1
|
Lendel C, Solin N. Protein nanofibrils and their use as building blocks of sustainable materials. RSC Adv 2021; 11:39188-39215. [PMID: 35492452 PMCID: PMC9044473 DOI: 10.1039/d1ra06878d] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/25/2021] [Indexed: 12/21/2022] Open
Abstract
The development towards a sustainable society requires a radical change of many of the materials we currently use. Besides the replacement of plastics, derived from petrochemical sources, with renewable alternatives, we will also need functional materials for applications in areas ranging from green energy and environmental remediation to smart foods. Proteins could, with their intriguing ability of self-assembly into various forms, play important roles in all these fields. To achieve that, the code for how to assemble hierarchically ordered structures similar to the protein materials found in nature must be cracked. During the last decade it has been demonstrated that amyloid-like protein nanofibrils (PNFs) could be a steppingstone for this task. PNFs are formed by self-assembly in water from a range of proteins, including plant resources and industrial side streams. The nanofibrils display distinct functional features and can be further assembled into larger structures. PNFs thus provide a framework for creating ordered, functional structures from the atomic level up to the macroscale. This review address how industrial scale protein resources could be transformed into PNFs and further assembled into materials with specific mechanical and functional properties. We describe what is required from a protein to form PNFs and how the structural properties at different length scales determine the material properties. We also discuss potential chemical routes to modify the properties of the fibrils and to assemble them into macroscopic structures.
Collapse
Affiliation(s)
- Christofer Lendel
- Department of Chemistry, KTH Royal Institute of Technology Teknikringen 30 SE-100 44 Stockholm Sweden
| | - Niclas Solin
- Department of Physics, Chemistry, and Biology, Electronic and Photonic Materials, Biomolecular and Organic Electronics, Linköping University Linköping 581 83 Sweden
| |
Collapse
|
2
|
Tannic acid-functionalized HEPA filter materials for influenza virus capture. Sci Rep 2021; 11:979. [PMID: 33441577 PMCID: PMC7806633 DOI: 10.1038/s41598-020-78929-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/01/2020] [Indexed: 11/30/2022] Open
Abstract
Influenza, one of the most contagious and infectious diseases, is predominantly transmitted through aerosols, leading to the development of filter-based protective equipment. Though the currently available filters are effective at removing submicron-sized particulates, filter materials with enhanced virus-capture efficiency are still in demand. Coating or chemically modifying filters with molecules capable of binding influenza viruses has received attention as a promising approach for the production of virus-capturing filters. For this purpose, tannic acid (TA), a plant-derived polyphenol, is a promising molecule for filter functionalization because of its antiviral activities and ability to serve as a cost-efficient adhesive for various materials. This study demonstrates the facile preparation of TA-functionalized high-efficiency particulate air (HEPA) filter materials and their efficiency in influenza virus capture. Polypropylene HEPA filter fabrics were coated with TA via a dipping/washing process. The TA-functionalized HEPA filter (TA-HF) exhibits a high in-solution virus capture efficiency of up to 2,723 pfu/mm2 within 10 min, which is almost two orders of magnitude higher than that of non-functionalized filters. This result suggests that the TA-HF is a potent anti-influenza filter that can be used in protective equipment to prevent the spread of pathogenic viruses.
Collapse
|
3
|
Josefsson L, Cronhamn M, Ekman M, Widehammar H, Emmer Å, Lendel C. Structural basis for the formation of soy protein nanofibrils. RSC Adv 2019; 9:6310-6319. [PMID: 35517292 PMCID: PMC9060953 DOI: 10.1039/c8ra10610j] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 02/15/2019] [Indexed: 11/25/2022] Open
Abstract
Amyloid-like protein nanofibrils (PNFs) can assemble from a range of different proteins including disease-associated proteins, functional amyloid proteins and several proteins for which the PNFs are neither related to disease nor function. We here examined the core building blocks of PNFs formed by soy proteins. Fibril formation at pH 2 and 90 °C is coupled to peptide hydrolysis which allows isolation of the PNF-forming peptides and identification of them by mass spectrometry. We found five peptides that constitute the main building blocks in soy PNFs, three of them from the protein β-conglycinin and two from the protein glycinin. The abilities of these peptides to form PNFs were addressed by amyloid prediction software and by PNF formation of the corresponding synthetic peptides. Analysis of the structural context in the native soy proteins revealed two structural motifs for the PNF-forming peptides: (i) so-called β-arches and (ii) helical segments involved in quaternary structure contacts. However, the results suggest that neither the native structural motifs nor the protein of origin defines the morphology of the PNFs formed from soy protein isolate. Identification of the peptide building blocks of soy protein nanofibrils provides new clues about the determinants of protein nanofibril morphology.![]()
Collapse
Affiliation(s)
- Leila Josefsson
- Department of Chemistry
- KTH Royal Institute of Technology
- Stockholm
- Sweden
| | - Melker Cronhamn
- Department of Chemistry
- KTH Royal Institute of Technology
- Stockholm
- Sweden
| | - Malin Ekman
- Department of Chemistry
- KTH Royal Institute of Technology
- Stockholm
- Sweden
| | - Hugo Widehammar
- Department of Chemistry
- KTH Royal Institute of Technology
- Stockholm
- Sweden
| | - Åsa Emmer
- Department of Chemistry
- KTH Royal Institute of Technology
- Stockholm
- Sweden
| | - Christofer Lendel
- Department of Chemistry
- KTH Royal Institute of Technology
- Stockholm
- Sweden
| |
Collapse
|
4
|
Siddiqui MF, Bano B. A biophysical insight into the formation of aggregates upon trifluoroethanol induced structural and conformational changes in garlic cystatin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 204:7-17. [PMID: 29902773 DOI: 10.1016/j.saa.2018.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/26/2018] [Accepted: 06/02/2018] [Indexed: 06/08/2023]
Abstract
Intrinsic and extrinsic factors are responsible for the transition of soluble proteins into aggregated form. Trifluoroethanol is among such potent extrinsic factor which facilitates the formation of aggregated structure. It disrupts the interactive forces and destabilizes the native structure of the protein. The present study investigates the effect of trifluoroethanol (TFE) on garlic cystatin. Garlic cystatin was incubated with increasing concentration of TFE (0-90% v/v) for 4 h. Incubation of GPC with TFE induces structural changes thereby resulting in the formation of aggregates. Inactivation of garlic phytocystatin was confirmed by cysteine proteinase inhibitory activity. Garlic cystatin at 30% TFE exhibits native-like secondary structure and high ANS fluorescence, thus suggesting the presence of molten globule state. Circular dichroism and FTIR confirmed the transition of the native alpha-helical structure of garlic cystatin to the beta-sheet structure at 60% TFE. Furthermore, increased ThT fluorescence and redshift in Congo red absorbance assay confirmed the presence of aggregates. Rayleigh and turbidity assay was also performed to validate the aggregation results. Scanning electron microscopy was followed to analyze the morphological changes which confirm the presence of sheath-like structure at 60% TFE. The study sheds light on the conformational behavior of a plant protein when kept under stress condition induced by an extrinsic factor.
Collapse
Affiliation(s)
| | - Bilqees Bano
- Department of Biochemistry, Aligarh Muslim University, Uttar Pradesh, India.
| |
Collapse
|
5
|
Kasi PB, Borics A, Varga M, Endre G, Molnár K, László L, Kotormán M. Grapefruit Seed Extract Inhibits the Formation of Amyloid-like Fibrils by Trypsin in Aqueous Ethanol. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801301106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Several natural compounds deriving from plants are known to be efficient anti-amyloid aggregation agents. In this study, anti-aggregation activity of grapefruit seed extract was investigated using trypsin as a model protein in aqueous ethanol at pH 7.0. Using turbidity measurement, Congo red (CR) binding assay, electronic circular dichroism (ECD) and transmission electron microscopy (TEM), we found that grapefruit seed extract has ability to inhibit trypsin amyloidlike fibril formation in vitro, and effectiveness increases with growing concentration of grapefruit seed extract. The total phenolic content of it was determined. The results showed that in addition to the polyphenolic compounds some other compounds are also responsible for the fibril formation inhibitory effect. We indicated it for the first time that limonin has anti-fibrillation effect.
Collapse
Affiliation(s)
- Phanindra Babu Kasi
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Attila Borics
- Laboratory of Chemical Biology, Biological Research Centre of Hungarian Academy of Sciences, Temesvári krt. 62, H-6726 Szeged, Hungary
| | - Mónika Varga
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Gábor Endre
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Kinga Molnár
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University of Sciences, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Lajos László
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University of Sciences, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Márta Kotormán
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| |
Collapse
|
6
|
Bhat SA, Bhat WF, Afsar M, Khan MS, Al-Bagmi MS, Bano B. Modification of chickpea cystatin by reactive dicarbonyl species: Glycation, oxidation and aggregation. Arch Biochem Biophys 2018; 650:103-115. [DOI: 10.1016/j.abb.2018.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/17/2018] [Accepted: 05/14/2018] [Indexed: 02/02/2023]
|
7
|
Glycation induced conformational alterations in caprine brain cystatin (CBC) leads to aggregation via passage through a partially folded state. Int J Biol Macromol 2018; 106:917-929. [DOI: 10.1016/j.ijbiomac.2017.08.086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/13/2017] [Accepted: 08/14/2017] [Indexed: 11/23/2022]
|
8
|
Ahmed A, Shamsi A, Bano B. Characterizing harmful advanced glycation end-products (AGEs) and ribosylated aggregates of yellow mustard seed phytocystatin: Effects of different monosaccharides. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 171:183-192. [PMID: 27526342 DOI: 10.1016/j.saa.2016.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 07/20/2016] [Accepted: 08/04/2016] [Indexed: 06/06/2023]
Abstract
Advanced glycation end products (AGEs) are at the core of variety of diseases ranging from diabetes to renal failure and hence gaining wide consideration. This study was aimed at characterizing the AGEs of phytocystatin isolated from mustard seeds (YMP) when incubated with different monosaccharides (glucose, ribose and mannose) using fluorescence, ultraviolet, circular dichroism (CD) spectroscopy and microscopy. Ribose was found to be the most potent glycating agent as evident by AGEs specific fluorescence and absorbance. YMP exists as a molten globule like structure on day 24 as depicted by high ANS fluorescence and altered intrinsic fluorescence. Glycated YMP as AGEs and ribose induced aggregates were observed at day 28 and 32 respectively. In our study we have also examined the anti-aggregative potential of polyphenol, resveratrol. Our results suggested the anti-aggregative behavior of resveratrol as it prevented the in vitro aggregation of YMP, although further studies are required to decode the mechanism by which resveratrol prevents the aggregation.
Collapse
Affiliation(s)
- Azaj Ahmed
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Anas Shamsi
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Bilqees Bano
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
9
|
Carbonaro M, Di Venere A, Filabozzi A, Maselli P, Minicozzi V, Morante S, Nicolai E, Nucara A, Placidi E, Stellato F. Role of dietary antioxidant (−)-epicatechin in the development of β-lactoglobulin fibrils. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:766-72. [DOI: 10.1016/j.bbapap.2016.03.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 03/04/2016] [Accepted: 03/28/2016] [Indexed: 01/03/2023]
|
10
|
Fazili NA, Naeem A. Exploring the Transition of Human α-Synuclein from Native to the Fibrillar State: Insights into the Pathogenesis of Parkinson's Disease. J Fluoresc 2016; 26:1659-69. [PMID: 27365127 DOI: 10.1007/s10895-016-1856-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 06/14/2016] [Indexed: 12/11/2022]
Abstract
The etiology of Parkinson's disease involves the interplay between the environmental and genetic factors. Here in this study human α-synuclein upon exposure to 100 μM pendimethalin for 12 h in vitro passes through a partially folded state which proceeds to the aggregated state and terminally ends in the fibrillar phase. Variations in the ANS fluorescence intensities led to the detection of intermediate and aggregated states at 6 and 10 h respectively. Far-UV CD analysis depicted significant α-helical content for intermediate state at 6 h in presence of 100 μM pendimethalin. Further increasing the incubation time to 12 h resulted in a predominant β-sheet content which was confirmed to be fibrillar by TEM. Turbidity, Rayleigh scattering analysis, Congo red assay and ThT measurements supported the TEM data i.e. the formation of fibrillar structure of human α-synuclein upon 12 h incubation. Thus, our observation could suggest a possible underlying molecular basis for Parkinson's disease. Graphical Abstract Schematic elucidation of the factors involved in the fibrillation of α-Synuclein during Parkinson's pathogenesis.
Collapse
Affiliation(s)
- Naveed Ahmad Fazili
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202 002, India
| | - Aabgeena Naeem
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202 002, India.
| |
Collapse
|
11
|
Bhat WF, Bhat SA, Bano B. Evaluation of polyphenols as possible therapeutics for amyloidoses: Comparative analysis of Kaempferol and Catechin. Int J Biol Macromol 2015; 81:60-8. [DOI: 10.1016/j.ijbiomac.2015.07.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 07/24/2015] [Accepted: 07/26/2015] [Indexed: 12/18/2022]
|
12
|
Khan MS, Tabrez S, Bhat SA, Rabbani N, Al-Senaidy AM, Bano B. Effect of trifluoroethanol on α-crystallin: folding, aggregation, amyloid, and cytotoxicity analysis. J Mol Recognit 2015; 29:33-40. [DOI: 10.1002/jmr.2493] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/04/2015] [Accepted: 07/17/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science; King Saud University; Riyadh Saudi Arabia
| | - Shams Tabrez
- King Fahd Medical Research Center; King Abdulaziz University; Jeddah 21589 Saudi Arabia
| | - Sheraz Ahmed Bhat
- Department of Biochemistry, Faculty of Life Sciences; Aligarh Muslim University; Aligarh India
| | - Nayyar Rabbani
- Department of Biochemistry, College of Science; King Saud University; Riyadh Saudi Arabia
| | | | - Bilqees Bano
- Department of Biochemistry, Faculty of Life Sciences; Aligarh Muslim University; Aligarh India
| |
Collapse
|