1
|
Shangzu Z, Qiyang L, Sichao D, Yutong W, Yangyang L, Yan C, Gengqiang Y, Ting Z, Zhiming M, Fuxian L, Liying Z, Yongqi L. The impact of X-rays on cardiac hydrometabolism and the regulatory role of AS-IV. Int Immunopharmacol 2024; 143:113533. [PMID: 39486184 DOI: 10.1016/j.intimp.2024.113533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/27/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Radiation-induced cardiac injury has emerged as a significant pathological entity, with many studies focusing on the fibrotic changes in myocardial tissue. However, these do not offer solutions for the clinical prevention and treatment of radiation-induced heart disease. Regulating hydrometabolism presents a potential therapeutic target for the management of cardiovascular diseases. This research seeks to explore the impacts of irradiation on cardiac hydrometabolism and its regulatory mechanisms. METHODS The impact of X-ray radiation on cardiac and cardiomyocyte hydrometabolism was studied through in vivo and in vitro experiments, examining the pharmacological effects and mechanisms of PX-478 and AS-IV interventions in cardiomyocytes. RESULTS 28 days after direct chest irradiation with 20 Gy X-rays, C57BL/6 mice exhibited an increased heart wet-to-dry weight ratio, significant enlargement of cardiomyocyte cross-sectional area, and elevated protein expression of HIF-1α, AQP1, AQP4, Cx43, Caspase3, and Bax, with decreased expression of Bcl-2. Irradiation with 6 Gy X-rays induced edema and damage in AC16 and HL-1 cardiomyocytes at 24, 48, and 72 h, with increased expression of HIF-1α, AQP1, AQP4, and Cx43 proteins post-radiation. Inhibition of HIF-1α ameliorated edema and apoptosis in AC16 and HL-1 cardiomyocytes, reducing the expression of HIF-1α, AQP1, AQP4, and Cx43 proteins. AS-IV demonstrated strong binding affinity with HIF-1α, and successfully attenuated the expression levels of HIF-1α, AQP1, AQP4, and Cx43 proteins, alleviating edema, mitochondrial swelling, and apoptosis in AC16 and HL-1 cardiomyocytes. Furthermore, AS-IV improved cardiomyocyte edema by restoring the activity of Na/K-ATPase. CONCLUSION Aberrant activation of the HIF-1α/AQPs/Cx43 axis is a key mechanism in X-ray-induced cardiomyocyte edema and damage. AS-IV can ameliorate X-ray induced cardiac damage by regulating hydrometabolism.
Collapse
Affiliation(s)
- Zhang Shangzu
- Gansu University of Chinese Medicine, LanZhou, China
| | - Li Qiyang
- Gansu University of Chinese Medicine, LanZhou, China
| | - Dai Sichao
- Gansu University of Chinese Medicine, LanZhou, China
| | - Wang Yutong
- Gansu University of Chinese Medicine, LanZhou, China
| | - Li Yangyang
- Gansu University of Chinese Medicine, LanZhou, China
| | - Chen Yan
- Gansu University of Chinese Medicine, LanZhou, China
| | | | - Zhou Ting
- Gansu University of Chinese Medicine, LanZhou, China
| | - Miao Zhiming
- Gansu University of Chinese Medicine, LanZhou, China
| | - Liu Fuxian
- Gansu University of Chinese Medicine, LanZhou, China
| | - Zhang Liying
- Gansu University of Chinese Medicine, LanZhou, China; Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China; Gansu Institute of Cardiovascular Diseases, LanZhou, China.
| | - Liu Yongqi
- Gansu University of Chinese Medicine, LanZhou, China; Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China; Key Laboratory of Dunhuang Medicine and Transformation at Provincial and Ministerial Level, Lanzhou, China.
| |
Collapse
|
2
|
Rao RM, El Dhaybi I, Cadet F, Etchebest C, Diharce J. The mutual and dynamic role of TSPO and ligands in their binding process: An example with PK-11195. Biochimie 2024; 224:29-40. [PMID: 38494108 DOI: 10.1016/j.biochi.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/12/2024] [Accepted: 03/15/2024] [Indexed: 03/19/2024]
Abstract
Translocator protein (TSPO) is an 18 kDa transmembrane protein, localized primarily on the outer mitochondrial membrane. It has been found to be involved in various physiological processes and pathophysiological conditions. Though studies on its structure have been performed only recently, there is little information on the nature of dynamics and doubts about some structures referenced in the literature, especially the NMR structure of mouse TSPO. In the present work, we thoroughly study the dynamics of mouse TSPO protein by means of atomistic molecular dynamics simulations, in presence as well as in absence of the diagnostic ligand PKA. We considered two starting structures: the NMR structure and a homology model (HM) generated on the basis of X-ray structures from bacterial TSPO. We examine the conformational landscape in both the modes for both starting points, in presence and absence of the ligand, in order to measure its impact for both structures. The analysis highlights high flexibility of the protein globally, but NMR simulations show a surprisingly flexibility even in the presence of the ligand. Interestingly, this is not the case for HM calculations, to the point that the ligand seems not so stable as in the NMR system and an unbinding event process is partially sampled. All those results tend to show that the NMR structure of mTSPO seems not deficient but is just in another portion of the global conformation space of TSPO.
Collapse
Affiliation(s)
- Rajas M Rao
- Data Analytics, Bioinformatics and Structural Biology Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India; Université Paris Cité and Université de la Réunion and Université des Antilles, INSERM, BIGR, DSIMB UMR_S1134, F-74014, Paris, France
| | - Ibaa El Dhaybi
- Université Paris Cité and Université de la Réunion and Université des Antilles, INSERM, BIGR, DSIMB UMR_S1134, F-74014, Paris, France
| | - Frédéric Cadet
- Université Paris Cité and Université de la Réunion and Université des Antilles, INSERM, BIGR, DSIMB UMR_S1134, F-74014, Paris, France; Laboratory of Excellence GR-Ex, Paris, France; Université Paris Cité and Université de la Réunion and Université des Antilles, INSERM, BIGR, DSIMB, F-97715, Saint Denis Messag, France; PEACCEL, Artificial Intelligence Department, Paris, 75013 France
| | - Catherine Etchebest
- Université Paris Cité and Université de la Réunion and Université des Antilles, INSERM, BIGR, DSIMB UMR_S1134, F-74014, Paris, France; Laboratory of Excellence GR-Ex, Paris, France
| | - Julien Diharce
- Université Paris Cité and Université de la Réunion and Université des Antilles, INSERM, BIGR, DSIMB UMR_S1134, F-74014, Paris, France; Laboratory of Excellence GR-Ex, Paris, France.
| |
Collapse
|
3
|
Carbenoxolon Is Capable to Regulate the Mitochondrial Permeability Transition Pore Opening in Chronic Alcohol Intoxication. Int J Mol Sci 2021; 22:ijms221910249. [PMID: 34638588 PMCID: PMC8549702 DOI: 10.3390/ijms221910249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 11/25/2022] Open
Abstract
Background: carbenoxolone, which is a derivative of glyceretic acid, is actively used in pharmacology for the treatment of diseases of various etiologies. In addition, we have shown carbenoxolone as an effective inducer of mitochondrial permeability transition pore in rat brain and liver mitochondria. Methods: in the course of this work, comparative studies were carried out on the effect of carbenoxolone on the parameters of mPTP functioning in mitochondria isolated from the liver of control and alcoholic rats. Results: within the framework of this work, it was found that carbenoxolone significantly increased its effect in the liver mitochondria of rats with chronic intoxication. In particular, this was expressed in a reduction in the lag phase, a decrease in the threshold calcium concentration required to open a pore, an acceleration of high-amplitude cyclosporin-sensitive swelling of mitochondria, as well as an increase in the effect of carbenoxolone on the level of mitochondrial membrane-bound proteins. Thus, as a result of the studies carried out, it was shown that carbenoxolone is involved in the development/modulation of alcohol tolerance and dependence in rats.
Collapse
|
4
|
Chen Y, Hu Z, Li R, Qiu W, Hu X, Zhou Z. The Effects of Carbenoxolone against Experimental Autoimmune Encephalomyelitis in a Mouse Model. Neuroimmunomodulation 2020; 27:19-27. [PMID: 32062665 DOI: 10.1159/000505333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 12/03/2019] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Multiple sclerosis (MS) is a complex demyelinating disease involving central nervous system (CNS). It is still a challenge to secure an effective therapeutic strategy against this disease. Carbenoxolone (CBX) is a derivative of glycyrrhetinic acid, which is widely used in brain research for its gap-junction inhibition effects. Many researchers have observed CBX-mediated suppression of CNS inflammation in their studies. OBJECTIVE We want to further examine its anti-inflammation effects in CNS demyelinating disease like MS. METHODS Thus, our study applied an experimental autoimmune encephalomyelitis (EAE) mouse model and examined the effects of CBX on it. RESULTS AND CONCLUSIONS We found that CBX significantly reversed the EAE severity and pathology in EAE. IL-17-secreting and IFN-γ-secreting CD4+ T lymphocytes were remarkably lower in the spleen of CBX-treated mice. Production of IL-23 and IL-17 from cortex in EAE animals was markedly reduced by CBX. Furthermore, CBX treatment increased the expression of brain-derived neurotrophic factor. This study provides evidence for the protective role of CBX against EAE.
Collapse
Affiliation(s)
- Ying Chen
- Department of Neurology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, China,
| | - Zhaoqi Hu
- Department of Orthopaedics, Traditional Chinese Medicine Hospital of Wuhu City, The Affiliated Hospital of Anhui University of Chinese Medicine, Wuhu, China
| | - Rui Li
- Multiple Sclerosis Center, Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Wei Qiu
- Multiple Sclerosis Center, Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xueqiang Hu
- Multiple Sclerosis Center, Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zhiming Zhou
- Department of Neurology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| |
Collapse
|
5
|
Shvedova M, Anfinogenova Y, Popov SV, Atochin DN. Connexins and Nitric Oxide Inside and Outside Mitochondria: Significance for Cardiac Protection and Adaptation. Front Physiol 2018; 9:479. [PMID: 29867537 PMCID: PMC5964197 DOI: 10.3389/fphys.2018.00479] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/16/2018] [Indexed: 12/27/2022] Open
Abstract
Irreversible myocardial damage happens in the presence of prolonged and severe ischemia. Several phenomena protect the heart against myocardial infarction and other adverse outcomes of ischemia and reperfusion (IR), namely: hibernation related to stunned myocardium, ischemic preconditioning (IPC), ischemic post-conditioning, and their pharmacological surrogates. Ischemic preconditioning consists in the induction of a brief IR to reduce damage of the tissue caused by prolonged and severe ischemia. Nitric oxide (NO) signaling plays an essential role in IPC. Nitric oxide-sensitive guanylate cyclase/cyclic guanosine-3′,5′-monophosphate (cGMP)-dependent protein kinase type I-signaling pathway protects against the IR injury during myocardial infarction. Mitochondrial ATP-sensitive and Ca2+-activated K+ channels are involved in NO-mediated signaling in IPC. Independently of the cGMP-mediated induction of NO production, S-nitrosation represents a regulatory molecular mechanism similar to phosphorylation and is essential for IPC. Unlike conditioning phenomena, the mechanistic basis of myocardial stunning and hibernation remains poorly understood. In this review article, we hypothesize that the disruption of electrical syncytium of the myocardium may underly myocardial stunning and hibernation. Considering that the connexins are the building blocks of gap junctions which represent primary structural basis of electrical syncytium, we discuss data on the involvement of connexins into myocardial conditioning, stunning, and hibernation. We also show how NO-mediated signaling is involved in myocardial stunning and hibernation. Connexins represent an essential element of adaptation phenomena of the heart at the level of both the cardio- myocytes and the mitochondria. Nitric oxide targets mitochondrial connexins which may affect electrical syncytium continuum in the heart. Mitochondrial connexins may play an essential role in NO-dependent mechanisms of myocardial adaptation to ischemia.
Collapse
Affiliation(s)
- Maria Shvedova
- Cardiovascular Research Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Yana Anfinogenova
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia.,RASA Center, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Sergey V Popov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Dmitriy N Atochin
- Cardiovascular Research Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States.,RASA Center, National Research Tomsk Polytechnic University, Tomsk, Russia
| |
Collapse
|
6
|
Yang H, Yan H, Li X, Liu J, Cao S, Huang B, Huang D, Wu L. Inhibition of Connexin 43 and Phosphorylated NR2B in Spinal Astrocytes Attenuates Bone Cancer Pain in Mice. Front Cell Neurosci 2018; 12:129. [PMID: 29867362 PMCID: PMC5951934 DOI: 10.3389/fncel.2018.00129] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 04/23/2018] [Indexed: 12/14/2022] Open
Abstract
Bone cancer pain (BCP) is common in patients with advanced cancers when the tumors are metastasized to bone. The limited understanding of the complex pathogenesis of BCP leads to the poor effectiveness of clinical treatment. Previous studies have shown that astrocyte-specific connexin (Cx) 43, a forming protein of gap junction (GJ) and hemichannel, and N-methyl-D-aspartate receptors (NMDARs), especially the phosphorylated NMDAR 2B subunit (NR2B) phosphorylated NR2B (p-NR2B) subunit are involved in BCP. However, the relationship between Cx43 and p-NR2B in BCP remains unclear. In the present study, we investigated the expressions of Cx43, glial fibrillary acidic protein (GFAP, a marker of astrocytes), and p-NR2B in the spinal dorsal horn (SDH) in a mouse model of BCP established by intra-femural inoculation of Lewis lung carcinoma (LLC) cells via intrathecal (ith) injection of the GJ/hemichannel blocker carbenoxolone (CARB) and the NMDAR antagonist MK801, respectively. We found that the characters of BCP were mimicked by intra-femural inoculation of LLC cells in mice, and the expressions of Cx43, GFAP and p-NR2B in BCP mice were remarkably increased in a time-dependent manner from day 7 to day 21 after cell inoculation with a gradual aggravate in spontaneous pain and mechanical allodynia. Furthermore, Cx43 was predominantly expressed in the spinal astrocytes. Both CARB and MK801 inhibited the expressions of Cx43, GFAP and p-NR2B with attenuated pain hypersensitivity in BCP mice. In addition, Cx43 was co-localized with p-NR2B in the SDH, which further evidenced the presence of functional NR2B in the spinal astrocytes in BCP mice. Our findings demonstrate that inhibition of Cx43 and p-NR2B in spinal astrocytes could attenuate BCP in mice and Cx43 and p-NR2B in the astrocytes of the SDH may play an important role via their combination action in the development and maintenance of BCP in mice. These results may provide a potential therapeutic target in the prevention and/or treatment of BCP.
Collapse
Affiliation(s)
- Hui Yang
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Physiology, School of Basic Medical Science, Central South University, Changsha, China.,Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, China
| | - Hui Yan
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xin Li
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, China
| | - Jing Liu
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, China
| | - Shousong Cao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Baisheng Huang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Dong Huang
- Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, China
| | - Lixiang Wu
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, China
| |
Collapse
|
7
|
Papadopoulos V, Fan J, Zirkin B. Translocator protein (18 kDa): an update on its function in steroidogenesis. J Neuroendocrinol 2018; 30:10.1111/jne.12500. [PMID: 28667781 PMCID: PMC5748373 DOI: 10.1111/jne.12500] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 12/15/2022]
Abstract
Translocator protein (18 kDa) (TSPO) is a ubiquitous mitochondrial protein. Studies of its responses to drug and endogenous ligands have shown TSPO to be involved either directly or indirectly in numerous biological functions, including mitochondrial cholesterol transport and steroid hormone biosynthesis, porphyrin transport and heme synthesis, apoptosis, cell proliferation, and anion transport. Localised to the outer mitochondrial membrane of steroidogenic cells, TSPO has been shown to associate with cytosolic and mitochondrial proteins as part of a large multiprotein complex involved in mitochondrial cholesterol transport, the rate-limiting step in steroidogenesis. There is general agreement as to the structure and pharmacology of TSPO. Stimulation of TSPO has been shown to have therapeutic use as anxiolytics by inducing allopregnanolone production in the brain, and also potentially for re-establishing androgen levels in hypogonadal ageing animals. Until recently, there has been general agreement regarding the role of TSPO in steroidogenesis. However, recent studies involving genetic depletion of TSPO in mice have created controversy about the role of this protein in steroid and heme synthesis. We review the data on the structure and function of TSPO, as well as the recent results obtained using various genetic animal models. Taken together, these studies suggest that TSPO is a unique mitochondrial pharmacological target for diseases that involve increased mitochondrial activity, including steroidogenesis. Although there is no known mammalian species that lacks TSPO, it is likely that, because of the importance of this ancient protein in evolution and mitochondrial function, redundant mechanisms may exist to replace it under circumstances when it is removed.
Collapse
Affiliation(s)
- Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089
- Research Institute of the McGill University Health Centre and Department of Medicine, McGill University, Montreal, Quebec, H4A 3J1, Canada
| | - Jinjiang Fan
- Research Institute of the McGill University Health Centre and Department of Medicine, McGill University, Montreal, Quebec, H4A 3J1, Canada
| | - Barry Zirkin
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| |
Collapse
|
8
|
Mitochondrial Cx43 hemichannels contribute to mitochondrial calcium entry and cell death in the heart. Basic Res Cardiol 2017; 112:27. [PMID: 28364353 DOI: 10.1007/s00395-017-0618-1] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 03/30/2017] [Indexed: 10/19/2022]
Abstract
Mitochondrial connexin 43 (Cx43) plays a key role in cardiac cytoprotection caused by repeated exposure to short periods of non-lethal ischemia/reperfusion, a condition known as ischemic preconditioning. Cx43 also forms calcium (Ca2+)-permeable hemichannels that may potentially lead to mitochondrial Ca2+ overload and cell death. Here, we studied the role of Cx43 in facilitating mitochondrial Ca2+ entry and investigated its downstream consequences. To that purpose, we used various connexin-targeting peptides interacting with extracellular (Gap26) and intracellular (Gap19, RRNYRRNY) Cx43 domains, and tested their effect on mitochondrial dye- and Ca2+-uptake, electrophysiological properties of plasmalemmal and mitochondrial Cx43 channels, and cell injury/cell death. Our results in isolated mice cardiac subsarcolemmal mitochondria indicate that Cx43 forms hemichannels that contribute to Ca2+ entry and may trigger permeability transition and cell injury/death. RRNYRRNY displayed the strongest effects in all assays and inhibited plasma membrane as well as mitochondrial Cx43 hemichannels. RRNYRRNY also strongly reduced the infarct size in ex vivo cardiac ischemia-reperfusion studies. These results indicate that Cx43 contributes to mitochondrial Ca2+ homeostasis and is involved in triggering cell injury/death pathways that can be inhibited by RRNYRRNY peptide.
Collapse
|
9
|
Effect of the CRAC Peptide, VLNYYVW, on mPTP Opening in Rat Brain and Liver Mitochondria. Int J Mol Sci 2016; 17:ijms17122096. [PMID: 27983605 PMCID: PMC5187896 DOI: 10.3390/ijms17122096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 12/01/2016] [Accepted: 12/07/2016] [Indexed: 01/08/2023] Open
Abstract
The translocator protein (TSPO; 18 kDa) is a high-affinity cholesterol-binding protein located in the outer membrane of mitochondria. A domain in the C-terminus of TSPO was characterized as the cholesterol recognition/interaction amino acid consensus (CRAC). The ability of the CRAC domain to bind to cholesterol led us to hypothesize that this peptide may participate in the regulation of mitochondrial membrane permeability. Herein, we report the effect of the synthetic CRAC peptide, VLNYYVW, on mitochondrial permeability transition pore (mPTP) opening. It was found that the CRAC peptide alone prevents the mPTP from opening, as well as the release of apoptotic factors (cytochrome c, AIF, and EndoG) in rat brain mitochondria (RBM). Co-incubation of CRAC, together with the TSPO drug ligand, PK 11195, resulted in the acceleration of mPTP opening and in the increase of apoptotic factor release. VLNYYVW did not induce swelling in rat liver mitochondria (RLM). 3,17,19-androsten-5-triol (19-Atriol; an inhibitor of the cholesterol-binding activity of the CRAC peptide) alone and in combination with the peptide was able to stimulate RLM swelling, which was Ca2+- and CsA-sensitive. Additionally, a combination of 19-Atriol with 100 nM PK 11195 or with 100 µM PK 11195 displayed the opposite effect: namely, the addition of 19-Atriol with 100 µM PK 11195 in a suspension of RLM suppressed the Ca2+-induced swelling of RLM by 40%, while the presence of 100 nM PK 11195 with 19-Atriol enhanced the swelling of RLM by 60%. Taken together, these data suggest the participation of the TSPO’s CRAC domain in the regulation of permeability transition.
Collapse
|
10
|
TSPO ligand residence time influences human glioblastoma multiforme cell death/life balance. Apoptosis 2015; 20:383-98. [PMID: 25413799 DOI: 10.1007/s10495-014-1063-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ligands addressed to the mitochondrial Translocator Protein (TSPO) have been suggested as cell death/life and steroidogenesis modulators. Thus, TSPO ligands have been proposed as drug candidates in several diseases; nevertheless, a correlation between their binding affinity and in vitro efficacy has not been demonstrated yet, questioning the specificity of the observed effects. Since drug-target residence time is an emerging parameter able to influence drug pharmacological features, herein, the interaction between TSPO and irDE-MPIGA, a covalent TSPO ligand, was investigated in order to explore TSPO control on death/life processes in a standardized glioblastoma cell setting. After 90 min irDE-MPIGA cell treatment, 25 nM ligand concentration saturated irreversibly all TSPO binding sites; after 24 h, TSPO de-novo synthesis occurred and about 40 % TSPO binding sites resulted covalently bound to irDE-MPIGA. During cell culture treatments, several dynamic events were observed: (a) early apoptotic markers appeared, such as mitochondrial membrane potential collapse (at 3 h) and externalization of phosphatidylserine (at 6 h); (b) cell viability was reduced (at 6 h), without cell cycle arrest. After digitonin-permeabilized cell suspension treatment, a modulation of mitochondrial permeability transition pore was evidenced. Similar effects were elicited by the reversible TSPO ligand PIGA only when applied at micromolar dose. Interestingly, after 6 h, irDE-MPIGA cell exposure restored cell survival parameters. These results highlighted the ligand-target residence time and the cellular setting are crucial parameters that should be taken into account to understand the drug binding affinity and efficacy correlation and, above all, to translate efficiently cellular drug responses from bench to bedside.
Collapse
|
11
|
Selvaraj V, Stocco DM. The changing landscape in translocator protein (TSPO) function. Trends Endocrinol Metab 2015; 26:341-8. [PMID: 25801473 PMCID: PMC7171652 DOI: 10.1016/j.tem.2015.02.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/11/2015] [Accepted: 02/18/2015] [Indexed: 11/25/2022]
Abstract
Translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor (PBR), is an outer mitochondrial membrane protein. TSPO has been shown to cooperate with steroidogenic acute regulatory protein (StAR) and function in the transport of cholesterol into mitochondria. TSPO has also been considered as a structural component of the mitochondrial permeability transition pore (MPTP). However, recent advances have changed these views of TSPO's functions and have prompted a re-evaluation of established concepts. This review summarizes the history of TSPO, key elements of the debate, and functional experiments that have changed our understanding. Moving forward, we examine how this fundamental change impacts our understanding of TSPO and affects the future of TSPO as a therapeutic and diagnostic target.
Collapse
Affiliation(s)
- Vimal Selvaraj
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA.
| | - Douglas M Stocco
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|