1
|
Kuroyanagi G, Hioki T, Matsushima-Nishiwaki R, Omura T, Kozawa O, Tokuda H. Gallein increases prostaglandin F2α‑induced osteoprotegerin and IL‑6 secretion in osteoblasts. Biomed Rep 2024; 21:147. [PMID: 39640194 PMCID: PMC11618980 DOI: 10.3892/br.2024.1835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 07/08/2024] [Indexed: 12/07/2024] Open
Abstract
Gallein is a known Gβγ subunit inhibitor, but its function in bone metabolism, especially in osteoblasts, and its molecular mechanism remains to be elucidated. Osteoprotegerin (OPG), which is secreted from osteoblasts, binds to nuclear factor kB receptor activator (RANK) ligand (RANKL) as a decoy receptor, prevents RANKL-RANK binding, and inhibits bone resorption. IL-6 is not only a bone resorption factor but also as a bone metabolism regulator. Prostaglandin F2α (PGF2α) promotes p44/p42 MAPK, p38 MAPK and stress-activated protein kinase/JNK phosphorylation in osteoblast-like MC3T3-E1 cells. In MC3T3-E1 cells, activated p44/p42 and p38 MAPKs promote IL-6 secretion and activated p44/p42 and p38 MAPKs and JNK promote OPG secretion. The present study aimed to investigate the effect and mechanism of gallein on PGF2α-induced OPG and IL-6 secretion using an osteoblastic MC3T3-E1 cell line. It was found that gallein significantly increased PGF2α-induced OPG and IL-6 secretion in the MC3T3-E1 cell. By contrast, fluorescein, which is a gallein-like compound that does not bind to Gβγ, did not affect PGF2α-induced OPG and IL-6 secretion. Gallein significantly improved the PGF2α-induced OPG and IL-6 mRNA expression levels. Gallein did not affect the PGF2α-activated phosphorylation of p44/p42 and p38 MAPKs and JNK. Gallein increased PGF2α-induced OPG and IL-6 secretion in osteoblasts, indicating that gallein may regulate bone remodeling via OPG/IL-6 in bone metabolism.
Collapse
Affiliation(s)
- Gen Kuroyanagi
- Department of Orthopedic Surgery, Nagoya City University, Nagoya 467-8601, Japan
- Department of Rehabilitation Medicine, Nagoya City University, Nagoya 467-8601, Japan
- Department of Pharmacology, Gifu University, Gifu 501-1194, Japan
- Department of Metabolic Research, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Tomoyuki Hioki
- Department of Pharmacology, Gifu University, Gifu 501-1194, Japan
- Department of Metabolic Research, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
- Department of Dermatology, Kizawa Memorial Hospital, Minokamo, Gifu 505-0034, Japan
| | - Rie Matsushima-Nishiwaki
- Department of Pharmacology, Gifu University, Gifu 501-1194, Japan
- Department of Metabolic Research, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Takuya Omura
- Department of Metabolic Research, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Osamu Kozawa
- Department of Pharmacology, Gifu University, Gifu 501-1194, Japan
- Department of Metabolic Research, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Haruhiko Tokuda
- Department of Pharmacology, Gifu University, Gifu 501-1194, Japan
- Department of Metabolic Research, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
- Department of Clinical Laboratory, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| |
Collapse
|
2
|
Ahmad Hairi H, Jayusman PA, Shuid AN. Revisiting Resveratrol as an Osteoprotective Agent: Molecular Evidence from In Vivo and In Vitro Studies. Biomedicines 2023; 11:1453. [PMID: 37239124 PMCID: PMC10216404 DOI: 10.3390/biomedicines11051453] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Resveratrol (RSV) (3,5,4'-trihydroxystilbene) is a stilbene found in abundance in berry fruits, peanuts, and some medicinal plants. It has a diverse range of pharmacological activities, underlining the significance of illness prevention and health promotion. The purpose of this review was to delve deeper into RSV's bone-protective properties as well as its molecular mechanisms. Several in vivo studies have found the bone-protective effects of RSV in postmenopausal, senile, and disuse osteoporosis rat models. RSV has been shown to inhibit NF-κB and RANKL-mediated osteoclastogenesis, oxidative stress, and inflammation while increasing osteogenesis and boosting differentiation of mesenchymal stem cells to osteoblasts. Wnt/β-catenin, MAPKs/JNK/ERK, PI3K/AKT, FoxOs, microRNAs, and BMP2 are among the possible kinases and proteins involved in the underlying mechanisms. RSV has also been shown to be the most potent SIRT1 activator to cause stimulatory effects on osteoblasts and inhibitory effects on osteoclasts. RSV may, thus, represent a novel therapeutic strategy for increasing bone growth and reducing bone loss in the elderly and postmenopausal population.
Collapse
Affiliation(s)
- Haryati Ahmad Hairi
- Department of Biochemistry, Faculty of Medicine, Manipal University College Malaysia, Jalan Batu Hampar, Bukit Baru, Melaka 75150, Malaysia;
| | - Putri Ayu Jayusman
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
| | - Ahmad Nazrun Shuid
- Department of Pharmacology, Faculty of Medicine, Universiti Teknologi Mara (UITM), Jalan Hospital, Sungai Buloh 47000, Malaysia
| |
Collapse
|
3
|
Kuroyanagi G, Tachi J, Fujita K, Kawabata T, Sakai G, Nakashima D, Kim W, Tanabe K, Matsushima-Nishiwaki R, Otsuka T, Iida H, Kozawa O, Tokuda H. HSP70 inhibitors upregulate prostaglandin E1-induced synthesis of interleukin-6 in osteoblasts. PLoS One 2022; 17:e0279134. [PMID: 36520821 PMCID: PMC9754267 DOI: 10.1371/journal.pone.0279134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Interleukin-6 (IL-6) is a pro-inflammatory and bone-resorptive cytokine that also regulates bone formation. We previously showed that prostaglandin E1 (PGE1) induces the synthesis of IL-6 by activating p44/p42 mitogen-activated protein kinase (MAPK), stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), and p38 MAPK in osteoblast-like MC3T3-E1 cells. In the present study, we investigated whether heat shock protein 70 (HSP70), a molecular chaperone that coordinates protein folding and homeostasis, affects PGE1-stimulated IL-6 synthesis in MC3T3-E1 cells through the MAPK activation. The osteoblast-like MC3T3-E1 cells were treated with HSP70 inhibitors-VER-155008 and YM-08-, PD98059, SB203580 or SP600125 and then stimulated with PGE1. IL-6 synthesis was evaluated using an IL-6 enzyme-linked immunosorbent assay kit. IL-6 mRNA expression was measured by real-time RT-PCR. The phosphorylation of p38 MAPK was evaluated by Western blotting. We found that VER-155008, an HSP70 inhibitor, enhanced the PGE1-stimulated IL-6 release and IL-6 mRNA expression. YM-08, another HSP70 inhibitor, also enhanced PGE1-stimulated IL-6 release. PD98059, a p44/p42 MAPK inhibitor, and SP600125, a SAPK/JNK inhibitor, upregulated PGE1-stimulated IL-6 release. On the other hand, SB203580, a p38 MAPK inhibitor, suppressed PGE1-stimulated IL-6 release. YM-08 stimulated the PGE1-induced phosphorylation of p38 MAPK. SB203580 suppressed the amplification by YM-08 of the PGE1-stimulated IL-6 release. Our results suggest that HSP70 inhibitors upregulate the PGE1-stimulated IL-6 synthesis through p38 MAPK in osteoblasts and therefore affect bone remodeling.
Collapse
Affiliation(s)
- Gen Kuroyanagi
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Science, Nagoya, Japan
- Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Science, Nagoya, Japan
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
- * E-mail:
| | - Junko Tachi
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kazuhiko Fujita
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Science, Nagoya, Japan
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tetsu Kawabata
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Science, Nagoya, Japan
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Go Sakai
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Science, Nagoya, Japan
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Daiki Nakashima
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Woo Kim
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kumiko Tanabe
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | | | - Takanobu Otsuka
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Science, Nagoya, Japan
| | - Hiroki Iida
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Osamu Kozawa
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Metabolic Research, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Haruhiko Tokuda
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Metabolic Research, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
- Department of Clinical Laboratory/Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| |
Collapse
|
4
|
Hioki T, Kuroyanagi G, Fujita K, Sakai G, Kawabata T, Kim W, Tachi J, Matsushima-Nishiwaki R, Iida H, Kozawa O, Tokuda H. Incretins Enhance PGF2α-Induced Synthesis of IL-6 and Osteoprotegerin in Osteoblasts. Horm Metab Res 2022; 54:42-49. [PMID: 34986499 DOI: 10.1055/a-1713-7967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Incretins including glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), which are secreted from the small intestine after oral food ingestion, are currently well-known to stimulate insulin secretion from pancreatic β-cells and used for the treatment of type 2 diabetes mellitus. We have previously reported that prostaglandin F2α (PGF2α) stimulates the synthesis of interleukin-6 (IL-6) and osteoprotegerin in osteoblast-like MC3T3-E1 cells, and that IL-6 and osteoprotegerin release are mediated through the p44/p42 mitogen-activated protein (MAP) kinase, p38 MAP kinase or stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) pathways. In the present study, we investigated the effects of incretins including GLP-1 and GIP, on the PGF2α-induced synthesis of IL-6 and osteoprotegerin and examined the detailed mechanism in osteoblast-like MC3T3-E1 cells. We found that GIP and GLP-1 significantly stimulated the PGF2α-induced synthesis of IL-6 in osteoblast-like MC3T3-E1 cells. In addition, GIP and GLP-1 significantly enhanced the PGF2α-induced mRNA expression levels of IL-6. On the other hand, GIP and GLP-1 markedly stimulated the PGF2α-induced synthesis of osteoprotegerin. However, the phosphorylation of p44/p42 MAP kinase, p38 MAP kinase, or JNK induced by PGF2α was not affected by GIP or GLP-1. Therefore, these results strongly suggest that incretins enhance the PGF2α-induced synthesis of IL-6 and osteoprotegerin in osteoblast-like MC3T3-E1 cells. However, these syntheses are not mediated through p44/p42 MAP kinase, p38 MAP kinase, or JNK pathways.
Collapse
Affiliation(s)
- Tomoyuki Hioki
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Dermatology, Kizawa Memorial Hospital, Minokamo, Japan
| | - Gen Kuroyanagi
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kazuhiko Fujita
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Go Sakai
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Tetsu Kawabata
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Woo Kim
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Junko Tachi
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | | | - Hiroki Iida
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Osamu Kozawa
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Haruhiko Tokuda
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Clinical Laboratory/Biobank of Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, Japan
| |
Collapse
|
5
|
Kim W, Tokuda H, Tanabe K, Yamaguchi S, Hioki T, Tachi J, Matsushima-Nishiwaki R, Kozawa O, Iida H. Acetaminophen reduces osteoprotegerin synthesis stimulated by PGE 2 and PGF 2α in osteoblasts: attenuation of SAPK/JNK but not p38 MAPK or p44/p42 MAPK. Biomed Res 2021; 42:77-84. [PMID: 33840687 DOI: 10.2220/biomedres.42.77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Acetaminophen is one of the most widely used analgesic and antipyretic medicines, whose long-period use has reportedly been associated with an increased risk of bone fracture. However, the mechanism underlying this undesired effect remains to be investigated. The homeostatic control of bone tissue depends on the interaction between osteoblasts and osteoclasts. Osteoprotegerin produced by osteoblasts is known to play an essential role in suppressing osteoclast induction. We have previously reported that prostaglandin (PG) E2 and PGF2α induce osteoprotegerin synthesis through p38 mitogen-activated protein kinase (MAPK), p44/p42 MAPK and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the effects of acetaminophen on the osteoprotegerin synthesis induced by PGE2 and PGF2α in MC3T3-E1 cells. Acetaminophen significantly suppressed the osteoprotegerin release stimulated by PGE2 and PGF2α. The PGE2-induced expression of osteoprotegerin mRNA was also reduced by acetaminophen. Acetaminophen markedly downregulated the phosphorylation of SAPK/JNK stimulated by PGE2 and PGF2α, but not those of p38 MAPK or p44/p42 MAPK. SP600125, an inhibitor of SAPK/JNK, suppressed the levels of PGE2- and PGF2α-upregulated osteoprotegerin mRNA expression. Taken together, these results strongly suggest that acetaminophen reduces the PGE2- and PGF2α-stimulated synthesis of osteoprotegerin in osteoblasts, and that the suppressive effect is exerted via attenuation of SAPK/JNK. These findings provide a molecular basis for the possible effect of acetaminophen on bone tissue metabolism.
Collapse
Affiliation(s)
- Woo Kim
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine.,Department of Pharmacology, Gifu University Graduate School of Medicine
| | - Haruhiko Tokuda
- Department of Pharmacology, Gifu University Graduate School of Medicine.,Department of Clinical Laboratory/Medical Genome Center, National Center for Geriatrics and Gerontology
| | - Kumiko Tanabe
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine
| | - Shinobu Yamaguchi
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine
| | - Tomoyuki Hioki
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine.,Department of Dermatology, Kizawa Memorial Hospital
| | - Junko Tachi
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine.,Department of Pharmacology, Gifu University Graduate School of Medicine
| | | | - Osamu Kozawa
- Department of Pharmacology, Gifu University Graduate School of Medicine
| | - Hiroki Iida
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine
| |
Collapse
|
6
|
Hioki T, Kawabata T, Sakai G, Fujita K, Kuroyanagi G, Matsushima-Nishiwaki R, Kim W, Otsuka T, Iida H, Tokuda H, Kozawa O. Resveratrol suppresses insulin-like growth factor I-induced osteoblast migration: attenuation of the p44/p42 MAP kinase pathway. Biosci Biotechnol Biochem 2020; 84:2428-2439. [PMID: 32862787 DOI: 10.1080/09168451.2020.1809987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Resveratrol is a natural polyphenol with beneficial antioxidant properties. It suppresses the migration of osteoblast-like MC3T3-E1 cells induced by epidermal growth factor, via SIRT1-mediated inhibition of SAPK/JNK and Akt. Moreover, insulin-like growth factor-I (IGF-I) stimulates the migration involving the pathways of p44/p42 mitogen-activated protein (MAP) kinase and Akt. Therefore, we investigated the effects of resveratrol on IGF-I-induced cell migration. Resveratrol and SRT1720, an activator of SIRT1, suppressed IGF-I-induced migration. Inauhzin, a SIRT1 inhibitor, significantly rescued the inhibition of IGF-I-induced cell migration by resveratrol. Resveratrol inhibited IGF-I-induced phosphorylation of p44/p42 MAP kinase but not Akt. SRT1720 inhibited IGF-I-induced phosphorylation of p44/p42 MAP kinase. Furthermore, PD98059, p44/p42 MAP kinase inhibitor, alone suppressed IGF-I-induced osteoblast migration, but did not affect the suppressive effect of resveratrol when administered concomitantly. These findings strongly suggest that resveratrol suppresses IGF-I-induced osteoblast migration via SIRT1 activation at least partially by attenuating the p44/p42 MAP kinase pathway.
Collapse
Affiliation(s)
- Tomoyuki Hioki
- Department of Pharmacology, Gifu University Graduate School of Medicine , Gifu, Japan.,Department of Dermatology, Kizawa Memorial Hospital , Minokamo, Japan
| | - Tetsu Kawabata
- Department of Pharmacology, Gifu University Graduate School of Medicine , Gifu, Japan.,Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences , Nagoya, Japan
| | - Go Sakai
- Department of Pharmacology, Gifu University Graduate School of Medicine , Gifu, Japan.,Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences , Nagoya, Japan
| | - Kazuhiko Fujita
- Department of Pharmacology, Gifu University Graduate School of Medicine , Gifu, Japan.,Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences , Nagoya, Japan
| | - Gen Kuroyanagi
- Department of Pharmacology, Gifu University Graduate School of Medicine , Gifu, Japan.,Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Sciences , Nagoya, Japan
| | | | - Woo Kim
- Department of Pharmacology, Gifu University Graduate School of Medicine , Gifu, Japan.,Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine , Gifu, Japan
| | - Takanobu Otsuka
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences , Nagoya, Japan
| | - Hiroki Iida
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine , Gifu, Japan
| | - Haruhiko Tokuda
- Department of Pharmacology, Gifu University Graduate School of Medicine , Gifu, Japan.,Department of Clinical Laboratory/Biobank of Medical Genome Center, National Center for Geriatrics and Gerontology , Obu, Japan
| | - Osamu Kozawa
- Department of Pharmacology, Gifu University Graduate School of Medicine , Gifu, Japan
| |
Collapse
|
7
|
Kim W, Tanabe K, Kuroyanagi G, Matsushima-Nishiwaki R, Fujita K, Kawabata T, Sakai G, Tachi J, Hioki T, Nakashima D, Yamaguchi S, Otsuka T, Tokuda H, Kozawa O, Iida H. Tramadol enhances PGF 2α-stimulated osteoprotegerin synthesis in osteoblasts. Heliyon 2020; 6:e04779. [PMID: 32904295 PMCID: PMC7452493 DOI: 10.1016/j.heliyon.2020.e04779] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 07/15/2020] [Accepted: 08/20/2020] [Indexed: 11/27/2022] Open
Abstract
Osteoprotegerin (OPG) synthesized by osteoblasts is currently considered a crucial regulator to suppress the formation and function of osteoclasts. We previously showed that the synthesis of OPG is stimulated by prostaglandin F2α (PGF2α) in the involvement of p38 mitogen-activated protein kinase (MAPK), stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) and p44/p42 MAPK in osteoblast-like MC3T3-E1 cells. We also found that Rho-kinase is involved in the signaling of PGF2α upstream of p38 MAPK in these cells. Tramadol is widely used to treat chronic pain, such as low back pain associated with osteoporosis. We investigated whether or not tramadol affects the OPG release induced by PGF2α in osteoblast-like MC3T3-E1 cells. The levels of OPG in the conditioned medium were measured by an enzyme-linked immunosorbent assay. The mRNA expression of OPG was determined with real-time reverse transcription polymerase chain reaction. The phosphorylation of target protein was determined with a Western blot analysis. PGF2α induced the release and the mRNA expression of OPG, which tramadol significantly enhanced. Morphine, a selective μ-opioid receptor (MOR) agonist, also enhanced the PGF2α-induced OPG release. In addition, naloxone, a MOR antagonist, suppressed the enhancement by tramadol or morphine of the PGF2α-induced OPG synthesis. Tramadol upregulated the phosphorylation of SAPK/JNK and p38 MAPK stimulated by PGF2α but not that of p44/p42 MAPK or myosin phosphatase targeting protein (MYPT), a substrate of Rho-kinase. The inhibitors of both p38 MAPK and SAPK/JNK, SB203580 and SP600125, respectively, reduced the tramadol amplification of OPG release stimulated by PGF2α. The present results strongly suggest that tramadol enhances the synthesis of OPG stimulated by PGF2α through MOR in osteoblasts, and that the amplifying effect is exerted at upstream of p38 MAPK and SAPK/JNK but downstream of Rho-kinase.
Collapse
Affiliation(s)
- Woo Kim
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Kumiko Tanabe
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Gen Kuroyanagi
- Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | | | - Kazuhiko Fujita
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Tetsu Kawabata
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Go Sakai
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Junko Tachi
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Tomoyuki Hioki
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
- Department of Dermatology, Kizawa Memorial Hospital, Minokamo 505-0034, Japan
| | - Daiki Nakashima
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Shinobu Yamaguchi
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Takanobu Otsuka
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Haruhiko Tokuda
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
- Department of Clinical Laboratory/Biobank of Medical Genome Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan
| | - Osamu Kozawa
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Hiroki Iida
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
- Corresponding author.
| |
Collapse
|
8
|
Torre E. Molecular signaling mechanisms behind polyphenol-induced bone anabolism. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2017; 16:1183-1226. [PMID: 29200988 PMCID: PMC5696504 DOI: 10.1007/s11101-017-9529-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 08/20/2017] [Indexed: 05/08/2023]
Abstract
For millennia, in the different cultures all over the world, plants have been extensively used as a source of therapeutic agents with wide-ranging medicinal applications, thus becoming part of a rational clinical and pharmacological investigation over the years. As bioactive molecules, plant-derived polyphenols have been demonstrated to exert many effects on human health by acting on different biological systems, thus their therapeutic potential would represent a novel approach on which natural product-based drug discovery and development could be based in the future. Many reports have provided evidence for the benefits derived from the dietary supplementation of polyphenols in the prevention and treatment of osteoporosis. Polyphenols are able to protect the bone, thanks to their antioxidant properties, as well as their anti-inflammatory actions by involving diverse signaling pathways, thus leading to bone anabolic effects and decreased bone resorption. This review is meant to summarize the research works performed so far, by elucidating the molecular mechanisms of action of polyphenols in a bone regeneration context, aiming at a better understanding of a possible application in the development of medical devices for bone tissue regeneration.
Collapse
Affiliation(s)
- Elisa Torre
- Nobil Bio Ricerche srl, Via Valcastellana, 26, 14037 Portacomaro, AT Italy
| |
Collapse
|
9
|
Sakai G, Otsuka T, Fujita K, Kainuma S, Kuroyanagi G, Kawabata T, Matsushima-Nishiwaki R, Kozawa O, Tokuda H. Amplification by (−)-epigallocatechin gallate of prostaglandin F2α-stimulated synthesis of osteoprotegerin in osteoblasts. Mol Med Rep 2017; 16:6376-6381. [DOI: 10.3892/mmr.2017.7354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 08/16/2017] [Indexed: 11/06/2022] Open
|
10
|
Fujita K, Tokuda H, Kainuma S, Kuroyanagi G, Yamamoto N, Matsushima-Nishiwaki R, Harada A, Kozawa O, Otsuka T. Resveratrol suppresses thyroid hormone‑induced osteocalcin synthesis in osteoblasts. Mol Med Rep 2017; 16:2881-2886. [PMID: 28677796 DOI: 10.3892/mmr.2017.6872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 04/04/2017] [Indexed: 11/06/2022] Open
Abstract
Resveratrol, a polyphenolic compound that is present in grape skins, berries and red wine, may be beneficial for human health through its anti‑inflammatory and anti‑oxidant effects. It has been previously demonstrated that resveratrol exerts its biological effects primarily via sirtuin 1 (SIRT1) activation. We previously reported that triiodothyronine (T3) induces osteocalcin synthesis in osteoblast‑like MC3T3‑E1 cells, and that p38 mitogen‑activated protein (MAP) kinase mediates the T3‑stimulated synthesis of osteocalcin. The present study investigated the effect of resveratrol on T3‑induced osteocalcin synthesis and its underlying mechanism in MC3T3‑E1 cells. Cultured cells were stimulated with T3, and osteocalcin release from MC3T3‑E1 cells was measured by ELISA and phosphorylation of p38 MAP kinase was analyzed by western blotting. Resveratrol significantly suppressed the release of osteocalcin stimulated by T3, and SRT1720, a SIRT1 activator, significantly reduced T3‑induced osteocalcin release. The expression level of osteocalcin mRNA stimulated by T3 was significantly attenuated by resveratrol and T3‑induced transactivation activity of the thyroid hormone‑responsive element was significantly diminished by resveratrol. However, only limited effects of resveratrol on the T3‑induced phosphorylation of p38 MAP kinase were observed. The results of the present study demonstrated that resveratrol suppresses T3‑stimulated osteocalcin synthesis at a point upstream of transcription in osteoblasts, and that the inhibitory effect of resveratrol is mediated, at least partially, through SIRT1 activation. These results indicate that there may be a novel role for the polyphenol in the modulation of bone metabolism.
Collapse
Affiliation(s)
- Kazuhiko Fujita
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467‑8601, Japan
| | - Haruhiko Tokuda
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501‑1194, Japan
| | - Shingo Kainuma
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467‑8601, Japan
| | - Gen Kuroyanagi
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467‑8601, Japan
| | - Naohiro Yamamoto
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467‑8601, Japan
| | | | - Atsushi Harada
- Department of Orthopedic Surgery, National Center for Geriatrics and Gerontology, Obu, Aichi 474‑8511, Japan
| | - Osamu Kozawa
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501‑1194, Japan
| | - Takanobu Otsuka
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467‑8601, Japan
| |
Collapse
|
11
|
Kuroyanagi G, Otsuka T, Yamamoto N, Kainuma S, Ohguchi R, Fujita K, Matsushima-Nishiwaki R, Kozawa O, Tokuda H. Mimosine suppresses the PGF2α-induced synthesis of osteoprotegerin but not interleukin-6 in osteoblasts. Int J Mol Med 2016; 37:533-41. [PMID: 26744072 DOI: 10.3892/ijmm.2016.2452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 12/18/2015] [Indexed: 11/06/2022] Open
Abstract
Mimosine, a plant amino acid, is known to act as a normoxic inducer of hypoxia-inducible factor (HIF). Previous research has suggested that HIF plays important roles in angiogenesis-osteogenesis coupling and bone metabolism. We previously reported that prostaglandin F2α (PGF2α) induced osteoprotegerin synthesis through p38 mitogen-activated protein (MAP) kinase, p44/p42 MAP kinase and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) in osteoblast-like MC3T3-E1 cells. We have also demonstrated that PGF2α induced the synthesis of interleukin-6 (IL-6) via p38 MAP kinase and p44/p42 MAP kinase but not SAPK/JNK in these cells. In the present study, we investigated the effects of mimosine on the PGF2α-induced synthesis of osteoprotegerin or IL-6 in MC3T3-E1 cells. We found that deferoxamine, another inducer of HIF, as well as mimosine, upregulated the protein levels of HIF-1α. Both mimosine and deferoxamine significantly suppressed the PGF2α-induced release of osteoprotegerin, and the mRNA expression level, without markedly affecting PGF2α-induced IL-6 release. Both mimosine and deferoxamine, by themselves, induced the release of vascular endothelial growth factor. The phosphorylation of p38 MAP kinase, p44/p42 MAP kinase or SAPK/JNK induced by PGF2α was not markedly affected by either mimosine or deferoxamine. Thus, the results of the present study strongly suggest that mimosine, a normoxic inducer of HIF, inhibits the PGF2α‑induced osteoprotegerin synthesis without affecting the IL-6 synthesis in osteoblasts.
Collapse
Affiliation(s)
- Gen Kuroyanagi
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Takanobu Otsuka
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Naohiro Yamamoto
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Shingo Kainuma
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Reou Ohguchi
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Kazuhiko Fujita
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | | | - Osamu Kozawa
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Haruhiko Tokuda
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| |
Collapse
|
12
|
Li Y, Han L, Ding WY, Ti Y, Li YH, Tang MX, Wang ZH, Zhang Y, Zhang W, Zhong M. Prostaglandin F2α receptor silencing attenuates vascular remodeling in rats with type 2 diabetes. Exp Mol Pathol 2015; 99:517-23. [DOI: 10.1016/j.yexmp.2015.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/11/2015] [Accepted: 09/21/2015] [Indexed: 12/20/2022]
|
13
|
Đudarić L, Fužinac-Smojver A, Muhvić D, Giacometti J. The role of polyphenols on bone metabolism in osteoporosis. Food Res Int 2015. [DOI: 10.1016/j.foodres.2015.10.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Kuroyanagi G, Otsuka T, Yamamoto N, Matsushima-Nishiwaki R, Kozawa O, Tokuda H. Resveratrol suppresses TGF-β-induced VEGF synthesis in osteoblasts: Inhibition of the p44/p42 MAPKs and SAPK/JNK pathways. Exp Ther Med 2015; 9:2303-2310. [PMID: 26136978 DOI: 10.3892/etm.2015.2389] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 03/19/2015] [Indexed: 01/09/2023] Open
Abstract
Resveratrol, which is found in grape and berry skins and red wine, is generally known to be beneficial for human health due to its anti-inflammation and antioxidant effects. We have recently reported that transforming growth factor-β (TGF-β) stimulates vascular endothelial growth factor (VEGF) synthesis through Smad-independent pathways, such as the p38 mitogen-activated protein (MAP) kinase, p44/p42 MAP kinase and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) pathways, in osteoblast-like MC3T3-E1 cells. The aim of the present study was to investigate the effect of resveratrol on the TGF-β-induced VEGF synthesis and the mechanism in osteoblast-like MC3T3-E1 cells. Resveratrol significantly suppressed the TGF-β-stimulated release of VEGF and the VEGF mRNA expression levels. SRT1720, a synthetic sirtuin 1 (SIRT1) activator, also reduced the VEGF release and the mRNA levels. With regard to the intracellular signaling in the TGF-β-stimulated VEGF synthesis, resveratrol and SRT1720 significantly attenuated the phosphorylation of p44/p42 MAP kinase and SAPK/JNK stimulated by TGF-β; however, the TGF-β-induced phosphorylation of Smad2 and p38 MAP kinase was hardly affected by resveratrol or SRT1720. These results strongly suggest that the TGF-β-stimulated VEGF synthesis is suppressed by resveratrol through the inhibition of p44/p42 MAP kinase and SAPK/JNK in osteoblasts, and that the suppressive effect is mediated, at least in part, via SIRT1 activation.
Collapse
Affiliation(s)
- Gen Kuroyanagi
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Chubu 467-8601, Japan ; Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Takanobu Otsuka
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Chubu 467-8601, Japan
| | - Naohiro Yamamoto
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Chubu 467-8601, Japan ; Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | | | - Osamu Kozawa
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Haruhiko Tokuda
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan ; Department of Clinical Laboratory, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| |
Collapse
|
15
|
Resveratrol reduces prostaglandin E1-stimulated osteoprotegerin synthesis in osteoblasts: suppression of stress-activated protein kinase/c-Jun N-terminal kinase. Prostaglandins Other Lipid Mediat 2015; 116-117:57-63. [PMID: 25677506 DOI: 10.1016/j.prostaglandins.2015.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 01/27/2015] [Accepted: 01/29/2015] [Indexed: 01/09/2023]
Abstract
Resveratrol, a natural polyphenol mainly existing in red grapes and berries, possesses beneficial effects on human being. We have previously reported that prostaglandin E1 (PGE1) stimulates vascular endothelial growth factor synthesis via activation of p38 mitogen-activated protein (MAP) kinase and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) but not p44/p42 MAP kinase in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the PGE1-effect on osteoprotegerin (OPG) synthesis and the effect of resveratrol on the synthesis in MC3T3-E1 cells. PGE1 induced the expression levels of OPG mRNA and stimulated the OPG release. Resveratrol significantly reduced the PGE1-induced OPG release and the mRNA expression. SRT1720, an activator of SIRT1, suppressed the release of OPG. The protein levels of SIRT1 were not up-regulated by resveratrol with or without PGE1. Both SB203580 and SP600125, a specific p38 MAP kinase inhibitor and a specific SAPK/JNK inhibitor, respectively, but not PD98059, a specific MEK inhibitor, reduced the PGE1-stimulated OPG release. Resveratrol or SRT1720 failed to affect the phosphorylation of p38 MAP kinase. On the contrary, PGE1-induced phosphorylation of SAPK/JNK was significantly attenuated by both resveratrol and SRT1720. Our results strongly suggest that resveratrol inhibits PGE1-stimulated OPG synthesis via suppressing SAPK/JNK but not p38 MAP kinase in osteoblasts.
Collapse
|
16
|
Li Z, Jiang H, Xu C, Gu L. A review: Using nanoparticles to enhance absorption and bioavailability of phenolic phytochemicals. Food Hydrocoll 2015. [DOI: 10.1016/j.foodhyd.2014.05.010] [Citation(s) in RCA: 223] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
17
|
Down-regulation by resveratrol of basic fibroblast growth factor-stimulated osteoprotegerin synthesis through suppression of Akt in osteoblasts. Int J Mol Sci 2014; 15:17886-900. [PMID: 25290095 PMCID: PMC4227195 DOI: 10.3390/ijms151017886] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 09/18/2014] [Accepted: 09/26/2014] [Indexed: 11/16/2022] Open
Abstract
It is firmly established that resveratrol, a natural food compound abundantly found in grape skins and red wine, has beneficial properties for human health. In the present study, we investigated the effect of basic fibroblast growth factor (FGF-2) on osteoprotegerin (OPG) synthesis in osteoblast-like MC3T3-E1 cells and whether resveratrol affects the OPG synthesis. FGF-2 stimulated both the OPG release and the expression of OPG mRNA. Resveratrol significantly suppressed the FGF-2-stimulated OPG release and the mRNA levels of OPG. SRT1720, an activator of SIRT1, reduced the FGF-2-induced OPG release and the OPG mRNA expression. PD98059, an inhibitor of upstream kinase activating p44/p42 mitogen-activated protein (MAP) kinase, had little effect on the FGF-2-stimulated OPG release. On the other hand, SB203580, an inhibitor of p38 MAP kinase, SP600125, an inhibitor of stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), and Akt inhibitor suppressed the OPG release induced by FGF-2. Resveratrol failed to affect the FGF-2-induced phosphorylation of p44/p42 MAP kinase, p38 MAP kinase or SAPK/JNK. The phosphorylation of Akt induced by FGF-2 was significantly suppressed by resveratrol or SRT1720. These findings strongly suggest that resveratrol down-regulates FGF-2-stimulated OPG synthesis through the suppression of the Akt pathway in osteoblasts and that the inhibitory effect of resveratrol is mediated at least in part by SIRT1 activation.
Collapse
|