1
|
Ge J, Bouriyaphone SD, Serebrennikova TA, Astashkin AV, Nesmelov YE. Macromolecular Crowding Modulates Actomyosin Kinetics. Biophys J 2017; 111:178-84. [PMID: 27410745 DOI: 10.1016/j.bpj.2016.05.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 05/18/2016] [Accepted: 05/19/2016] [Indexed: 11/17/2022] Open
Abstract
Actomyosin kinetics is usually studied in dilute solutions, which do not reflect conditions in the cytoplasm. In cells, myosin and actin work in a dense macromolecular environment. High concentrations of macromolecules dramatically reduce the amount of free space available for all solutes, which results in an effective increase of the solutes' chemical potential and protein stabilization. Moreover, in a crowded solution, the chemical potential depends on the size of the solute, with larger molecules experiencing a larger excluded volume than smaller ones. Therefore, since myosin interacts with two ligands of different sizes (actin and ATP), macromolecular crowding can modulate the kinetics of individual steps of the actomyosin ATPase cycle. To emulate the effect of crowding in cells, we studied actomyosin cycle reactions in the presence of a high-molecular-weight polymer, Ficoll70. We observed an increase in the maximum velocity of the actomyosin ATPase cycle, and our transient-kinetics experiments showed that virtually all individual steps of the actomyosin cycle were affected by the addition of Ficoll70. The observed effects of macromolecular crowding on the myosin-ligand interaction cannot be explained by the increase of a solute's chemical potential. A time-resolved Förster resonance energy transfer experiment confirmed that the myosin head assumes a more compact conformation in the presence of Ficoll70 than in a dilute solution. We conclude that the crowding-induced myosin conformational change plays a major role in the changed kinetics of actomyosin ATPase.
Collapse
Affiliation(s)
- Jinghua Ge
- Department of Physics and Optical Science, University of North Carolina, Charlotte, North Carolina; Center for Biomedical Engineering and Science, University of North Carolina, Charlotte, North Carolina
| | - Sherry D Bouriyaphone
- Department of Physics and Optical Science, University of North Carolina, Charlotte, North Carolina
| | | | - Andrei V Astashkin
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona
| | - Yuri E Nesmelov
- Department of Physics and Optical Science, University of North Carolina, Charlotte, North Carolina; Center for Biomedical Engineering and Science, University of North Carolina, Charlotte, North Carolina.
| |
Collapse
|
2
|
Jin J, Zheng G, Ge Y, Deng S, Liu W, Hui G. A non-enzyme electrochemical qualitative and quantitative analyzing method for glucose, D-fructose, and sucrose utilizing Cu foam material. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2014.11.194] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
3
|
Swenson AM, Trivedi DV, Rauscher AA, Wang Y, Takagi Y, Palmer BM, Málnási-Csizmadia A, Debold EP, Yengo CM. Magnesium modulates actin binding and ADP release in myosin motors. J Biol Chem 2014; 289:23977-91. [PMID: 25006251 DOI: 10.1074/jbc.m114.562231] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We examined the magnesium dependence of five class II myosins, including fast skeletal muscle myosin, smooth muscle myosin, β-cardiac myosin (CMIIB), Dictyostelium myosin II (DdMII), and nonmuscle myosin IIA, as well as myosin V. We found that the myosins examined are inhibited in a Mg(2+)-dependent manner (0.3-9.0 mm free Mg(2+)) in both ATPase and motility assays, under conditions in which the ionic strength was held constant. We found that the ADP release rate constant is reduced by Mg(2+) in myosin V, smooth muscle myosin, nonmuscle myosin IIA, CMIIB, and DdMII, although the ADP affinity is fairly insensitive to Mg(2+) in fast skeletal muscle myosin, CMIIB, and DdMII. Single tryptophan probes in the switch I (Trp-239) and switch II (Trp-501) region of DdMII demonstrate these conserved regions of the active site are sensitive to Mg(2+) coordination. Cardiac muscle fiber mechanic studies demonstrate cross-bridge attachment time is increased at higher Mg(2+) concentrations, demonstrating that the ADP release rate constant is slowed by Mg(2+) in the context of an activated muscle fiber. Direct measurements of phosphate release in myosin V demonstrate that Mg(2+) reduces actin affinity in the M·ADP·Pi state, although it does not change the rate of phosphate release. Therefore, the Mg(2+) inhibition of the actin-activated ATPase activity observed in class II myosins is likely the result of Mg(2+)-dependent alterations in actin binding. Overall, our results suggest that Mg(2+) reduces the ADP release rate constant and rate of attachment to actin in both high and low duty ratio myosins.
Collapse
Affiliation(s)
- Anja M Swenson
- From the Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Darshan V Trivedi
- From the Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Anna A Rauscher
- the Department of Biochemistry, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Yuan Wang
- the Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405
| | - Yasuharu Takagi
- the Laboratory of Molecular Physiology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Bradley M Palmer
- the Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405
| | - András Málnási-Csizmadia
- the Department of Biochemistry, Eötvös Loránd University, H-1117 Budapest, Hungary, the Hungarian Academy of Sciences-Eötvös Loránd University Molecular Biophysics Research Group, H-1117 Budapest, Hungary
| | - Edward P Debold
- the Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts 02210, and
| | - Christopher M Yengo
- From the Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033,
| |
Collapse
|