
It has been demonstrated that cold atmospheric plasma (CAP) accelerates the wound healing process, however the underlying molecular pathways behind this effect remain unclear. Thus, the goal of the proposed investigation is to elucidate the therapeutic advantages of CAP on angiogenesis, pyroptotic, oxidative stress, and inflammatory mediators during the wound-healing mechanisms associated with diabetes. Intraperitoneal administration of streptozotocin (STZ, 60 mg/Kg) of body weight was used to induce type-1 diabetes. Seventy-five male mice were randomized into 3 groups: the control non-diabetic group, the diabetic group that was not treated, and the diabetic group that was treated with CAP. The key mediators of pyroptosis and its impact on the slow healing process of diabetic wounds were examined using histological investigations employing H&E staining, immunohistochemistry, ELISA, and Western blotting analysis. Angiogenesis proteins (VEGF, Ang-1, and HO-1) showed a significant decline in expression concentrations in the diabetic wounds, indicating that diabetic animals' wounds were less likely to heal. Furthermore, compared to the controls, the major mediators of pyroptosis (NLRP-3, IL-1β, and caspase-1), oxidative stress (iNOS and NO), and inflammation (TNF-α and IL-6) have higher expression levels in the diabetic wounds. These factors substantially impede the healing mechanism of diabetic wounds. Interestingly, our results disclosed the therapeutic impacts of CAP treatment in the healing process of diabetic wounds via significantly regulating the expression levels of angiogenesis, pyroptosis, oxidative stress and pro-inflammatory mediators. Our findings demonstrated the curative likelihood of CAP and the underlying mechanisms for enhancing the healing process of diabetic wounds.
Collapse
Affiliation(s)
- Gamal Badr
- Zoology Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt.
| | - Fayez M El-Hossary
- Physics Department, Faculty of Science, Sohag University, 82524 Sohag, Egypt
| | | | - Niemat Z Negm
- Physics Department, Faculty of Science, Sohag University, 82524 Sohag, Egypt
| | - Mohamed Khalaf
- Physics Department, Faculty of Science, Sohag University, 82524 Sohag, Egypt
| | - Mohamed Salah
- Botany and Microbiology Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt; Institut Cochin, Université de Paris, INSERM, CNRS, 75014 Paris, France
| | - Leila H Sayed
- Zoology Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt
| | - Mostafa A Abdel-Maksoud
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Elminshawy
- Deptartment of Cardiothoracic Surgery, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
2
|
Khan JM, Malik A, Sharma P, Fatima S. Anionic surfactant causes dual conformational changes in insulin. Int J Biol Macromol 2023; 247:125790. [PMID: 37451378 DOI: 10.1016/j.ijbiomac.2023.125790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/30/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
Amyloid fibrillation is a process by which proteins aggregate and form insoluble fibrils that are implicated in several neurodegenerative diseases. In n this study, we aimed to investigate the impact of the negatively charged detergent sodium dodecyl sulfate (SDS) on insulin amyloid fibrillation at pH 7.4 and 2.0, as SDS has been linked to the acceleration of amyloid fibrillation in vitro, but the underlying molecular mechanism is not fully understood. Our findings show that insulin forms amyloid-like aggregates in the presence of SDS at concentrations ranging from 0.05 to 1.8 mM at pH 2.0, while no aggregates were observed at SDS concentrations greater than 1.8 mM, and insulin remained soluble. However, at pH 7.4, insulin remained soluble regardless of the concentration of SDS. Interestingly, the aggregated insulin had a cross-β sheet secondary structure, and when incubated with higher SDS concentrations, it gained more alpha-helix. The electrostatics and hydrophobic interaction of SDS and insulin may contribute to amyloid induction. Moreover, the SDS-induced aggregation was not affected by the presence of salts. Furthermore, as the concentration of SDS increased, the preformed insulin amyloid induced by SDS began to disintegrate. Overall, our study sheds light on the mechanism of surfactant-induced amyloid fibrillation in insulin protein.
Collapse
Affiliation(s)
- Javed Masood Khan
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, 2460, Riyadh 11451, Saudi Arabia
| | - Ajamaluddin Malik
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Prerna Sharma
- Geisinger Commonwealth School of Medicine, Scranton, PA 18509, USA
| | - Sadaf Fatima
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
3
|
An insight into the interaction between Indisulam and human serum albumin: Spectroscopic method, computer simulation and in vitro cytotoxicity assay. Bioorg Chem 2022; 127:106017. [PMID: 35841666 DOI: 10.1016/j.bioorg.2022.106017] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/24/2022] [Accepted: 07/07/2022] [Indexed: 11/24/2022]
Abstract
Indisulam (IDM) is a sulfanilamide anticancer agent and has been identified as a molecular glue recently. It shows potential for novel therapies development and brings more hope for curing human diseases. The affinity between molecular glues and plasma protein makes it significant to understand the characteristics of such substances. Therefore, the interaction between IDM and human serum albumin (HSA) was explored through solvent experiments, computer simulation experiments, enzyme kinetics experiments, and cell viability assay. The results revealed that IDM and HSA spontaneously formed stable binary complex with the binding constant of the order 105 M-1. IDM inserted in the site I of HSA, resulting the change in HSA secondary structure. And π electrons in IDM's benzene rings, as well as van der Waals forces and the H-bond, all helped to stabilize the HSA-IDM complex. The results of molecular dynamic simulation (MD) corresponded with the results from solvent experiment well. For instance, there were approximately 1-5 H-bonds between IDM and HSA. Lys199 and Arg218 were crucial energy contributors in the binding process. The esterase-like activity experiment confirmed that IDM inhibited the catalytic activity of HSA. In addition, cell experiment revealed that serum albumin can significantly reduce the cytotoxicity of IDM towards human embryonic kidney 293T (HEK293T) cells.
Collapse
|
4
|
Khan MA, Kumar P, Akif M, Miyoshi H. Phosphorylation of eukaryotic initiation factor eIFiso4E enhances the binding rates to VPg of turnip mosaic virus. PLoS One 2021; 16:e0259688. [PMID: 34735537 PMCID: PMC8568277 DOI: 10.1371/journal.pone.0259688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/29/2021] [Indexed: 11/28/2022] Open
Abstract
Binding of phosphorylated eIFiso4E with viral genome-linked protein (VPg) of turnip mosaic virus was examined by stopped-flow, fluorescence, circular dichroism (CD) spectroscopy, and molecular docking analysis. Phosphorylation of eIFiso4E increased (4-fold) the binding rates as compared to unphosphorylated eIFiso4E with VPg. Stopped-flow kinetic studies of phosphorylated eIFiso4E with VPg showed a concentration-independent conformational change. The dissociation rate was about 3-fold slower for eIFiso4E∙VPg complex upon phosphorylation. Phosphorylation enhanced the association rates and lowered the dissociation rates for the eIFiso4E∙VPg binding, with having higher preferential binding to eIFiso4Ep. Binding rates for the interaction of eIFiso4Ep with VPg increased (6-fold) with an increase in temperature, 278 K to 298 K. The activation energies for binding of eIFiso4Ep and eIFiso4E with VPg were 37.2 ± 2.8 and 52.6 ± 3.6 kJ/mol, respectively. Phosphorylation decreased the activation energy for the binding of eIFiso4E to VPg. The reduced energy barrier suggests more stable platform for eIFiso4Ep∙VPg initiation complex formation, which was further supported by molecular docking analysis. Moreover, far-UV CD studies revealed that VPg formed complex with eIFiso4Ep with substantial change in the secondary structure. These results suggested that phosphorylation, not only reduced the energy barrier and dissociation rate but also enhanced binding rate, and an overall conformational change, which provides a more stable platform for efficient viral translation.
Collapse
Affiliation(s)
- Mateen A. Khan
- Department of Life Science, College of Science and General Studies, Alfaisal University, Riyadh, Saudi Arabia
- * E-mail:
| | - Pankaj Kumar
- Department of Biochemistry, School of Life Science, University of Hyderabad, Hyderabad, India
| | - Mohd. Akif
- Department of Biochemistry, School of Life Science, University of Hyderabad, Hyderabad, India
| | - Hiroshi Miyoshi
- Department of Microbiology, St. Marianna University School of Medicine, Kawasaki, Japan
| |
Collapse
|
5
|
Mittal C, Kumari A, De I, Singh M, Harsolia R, Yadav JK. Heat treatment of soluble proteins isolated from human cataract lens leads to the formation of non-fibrillar amyloid-like protein aggregates. Int J Biol Macromol 2021; 188:512-522. [PMID: 34333005 DOI: 10.1016/j.ijbiomac.2021.07.158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 11/29/2022]
Abstract
The loss of crystallins solubility with aging and the formation of amyloid-like aggregates is considered the hallmark characteristic of cataract pathology. The present study was carried out to assess the effect of temperature on the soluble lens protein and the formation of protein aggregates with typical amyloid characteristics. The soluble fraction of lens proteins was subjected for heat treatment in the range of 40-60 °C, and the nature of protein aggregates was assessed by using Congo red (CR), thioflavin T (ThT), and 8-anilinonaphthalene-1-sulfonic acid (ANS) binding assays, circular dichroism (CD), Fourier-transform infrared (FT-IR) spectroscopy, and transmission electron microscopy (TEM). The heat-treated protein samples displayed a substantial bathochromic shift (≈15 nm) in the CR's absorption maximum (λmax) and increased ThT and ANS binding. The heat treatment of lens soluble proteins results in the formation of nontoxic, β-sheet rich, non-fibrillar, protein aggregates similar to the structures evident in the insoluble fraction of proteins isolated from the cataractous lens. The data obtained from the present study suggest that the exposure of soluble lens proteins to elevated temperature leads to the formation of non-fibrillar aggregates, establishing the role of amyloid in the heat-induced augmentation of cataracts pathology.
Collapse
Affiliation(s)
- Chandrika Mittal
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandersindri, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Ashwani Kumari
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandersindri, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Indranil De
- Institute of Nano Science and Technology, Mohali 160062, Punjab, India
| | - Manish Singh
- Institute of Nano Science and Technology, Mohali 160062, Punjab, India
| | - Ramswaroop Harsolia
- Department of Ophthalmology, Jawaharlal Nehru Medical College and Hospital, Ajmer, Rajasthan, India
| | - Jay Kant Yadav
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandersindri, Kishangarh, Ajmer 305817, Rajasthan, India.
| |
Collapse
|
6
|
A biophysical strategy to examine the impact of newly synthesized polymerizable ammonium-based ionic liquids on the structural stability and proteolytic activity of stem bromelain. Int J Biol Macromol 2020; 151:957-966. [DOI: 10.1016/j.ijbiomac.2019.10.208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/14/2019] [Accepted: 10/24/2019] [Indexed: 11/23/2022]
|
7
|
Zakariya SM, Furkan M, Zaman M, Chandel TI, Ali SM, Uversky VN, Khan RH. An in-vitro elucidation of inhibitory potential of carminic acid: Possible therapeutic approach for neurodegenerative diseases. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Khatun S, Sindhu A, Venkatesu P. Can stem bromelain, a pineapple waste product, be used as a drug alternative? A mechanistic insight into protein–protein interactions. NEW J CHEM 2020. [DOI: 10.1039/d0nj02511a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Binding of stem bromelain to bovine serum albumin induced conformational changes, as shown by various biophysical techniques.
Collapse
Affiliation(s)
- Samima Khatun
- Department of Chemistry
- University of Delhi
- Delhi
- India
- Department of Chemistry
| | | | | |
Collapse
|
9
|
Haghighi-Poodeh S, Navidpour L, Yaghmaei P, Ebrahim-Habibi A. Monocyclic phenolic compounds stabilize human insulin and suppress its amorphous aggregation: In vitro and in vivo study. Biochem Biophys Res Commun 2019; 518:362-367. [PMID: 31431258 DOI: 10.1016/j.bbrc.2019.08.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 08/11/2019] [Indexed: 01/08/2023]
Abstract
Insulin is a small protein with 51 residues that mediates glucose uptake, and an interesting model for studying protein misfolding and aggregation. The aggregated forms of insulin undergo loss of activity and can provoke unwanted immune responses. Use of small molecules is considered to be an affordable method to counteract this aggregation process and stabilize insulin. In this study, aggregated forms of human recombinant insulin have been produced following exposure to high temperature. Aggregation process was followed over time by checking absorbance with spectrophotometry in presence and absence of various concentrations of small phenolic compounds including eugenol and epinephrine. Effects of these compounds on the structure and function of incubated insulin were evaluated by spectrofluorimetry, melting temperature (Tm) measurement and insulin tolerance test on Wistar rats. Formation of heat-induced insulin aggregation can be effectively inhibited by 1 mM eugenol and epinephrine and both compounds were found to preserve insulin activity to a considerable extent. In conclusion, simple aromatic compounds could be tailored to act as potent anti-aggregation compounds for insulin.
Collapse
Affiliation(s)
- Sepideh Haghighi-Poodeh
- Department of Biology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Latifeh Navidpour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 14174, Iran.
| | - Parichehreh Yaghmaei
- Department of Biology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Azadeh Ebrahim-Habibi
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Siddiqui T, Zia MK, Ahsan H, Khan FH. Quercetin-induced inactivation and conformational alterations of alpha-2-macroglobulin: multi-spectroscopic and calorimetric study. J Biomol Struct Dyn 2019; 38:4107-4118. [PMID: 31543004 DOI: 10.1080/07391102.2019.1671232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Quercetin is a widely used bioflavonoid found in onions, grapes, berries and citrus fruits. Under certain conditions, quercetin acts as a pro-oxidant thereby generating reactive oxygen species and promoting the oxidation of molecules. Our study investigates the effect of quercetin on the structure and function of alpha-2-macroglobulin (α2M) by employing various biophysical techniques and trypsin inhibitory assay. α2M is the major antiproteinase present in the plasma of vertebrates. Results of activity assay indicated that α2M loses its 56% of inhibitory activity on treatment with quercetin in the presence of light. UV spectroscopy reveals hyper chromaticity in absorption spectra of protein on interaction with quercetin suggesting structural change. The intrinsic fluorescence studies showed quenching of α2M spectra in the presence of quercetin, and the mode of quenching was found to be static in nature. Synchronous fluorescence indicated the alteration in the microenvironment of tryptophan residues. CD and FTIR spectroscopy confirms concentration-dependent alterations in secondary structure of α2M instigated by quercetin. The magnitude of binding constant, enthalpy change, entropy change and free energy change during the interaction process was determined by isothermal titration calorimetry. Hydrogen bonding and hydrophobic interaction were the main intermolecular forces involved during the process. This study identifies and signifies the damage induced by quercetin to α2M due to its pro-oxidant action. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Tooba Siddiqui
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Mohammad Khalid Zia
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Haseeb Ahsan
- Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, India
| | - Fahim Halim Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
11
|
Inactivation of Alpha-2-Macroglobulin by Photo-Illuminated Gallic Acid. J Fluoresc 2019; 29:969-979. [DOI: 10.1007/s10895-019-02410-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/02/2019] [Indexed: 12/29/2022]
|
12
|
Zia MK, Siddiqui T, Ali SS, Ahsan H, Khan FH. Deciphering the binding of dutasteride with human alpha-2-macroglobulin: Molecular docking and calorimetric approach. Int J Biol Macromol 2019; 133:1081-1089. [DOI: 10.1016/j.ijbiomac.2019.04.180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 10/26/2022]
|
13
|
Does macromolecular crowding compatible with enzyme stem bromelain structure and stability? Int J Biol Macromol 2019; 131:527-535. [DOI: 10.1016/j.ijbiomac.2019.03.090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/06/2019] [Accepted: 03/14/2019] [Indexed: 01/21/2023]
|
14
|
Protein misfolding, aggregation and mechanism of amyloid cytotoxicity: An overview and therapeutic strategies to inhibit aggregation. Int J Biol Macromol 2019; 134:1022-1037. [PMID: 31128177 DOI: 10.1016/j.ijbiomac.2019.05.109] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/18/2019] [Accepted: 05/18/2019] [Indexed: 12/18/2022]
Abstract
Protein and peptides are converted from their soluble forms into highly ordered fibrillar aggregates under various conditions inside the cell. Such transitions confer diverse neurodegenerative diseases including Alzheimer's disease, Huntington's disease Prion's disease, Parkinson's disease, polyQ and share abnormal folding of potentially cytotoxic protein species linked with degeneration and death of precise neuronal populations. Presently, major advances are made to understand and get detailed insight into the structural basis and mechanism of amyloid formation, cytotoxicity and therapeutic approaches to combat them. Here we highlight classifies and summarizes the detailed overview of protein misfolding and aggregation at their molecular level including the factors that promote protein aggregation under in vivo and in vitro conditions. In addition, we describe the recent technologies that aid the characterization of amyloid aggregates along with several models that might be responsible for amyloid induced cytotoxicity to cells. Overview on the inhibition of amyloidosis by targeting different small molecules (both natural and synthetic origin) have been also discussed, that provides important approaches to identify novel targets and develop specific therapeutic strategies to combat protein aggregation related neurodegenerative diseases.
Collapse
|
15
|
Different conformational states of hen egg white lysozyme formed by exposure to the surfactant of sodium dodecyl benzenesulfonate. Int J Biol Macromol 2019; 128:54-60. [DOI: 10.1016/j.ijbiomac.2019.01.097] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/03/2019] [Accepted: 01/19/2019] [Indexed: 12/17/2022]
|
16
|
Kumar PK, Bisht M, Venkatesu P, Bahadur I, Ebenso EE. Exploring the Effect of Choline-Based Ionic Liquids on the Stability and Activity of Stem Bromelain. J Phys Chem B 2018; 122:10435-10444. [DOI: 10.1021/acs.jpcb.8b08173] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Meena Bisht
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | | | | | | |
Collapse
|
17
|
Ismael MA, Khan JM, Malik A, Alsenaidy MA, Hidayathulla S, Khan RH, Sen P, Irfan M, Alsenaidy AM. Unraveling the molecular mechanism of the effects of sodium dodecyl sulfate, salts, and sugars on amyloid fibril formation in camel IgG. Colloids Surf B Biointerfaces 2018; 170:430-437. [DOI: 10.1016/j.colsurfb.2018.06.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/14/2018] [Accepted: 06/17/2018] [Indexed: 10/28/2022]
|
18
|
Interaction of catecholamine precursor l-Dopa with lysozyme: A biophysical insight. Int J Biol Macromol 2018; 109:1132-1139. [DOI: 10.1016/j.ijbiomac.2017.11.107] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 12/13/2022]
|
19
|
Al-Shabib NA, Khan JM, Alsenaidy MA, Alsenaidy AM, Khan MS, Husain FM, Khan MR, Naseem M, Sen P, Alam P, Khan RH. Unveiling the stimulatory effects of tartrazine on human and bovine serum albumin fibrillogenesis: Spectroscopic and microscopic study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 191:116-124. [PMID: 29028503 DOI: 10.1016/j.saa.2017.09.062] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/20/2017] [Accepted: 09/20/2017] [Indexed: 06/07/2023]
Abstract
Amyloid fibrils are playing key role in the pathogenesis of various neurodegenerative diseases. Generally anionic molecules are known to induce amyloid fibril in several proteins. In this work, we have studied the effect of anionic food additive dye i.e., tartrazine (TZ) on the amyloid fibril formation of human serum albumins (HSA) and bovine serum albumin (BSA) at pHs7.4 and 3.5. We have employed various biophysical methods like, turbidity measurements, Rayleigh Light Scattering (RLS), Dynamic Light Scattering (DLS), intrinsic fluorescence, Congo red assay, far-UV CD, transmission electron microscopy (TEM) and atomic force microscopy (AFM) to decipher the mechanism of TZ-induce amyloid fibril formation in both the serum albumins at pHs7.4 and 3.5. The obtained results suggest that both the albumins forms amyloid-like aggregates in the presence of 1.0 to 15.0mM of TZ at pH3.5, but no amyloid fibril were seen at pH7.4. The possible cause of TZ-induced amyloid fibril formation is electrostatic and hydrophobic interaction because sulfate group of TZ may have interacted electrostatically with positively charged amino acids of the albumins at pH3.5 and increased protein-protein and protein-TZ interactions leading to amyloid fibril formation. The TEM, RLS and DLS results are suggesting that BSA forms bigger size amyloids compared to HSA, may be due to high surface hydrophobicity of BSA.
Collapse
Affiliation(s)
- Nasser Abdulatif Al-Shabib
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, 2460, Riyadh 11451, Saudi Arabia.
| | - Javed Masood Khan
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, 2460, Riyadh 11451, Saudi Arabia
| | - Mohammad A Alsenaidy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdulrahman M Alsenaidy
- Protein Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohd Shahnawaz Khan
- Protein Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, 2460, Riyadh 11451, Saudi Arabia
| | - Mohammad Rashid Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Naseem
- Electrical Engineering Department, Integral University Lucknow, 226026, India
| | - Priyankar Sen
- Centre for Bioseparation Technology, VIT University, Vellore 632014, India
| | - Parvez Alam
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
20
|
Zaman M, Zakariya SM, Nusrat S, Chandel TI, Meeran SM, Ajmal MR, Alam P, Wahiduzzaman, Khan RH. Cysteine as a potential anti-amyloidogenic agent with protective ability against amyloid induced cytotoxicity. Int J Biol Macromol 2017; 105:556-565. [DOI: 10.1016/j.ijbiomac.2017.07.083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/12/2017] [Accepted: 07/12/2017] [Indexed: 12/27/2022]
|
21
|
Khan JM, Khan MS, Qadeer A, Alsenaidy MA, Ahmed A, Al-Shabib NA, Khan RH. Cationic gemini surfactant (16-4-16) interact electrostatically with anionic plant lectin and facilitates amyloid fibril formation at neutral pH. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.03.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Khan JM, Khan MS, Alsenaidy MA, Ahmed A, Sen P, Oves M, Al-Shabib NA, Khan RH. Sodium louroyl sarcosinate (sarkosyl) modulate amyloid fibril formation in hen egg white lysozyme (HEWL) at alkaline pH: a molecular insight study. J Biomol Struct Dyn 2017; 36:1550-1565. [DOI: 10.1080/07391102.2017.1329097] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Javed Masood Khan
- Faculty of Food and Agricultural Sciences, Department of Food Science and Nutrition, King Saud University, 2460 Riyadh 11451, Saudi Arabia
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Anwar Ahmed
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Priyankar Sen
- Centre for Bioseparation Technology, VIT University, Vellore 632014, India
| | - Mohammad Oves
- Center of Excellence in Enviromental Studies, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nasser Abdulatif Al-Shabib
- Faculty of Food and Agricultural Sciences, Department of Food Science and Nutrition, King Saud University, 2460 Riyadh 11451, Saudi Arabia
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
23
|
Zaman M, Nusrat S, Zakariya SM, Khan MV, Ajmal MR, Khan RH. Elucidating the interaction of clofazimine with bovine liver catalase; a comprehensive spectroscopic and molecular docking approach. J Mol Recognit 2017; 30. [DOI: 10.1002/jmr.2619] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/31/2016] [Accepted: 02/02/2017] [Indexed: 01/25/2023]
Affiliation(s)
- Masihuz Zaman
- Interdisciplinary Biotechnology Unit; Aligarh Muslim University; Aligarh 202002 India
| | - Saima Nusrat
- Interdisciplinary Biotechnology Unit; Aligarh Muslim University; Aligarh 202002 India
| | | | - Mohsin Vahid Khan
- Interdisciplinary Biotechnology Unit; Aligarh Muslim University; Aligarh 202002 India
| | - Mohammad Rehan Ajmal
- Interdisciplinary Biotechnology Unit; Aligarh Muslim University; Aligarh 202002 India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit; Aligarh Muslim University; Aligarh 202002 India
| |
Collapse
|
24
|
Abdelhameed AS, Nusrat S, Paliwal S, Zaman M, Zaidi N, Khan RH. A multitechnique approach to probe the interaction of a therapeutic tyrosine kinase inhibitor nintedanib and bovine serum albumin. Prep Biochem Biotechnol 2017; 47:655-663. [DOI: 10.1080/10826068.2016.1275014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Ali Saber Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saima Nusrat
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Sanjhi Paliwal
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Masihuz Zaman
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Nida Zaidi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
25
|
Abdelhameed AS, Nusrat S, Ajmal MR, Zakariya SM, Zaman M, Khan RH. A biophysical and computational study unraveling the molecular interaction mechanism of a new Janus kinase inhibitor Tofacitinib with bovine serum albumin. J Mol Recognit 2016; 30. [DOI: 10.1002/jmr.2601] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/12/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Ali Saber Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy; King Saud University; Riyadh Saudi Arabia
| | - Saima Nusrat
- Interdisciplinary Biotechnology Unit; Aligarh Muslim University; Aligarh India
| | | | | | - Masihuz Zaman
- Interdisciplinary Biotechnology Unit; Aligarh Muslim University; Aligarh India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit; Aligarh Muslim University; Aligarh India
| |
Collapse
|
26
|
Ariga GG, Naik PN, Nandibewoor ST, Chimatadar SA. Quenching of fluorescence by meclizine, a probe study for structural and conformational changes in human serum albumin. J Biomol Struct Dyn 2016; 35:3161-3175. [DOI: 10.1080/07391102.2016.1245159] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Girish G. Ariga
- Department of Studies in Chemistry, Karnatak University, Dharwad 580003, India
| | - Praveen N. Naik
- Department of Studies in Chemistry, Karnatak University, Dharwad 580003, India
| | | | | |
Collapse
|
27
|
Zaman M, Ehtram A, Chaturvedi SK, Nusrat S, Khan RH. Amyloidogenic behavior of different intermediate state of stem bromelain: A biophysical insight. Int J Biol Macromol 2016; 91:477-85. [DOI: 10.1016/j.ijbiomac.2016.05.107] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/20/2016] [Accepted: 05/30/2016] [Indexed: 11/24/2022]
|
28
|
Zaman M, Zakariya SM, Nusrat S, Khan MV, Qadeer A, Ajmal MR, Khan RH. Surfactant-mediated amyloidogenesis behavior of stem bromelain; a biophysical insight. J Biomol Struct Dyn 2016; 35:1407-1419. [DOI: 10.1080/07391102.2016.1185040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Masihuz Zaman
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, UP 202002, India
| | - Syed Mohammad Zakariya
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, UP 202002, India
| | - Saima Nusrat
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, UP 202002, India
| | - Mohsin Vahid Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, UP 202002, India
| | - Atiyatul Qadeer
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, UP 202002, India
| | - Mohammad Rehan Ajmal
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, UP 202002, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, UP 202002, India
| |
Collapse
|
29
|
Nusrat S, Siddiqi MK, Zaman M, Zaidi N, Ajmal MR, Alam P, Qadeer A, Abdelhameed AS, Khan RH. A Comprehensive Spectroscopic and Computational Investigation to Probe the Interaction of Antineoplastic Drug Nordihydroguaiaretic Acid with Serum Albumins. PLoS One 2016; 11:e0158833. [PMID: 27391941 PMCID: PMC4938263 DOI: 10.1371/journal.pone.0158833] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 06/22/2016] [Indexed: 11/19/2022] Open
Abstract
Exogenous drugs that are used as antidote against chemotheray, inflammation or viral infection, gets absorbed and interacts reversibly to the major serum transport protein i.e. albumins, upon entering the circulatory system. To have a structural guideline in the rational drug designing and in the synthesis of drugs with greater efficacy, the binding mechanism of an antineoplastic and anti-inflammatory drug Nordihydroguaiaretic acid (NDGA) with human and bovine serum albumins (HSA & BSA) were examined by spectroscopic and computational methods. NDGA binds to site II of HSA with binding constant (Kb) ~105 M-1 and free energy (ΔG) ~ -7.5 kcal.mol-1. It also binds at site II of BSA but with lesser binding affinity (Kb) ~105 M-1 and ΔG ~ -6.5 kcal.mol-1. The negative value of ΔG, ΔH and ΔS for both the albumins at three different temperatures confirmed that the complex formation process between albumins and NDGA is spontaneous and exothermic. Furthermore, hydrogen bonds and hydrophobic interactions are the main forces involved in complex formation of NDGA with both the albumins as evaluated from fluorescence and molecular docking results. Binding of NDGA to both the albumins alter the conformation and causes minor change in the secondary structure of proteins as indicated by the CD spectra.
Collapse
Affiliation(s)
- Saima Nusrat
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh– 202002, India
| | | | - Masihuz Zaman
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh– 202002, India
| | - Nida Zaidi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh– 202002, India
| | - Mohammad Rehan Ajmal
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh– 202002, India
| | - Parvez Alam
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh– 202002, India
| | - Atiyatul Qadeer
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh– 202002, India
| | - Ali Saber Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh– 202002, India
- * E-mail:
| |
Collapse
|
30
|
Khan JM, Sharma P, Arora K, Kishor N, Kaila P, Guptasarma P. The Achilles’ Heel of “Ultrastable” Hyperthermophile Proteins: Submillimolar Concentrations of SDS Stimulate Rapid Conformational Change, Aggregation, and Amyloid Formation in Proteins Carrying Overall Positive Charge. Biochemistry 2016; 55:3920-36. [DOI: 10.1021/acs.biochem.5b01343] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Javed M. Khan
- Centre for Protein Science,
Design and Engineering (CPSDE), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge
City, Sector 81, SAS Nagar, Punjab, India 140306
| | - Prerna Sharma
- Centre for Protein Science,
Design and Engineering (CPSDE), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge
City, Sector 81, SAS Nagar, Punjab, India 140306
| | - Kanika Arora
- Centre for Protein Science,
Design and Engineering (CPSDE), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge
City, Sector 81, SAS Nagar, Punjab, India 140306
| | - Nitin Kishor
- Centre for Protein Science,
Design and Engineering (CPSDE), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge
City, Sector 81, SAS Nagar, Punjab, India 140306
| | - Pallavi Kaila
- Centre for Protein Science,
Design and Engineering (CPSDE), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge
City, Sector 81, SAS Nagar, Punjab, India 140306
| | - Purnananda Guptasarma
- Centre for Protein Science,
Design and Engineering (CPSDE), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge
City, Sector 81, SAS Nagar, Punjab, India 140306
| |
Collapse
|
31
|
Shorkaei MR, Asadi Z, Asadi M. Synthesis, characterization, molecular docking and DNA binding studies of Al(III), Ga(III) and In(III) water-soluble complexes. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2015.12.070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Zaman M, Chaturvedi SK, Zaidi N, Qadeer A, Chandel TI, Nusrat S, Alam P, Khan RH. DNA induced aggregation of stem bromelain; a mechanistic insight. RSC Adv 2016. [DOI: 10.1039/c6ra01079b] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Negatively charged species such as nucleic acids have commonly been found to be associated with the proteinaceous deposits in the tissues of patients with amyloid diseases.
Collapse
Affiliation(s)
- Masihuz Zaman
- Interdisciplinary Biotechnology Unit
- Aligarh Muslim University
- Aligarh-202002
- India
| | | | - Nida Zaidi
- Interdisciplinary Biotechnology Unit
- Aligarh Muslim University
- Aligarh-202002
- India
| | - Atiyatul Qadeer
- Interdisciplinary Biotechnology Unit
- Aligarh Muslim University
- Aligarh-202002
- India
| | - Tajalli Ilm Chandel
- Interdisciplinary Biotechnology Unit
- Aligarh Muslim University
- Aligarh-202002
- India
| | - Saima Nusrat
- Interdisciplinary Biotechnology Unit
- Aligarh Muslim University
- Aligarh-202002
- India
| | - Parvez Alam
- Interdisciplinary Biotechnology Unit
- Aligarh Muslim University
- Aligarh-202002
- India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit
- Aligarh Muslim University
- Aligarh-202002
- India
| |
Collapse
|
33
|
Pal S, Maity S, Sardar S, Chakraborty J, Halder UC. Insight into the co-solvent induced conformational changes and aggregation of bovine β-lactoglobulin. Int J Biol Macromol 2015; 84:121-34. [PMID: 26657584 DOI: 10.1016/j.ijbiomac.2015.11.055] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 09/05/2015] [Accepted: 11/20/2015] [Indexed: 11/15/2022]
Abstract
Many proteins form ordered irreversible aggregates called amyloid fibrils which are responsible for several neurodegenerative diseases. β-lactoglobulin (β-lg), an important globular milk protein, self-assembles to form amyloid-like fibrils on heating at low pH. The present study investigated the effects of two commonly used organic solvents acetonitrile (MeCN) and antimicrobial preservative benzyl alcohol (BA) on the conformation and self-assembly of β-lg at ambient condition. Both MeCN and BA induced a concentration-dependent conformational change showing exposure of hydrophobic patches, loss of tertiary structure and higher α-helical structure at moderate concentrations. In the presence of 50-80% (v/v) MeCN and 1.5-3% (v/v) BA further structural transitions from α-helical to non-native β-sheet structure were observed with a molten globule-like intermediate at 70% MeCN. These non-native β-sheet structures have high tendency to form aggregates. The formation of β-lg self-assembly was confirmed by Thioflavin T studies, Congo red assay, Rayleigh scattering and dynamic light scattering analysis. Transmission electron microscopy studies showed amyloid fibril formation in both MeCN and BA. Our results showed that BA enhances the unfolding and self-assembly of β-lg at much lower concentration than MeCN. Thus solvent composition forces the protein to achieve the non-native structures which are responsible for protein aggregation.
Collapse
Affiliation(s)
- Sampa Pal
- Organic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata, 700032, India
| | - Sanhita Maity
- Organic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata, 700032, India
| | - Subrata Sardar
- Organic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata, 700032, India
| | - Jishnu Chakraborty
- Organic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata, 700032, India
| | - Umesh Chandra Halder
- Organic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
34
|
Chaturvedi SK, Alam P, Khan JM, Siddiqui MK, Kalaiarasan P, Subbarao N, Ahmad Z, Khan RH. Biophysical insight into the anti-amyloidogenic behavior of taurine. Int J Biol Macromol 2015; 80:375-84. [DOI: 10.1016/j.ijbiomac.2015.06.035] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 11/17/2022]
|
35
|
Chaturvedi SK, Zaidi N, Alam P, Khan JM, Qadeer A, Siddique IA, Asmat S, Zaidi Y, Khan RH. Unraveling Comparative Anti-Amyloidogenic Behavior of Pyrazinamide and D-Cycloserine: A Mechanistic Biophysical Insight. PLoS One 2015; 10:e0136528. [PMID: 26312749 PMCID: PMC4552381 DOI: 10.1371/journal.pone.0136528] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 08/04/2015] [Indexed: 12/24/2022] Open
Abstract
Amyloid fibril formation by proteins leads to variety of degenerative disorders called amyloidosis. While these disorders are topic of extensive research, effective treatments are still unavailable. Thus in present study, two anti-tuberculosis drugs, i.e., pyrazinamide (PYZ) and D-cycloserine (DCS), also known for treatment for Alzheimer's dementia, were checked for the anti-aggregation and anti-amyloidogenic ability on Aβ-42 peptide and hen egg white lysozyme. Results demonstrated that both drugs inhibit the heat induced aggregation; however, PYZ was more potent and decelerated the nucleation phase as observed from various spectroscopic and microscopic techniques. Furthermore, pre-formed amyloid fibrils incubated with these drugs also increased the PC12/SH-SY5Y cell viability as compare to the amyloid fibrils alone; however, the increase was more pronounced for PYZ as confirmed by MTT assay. Additionally, molecular docking study suggested that the greater inhibitory potential of PYZ as compare to DCS may be due to strong binding affinity and more occupancy of hydrophobic patches of HEWL, which is known to form the core of the protein fibrils.
Collapse
Affiliation(s)
| | - Nida Zaidi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Parvez Alam
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Javed Masood Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Atiyatul Qadeer
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Ibrar Ahmad Siddique
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Shamoon Asmat
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Yusra Zaidi
- Department of Zoology, Aligarh Muslim University, Aligarh, 202002, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
- * E-mail:
| |
Collapse
|