1
|
Yu MH, Jeong YJ, Son SW, Kwon SY, Song KH, Son HS, Jeon EJ, Chang YC. Ascochlorin Attenuates the Early Stage of Adipogenesis via the Wnt/β-Catenin Pathway and Inhibits High-Fat-Diet-Induced Obesity in Mice. Int J Mol Sci 2024; 25:10226. [PMID: 39337708 PMCID: PMC11432539 DOI: 10.3390/ijms251810226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
This study investigated the effects of ascochlorin (ASC), a natural compound derived from the fungus Ascochyta viciae, on adipogenesis and obesity. We determined the effects of ASC on 3T3-L1 preadipocytes and whether it ameliorated to mitigate high-fat diet (HFD)-induced obesity in C57BL/6J mice. We found that ASC significantly inhibited the differentiation of preadipocytes by modulating the Wnt/β-catenin signaling pathway, a key regulator of adipogenic processes. Treatment with ASC not only reduced the mRNA and protein expression of key adipogenic transcription factors such as C/EBPα and PPARγ, but also reduced lipid accumulation both in vitro and in vivo. In addition, treatment HFD-fed mice with ASC significantly reduced their weight gain and adiposity vs. control mice. These results suggest that ASC has considerable potential as a therapeutic agent for obesity, owing to its dual action of inhibiting adipocyte differentiation and reducing lipid accumulation. Thus, ASC represents a promising candidate as a natural anti-obesity agent.
Collapse
Affiliation(s)
- Mi-Hee Yu
- Research Institute of Biomedical Engineering and Department of Cell Biology, Daegu Catholic University School of Medicine, Daegu 42472, Republic of Korea
| | - Yun-Jeong Jeong
- Research Institute of Biomedical Engineering and Department of Cell Biology, Daegu Catholic University School of Medicine, Daegu 42472, Republic of Korea
| | - Sung Wook Son
- Research Institute of Biomedical Engineering and Department of Cell Biology, Daegu Catholic University School of Medicine, Daegu 42472, Republic of Korea
| | - So Yoon Kwon
- Department of Internal Medicine, Daegu Catholic University School of Medicine, Daegu 42472, Republic of Korea
| | - Kwon-Ho Song
- Research Institute of Biomedical Engineering and Department of Cell Biology, Daegu Catholic University School of Medicine, Daegu 42472, Republic of Korea
| | - Ho-Sang Son
- Department of Internal Medicine, Daegu Catholic University School of Medicine, Daegu 42472, Republic of Korea
- Department of Internal Medicine, Raphael Hospital, Daegu 41968, Republic of Korea
| | - Eon-Ju Jeon
- Department of Internal Medicine, Daegu Catholic University School of Medicine, Daegu 42472, Republic of Korea
| | - Young-Chae Chang
- Research Institute of Biomedical Engineering and Department of Cell Biology, Daegu Catholic University School of Medicine, Daegu 42472, Republic of Korea
| |
Collapse
|
2
|
Jiang G, Long Z, Wang Y, Wang Y, Xue P, Chen M, Yang K, Li W. Inhibition of mammalian target of rapamycin complex 1 in the brain microvascular endothelium ameliorates diabetic Aβ brain deposition and cognitive impairment via the sterol-regulatory element-binding protein 1/lipoprotein receptor-associated protein 1 signaling pathway. CNS Neurosci Ther 2023. [PMID: 36890627 DOI: 10.1111/cns.14133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/02/2022] [Accepted: 02/15/2023] [Indexed: 03/10/2023] Open
Abstract
AIMS Mammalian target of rapamycin complex 1 (mTORC1) is highly activated in diabetes, and the decrease of low-density lipoprotein receptor-associated protein 1 (LRP1) in brain microvascular endothelial cells (BMECs) is a key factor leading to amyloid-β (Aβ) deposition in the brain and diabetic cognitive impairment, but the relationship between them is still unknown. METHODS In vitro, BMECs were cultured with high glucose, and the activation of mTORC1 and sterol-regulatory element-binding protein 1 (SREBP1) was observed. mTORC1 was inhibited by rapamycin and small interfering RNA (siRNA) in BMECs. Betulin and siRNA inhibited SREBP1, observed the mechanism of mTORC1-mediated effects on Aβ efflux in BMECs through LRP1 under high-glucose conditions. Constructed cerebrovascular endothelial cell-specific Raptor-knockout (Raptorfl/+ ) mice to investigate the role of mTORC1 in regulating LRP1-mediated Aβ efflux and diabetic cognitive impairment at the tissue level. RESULTS mTORC1 activation was observed in HBMECs cultured in high glucose, and this change was confirmed in diabetic mice. Inhibiting mTORC1 corrected the reduction in Aβ efflux under high-glucose stimulation. In addition, high glucose activated the expression of SREBP1, and inhibiting of mTORC1 reduced the activation and expression of SREBP1. After inhibiting the activity of SREBP1, the presentation of LRP1 was improved, and the decrease of Aβ efflux mediated by high glucose was corrected. Raptorfl/+ diabetic mice had significantly inhibited activation of mTORC1 and SREBP1, increased LRP1 expression, increased Aβ efflux, and improved cognitive impairment. CONCLUSION Inhibiting mTORC1 in the brain microvascular endothelium ameliorates diabetic Aβ brain deposition and cognitive impairment via the SREBP1/LRP1 signaling pathway, suggesting that mTORC1 may be a potential target for the treatment of diabetic cognitive impairment.
Collapse
Affiliation(s)
- Gege Jiang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenzhen Long
- Xiang Yang No. 1 People Hospital, Affiliated Hospital of Hubei University Medicine, XiangYang, China
| | - Yaoling Wang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaofeng Wang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Xue
- Department of Geriatrics, Li-Yuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minfang Chen
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kang Yang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Li
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Gan W, Zhang NN, Li L. The Regulation Mechanism of AMPK/FOXO3 Signal Pathway in the Apoptosis and Differentiation of Duck Myoblasts. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Lim H, Park JY, Abekura F, Choi H, Kim HD, Magae J, Chang YC, Lee YC, Kim CH. 4-O-methylascochlorin attenuates inflammatory responses induced by lipopolysaccharide in RAW 264.7 macrophages. Int Immunopharmacol 2020; 90:107184. [PMID: 33316741 DOI: 10.1016/j.intimp.2020.107184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 01/27/2023]
Abstract
Inflammation is implicated in various diseases, such as inflammatory bowel disease and cancer. Ascochlorin (ASC) and its derivatives have been shown to modulate inflammatory responses in many previous studies. However, the effects of 4-O-methylascochlorin (MAC), one of the ASC derivatives, on inflammatory responses have yet to be reported. In addition, the consequences of chemical modification of ASC on protein signaling and immunity have yet to be fully understood. The fourth carbon in MAC is methylated, which may result in modulation of immune response differently compared with ASC. Hence, we have investigated the role of MAC in inflammatory response induced by lipopolysaccharide in murine macrophage cells. Here, we found that MAC treatment decreased the inflammatory response by murine macrophages. When murine macrophages were treated with MAC, the transcription and translation of various pro-inflammatory indicators such as iNOS and COX-2 decreased. In addition, the ELISA results showed that the expression of TNF-α, IL-6, and IL-1β, which are pro-inflammatory cytokines, was successfully decreased by MAC. Such effects of MAC appear to be mediated via downregulation of MAPK signaling and the transactivational activity of NF-κB. Lipopolysaccharide upregulates MAPK protein phosphorylation and NF-κB translocation, which in turn enhances the transactivation of genes related to NF-κB. Such results of lipopolysaccharide were attenuated by MAC. Collectively, our results indicate that MAC alleviated the inflammatory responses induced by lipopolysaccharide in murine macrophages successfully by modulating MAPK signaling pathway and NF-κB-related genes. This study shows that MAC, similar to other ASC derivatives, can potentially be used therapeutically to reduce the harmful damage induced by prolonged inflammation. In addition, the structural differences between ASC and its derivatives as well as their effect on intracellular signaling will also be discussed.
Collapse
Affiliation(s)
- Hakseong Lim
- Molecular and Cellular Glycobiology Laboratory, Department of Biological Science, SungKyunKwan University, Seoburo 2066, Suwon City, Kyunggi-Do 16419, Republic of Korea
| | - Jun-Young Park
- Molecular and Cellular Glycobiology Laboratory, Department of Biological Science, SungKyunKwan University, Seoburo 2066, Suwon City, Kyunggi-Do 16419, Republic of Korea
| | - Fukushi Abekura
- Molecular and Cellular Glycobiology Laboratory, Department of Biological Science, SungKyunKwan University, Seoburo 2066, Suwon City, Kyunggi-Do 16419, Republic of Korea
| | - Hyunju Choi
- Molecular and Cellular Glycobiology Laboratory, Department of Biological Science, SungKyunKwan University, Seoburo 2066, Suwon City, Kyunggi-Do 16419, Republic of Korea.
| | - Hee-Do Kim
- Molecular and Cellular Glycobiology Laboratory, Department of Biological Science, SungKyunKwan University, Seoburo 2066, Suwon City, Kyunggi-Do 16419, Republic of Korea
| | - Junji Magae
- Magae Bioscience Institute, 49-4 Fujimidai, Tsukuba 300-1263, Japan.
| | - Young-Chae Chang
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea.
| | - Young-Choon Lee
- Department of Medicinal Biotechnology, College of Health Science, Dong-A University, Busan 49315, South Korea.
| | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Laboratory, Department of Biological Science, SungKyunKwan University, Seoburo 2066, Suwon City, Kyunggi-Do 16419, Republic of Korea; Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Samsung Medical Center, Seoul 06351, South Korea.
| |
Collapse
|
5
|
Cao Q, Zhang J, Yu Q, Wang J, Dai M, Zhang Y, Luo Q, Bao M. Carotid baroreceptor stimulation in obese rats affects white and brown adipose tissues differently in metabolic protection. J Lipid Res 2019; 60:1212-1224. [PMID: 31126973 DOI: 10.1194/jlr.m091256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/23/2019] [Indexed: 11/20/2022] Open
Abstract
The sympathetic nervous system (SNS) regulates the functions of white adipose tissue (WAT) and brown adipose tissue (BAT) tightly. Carotid baroreceptor stimulation (CBS) efficiently inhibits SNS activation. We hypothesized that CBS would protect against obesity. We administered CBS to obese rats and measured sympathetic and AMP-activated protein kinase (AMPK)/ PPAR pathway responses as well as changes in perirenal WAT (PWAT), epididymal WAT (EWAT), and interscapular BAT (IBAT). CBS alleviated obesity-related metabolic changes, improving insulin resistance; reducing adipocyte hypertrophy, body weight, and adipose tissue weights; and decreasing norepinephrine but increasing acetylcholine in plasma, PWAT, EWAT, and IBAT. CBS also downregulated fatty acid translocase (CD36), fatty acid transport protein (FATP), phosphorylated and total hormone sensitive lipase, phosphorylated and total protein kinase A, and PPARγ in obese rats. Simultaneously, CBS upregulated phosphorylated adipose triglyceride lipase, phosphorylated and total AMPK, and PPARα in PWAT, EWAT, and IBAT. However, BAT and WAT responses differed; although many responses were more sensitive in IBAT, responses of CD36, FATP, and PPARγ were more sensitive in PWAT and EWAT. Overall, CBS decreased chronically activated SNS and ameliorated obesity-related metabolic disorders by regulating the AMPK/PPARα/γ pathway.
Collapse
Affiliation(s)
- Quan Cao
- Department of Cardiology, Renmin Hospital of Wuhan University.,Cardiovascular Research Institute Wuhan University.,Hubei Key Laboratory of Cardiology Wuhan 430060, China
| | - Junxia Zhang
- Department of Endocrinology, Wuhan General Hospital of the Chinese People's Liberation Army, Wuhan 430060, China
| | - Qiao Yu
- Department of Cardiology, Renmin Hospital of Wuhan University.,Cardiovascular Research Institute Wuhan University.,Hubei Key Laboratory of Cardiology Wuhan 430060, China
| | - Jing Wang
- Department of Cardiology, Renmin Hospital of Wuhan University.,Cardiovascular Research Institute Wuhan University.,Hubei Key Laboratory of Cardiology Wuhan 430060, China
| | - Mingyan Dai
- Department of Cardiology, Renmin Hospital of Wuhan University.,Cardiovascular Research Institute Wuhan University
| | - Yijie Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University.,Cardiovascular Research Institute Wuhan University.,Hubei Key Laboratory of Cardiology Wuhan 430060, China
| | - Qiang Luo
- Department of Cardiology, Renmin Hospital of Wuhan University.,Cardiovascular Research Institute Wuhan University.,Hubei Key Laboratory of Cardiology Wuhan 430060, China
| | - Mingwei Bao
- Department of Cardiology, Renmin Hospital of Wuhan University .,Cardiovascular Research Institute Wuhan University.,Hubei Key Laboratory of Cardiology Wuhan 430060, China
| |
Collapse
|
6
|
4-O-Methylascochlorin inhibits the prolyl hydroxylation of hypoxia-inducible factor-1α, which is attenuated by ascorbate. J Antibiot (Tokyo) 2019; 72:271-281. [PMID: 30796332 DOI: 10.1038/s41429-019-0157-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 01/14/2019] [Accepted: 01/31/2019] [Indexed: 12/27/2022]
Abstract
4-O-Methylascochlorin (MAC), a methylated derivative of ascochlorin, was previously shown to promote the accumulation of hypoxia-inducible factor (HIF)-1α in human breast adenocarcinoma MCF-7 cells. In the present study, we further investigated the effects of MAC on the expression and function of HIF-1α in human fibrosarcoma HT-1080 cells. MAC promoted the accumulation of the HIF-1α protein without affecting its constitutive mRNA expression and augmented the transcriptional activation of HIF target genes. Ascorbate, but not N-acetylcysteine, attenuated MAC-mediated HIF-1α accumulation. MAC-induced increases in HIF-1α transcriptional activity were also attenuated by ascorbate. MAC inhibited the hydroxylation of HIF-1α at the proline 564 residue, while it was reversed by ascorbate. MAC slightly decreased the intracellular concentration of ascorbate. The present results demonstrated that MAC promoted the accumulation of HIF-1α by preventing prolyl hydroxylation, and ascorbate attenuated the MAC-mediated inhibition of HIF-1α prolyl hydroxylation.
Collapse
|
7
|
The ameliorative effect of hemp seed hexane extracts on the Propionibacterium acnes-induced inflammation and lipogenesis in sebocytes. PLoS One 2018; 13:e0202933. [PMID: 30148860 PMCID: PMC6110517 DOI: 10.1371/journal.pone.0202933] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/10/2018] [Indexed: 11/21/2022] Open
Abstract
In this study, we investigated the anti-microbial, anti-inflammatory, and anti-lipogenic effects of hemp (Cannabis sativa L.) seed hexane extracts, focusing on the Propionibacterium acnes-triggered inflammation and lipogenesis. Hemp seed hexane extracts (HSHE) showed anti-microbial activity against P. acnes. The expression of iNOS, COX-2, and the subsequent production of nitric oxide and prostaglandin increased after infection of P. acnes in HaCaT cells, however, upon treating with HSHE, their expressions were reduced. P. acnes-induced expressions of IL-1β and IL-8 were also reduced. HSHE exerted anti-inflammatory effects by regulating NF-κB and MAPKs signaling and blunting the translocation of p-NF-κB to the nucleus in P. acnes-stimulated HaCaT cells. Moreover, P. acnes-induced phosphorylation of ERK and JNK, and their downstream targets c-Fos and c-Jun, was also inhibited by HSHE. In addition, the transactivation of AP-1 induced by P. acnes infection was also downregulated by HSHE. Notably, HSHE regulated inflammation and lipid biosynthesis via regulating AMPK and AKT/FoxO1 signaling in IGF-1-induced inflammation and lipogenesis of sebocytes. In addition, HSHE inhibited 5-lipoxygenase level and P. acnes-induced MMP-9 activity, and promoted collagen biosynthesis in vitro. Thus, HSHE could be utilized to treat acne vulgaris, through its anti-microbial, anti-inflammatory, anti-lipogenic, and collagen-promoting properties.
Collapse
|
8
|
Cho HJ, Park JH, Nam JH, Chang YC, Park B, Hoe HS. Ascochlorin Suppresses MMP-2-Mediated Migration and Invasion by Targeting FAK and JAK-STAT Signaling Cascades. J Cell Biochem 2017; 119:300-313. [PMID: 28569433 DOI: 10.1002/jcb.26179] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 05/31/2017] [Indexed: 12/19/2022]
Abstract
Human glioblastomas express higher levels of matrix metalloprotease-2 (MMP-2) than low-grade brain tumors and normal brain tissues. Ascochlorin (ASC) has anti-metastatic, anti-angiogenic, and synergistic effect in various types of cancer cells. However, it remains unknown whether ASC can affect cell migration and invasion in malignant human glioma cells. In this study, we found that ASC indeed inhibits cell migration and invasion in U373MG and A172. ASC significantly suppresses the MMP-2 gelatinolytic activity and expression in U373MG and A172. To determine the molecular mechanism by which ASC suppressed cell migration and invasion, we investigated whether ASC could modulate metastasis via focal adhesion kinase (FAK) and janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling, a potential drug target. ASC strongly inhibits the phosphorylation of FAK, and treatment with a FAK inhibitor significantly suppresses cancer cell migration in the presence of ASC. In addition, ASC significantly decreased phosphorylation of JAK2/STAT3, cancer cell migration and nuclear translocation of STAT3. Taken together, these results suggest that ASC inhibits cell migration and invasion by blocking FAK and JAK/STAT signaling, resulting in reduced MMP-2 activity. J. Cell. Biochem. 119: 300-313, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hyun-Ji Cho
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Cheomdan-ro, Dong-gu, Daegu 41068, Republic of Korea
| | - Ji-Hyun Park
- College of Pharmacy, Keimyung University, Dalgubeoldaero, Dalseo-Gu, Daegu 42601, Republic of Korea
| | - Jin Han Nam
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Cheomdan-ro, Dong-gu, Daegu 41068, Republic of Korea
| | - Young-Chae Chang
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Duryugongwon-ro, Nam-gu, Daegu 42472, Republic of Korea
| | - Byoungduck Park
- College of Pharmacy, Keimyung University, Dalgubeoldaero, Dalseo-Gu, Daegu 42601, Republic of Korea
| | - Hyang-Sook Hoe
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Cheomdan-ro, Dong-gu, Daegu 41068, Republic of Korea
| |
Collapse
|
9
|
Hypaphorine Attenuates Lipopolysaccharide-Induced Endothelial Inflammation via Regulation of TLR4 and PPAR-γ Dependent on PI3K/Akt/mTOR Signal Pathway. Int J Mol Sci 2017; 18:ijms18040844. [PMID: 28420166 PMCID: PMC5412428 DOI: 10.3390/ijms18040844] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/11/2017] [Accepted: 04/13/2017] [Indexed: 12/31/2022] Open
Abstract
Endothelial lesion response to injurious stimuli is a necessary step for initiating inflammatory cascades in blood vessels. Hypaphorine (Hy) from different marine sources is shown to exhibit anti-inflammatory properties. However, the potential roles and possible molecular mechanisms of Hy in endothelial inflammation have yet to be fully clarified. We showed that Hy significantly inhibited the positive effects of lipopolysaccharide (LPS) on pro-inflammatory cytokines expressions, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), monocyte chemoattractant protein 1 (MCP-1) and vascular cellular adhesion molecule-1 (VCAM-1), as well as induction of the phosphorylation of Akt and mTOR in HMEC-1 cells. The downregulated peroxisome proliferator-activated receptor γ (PPAR-γ) and upregulated toll-like receptor 4 (TLR4) expressions in LPS-challenged endothelial cells were prevented by Hy. Inhibition of both PI3K and mTOR reversed LPS-stimulated increases in TLR4 expressions and decreases in PPAR-γ levels. Genetic silencing of TLR4 or PPAR-γ agonist pioglitazone obviously abrogated the levels of pro-inflammatory cytokines in LPS-treated HMEC-1 cells. These results suggest that Hy may exert anti-inflammatory actions through the regulation of TLR4 and PPAR-γ dependent on PI3K/Akt/mTOR signal pathways. Hy may be considered as a therapeutic agent that can potentially relieve or ameliorate endothelial inflammation-associated diseases.
Collapse
|
10
|
Zhang T, Zhang X, Han K, Zhang G, Wang J, Xie K, Xue Q, Fan X. Analysis of long noncoding RNA and mRNA using RNA sequencing during the differentiation of intramuscular preadipocytes in chicken. PLoS One 2017; 12:e0172389. [PMID: 28199418 PMCID: PMC5310915 DOI: 10.1371/journal.pone.0172389] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 02/03/2017] [Indexed: 02/04/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) regulate metabolic tissue development and function, including adipogenesis. However, little is known about the function and profile of lncRNAs in intramuscular preadipocyte differentiation in chicken. Here, we identified lncRNAs in chicken intramuscular preadipocytes at different differentiation stages using RNA sequencing. A total of 1,311,382,604 clean reads and 25,435 lncRNAs were obtained from 12 samples. In total, 7,433 differentially expressed genes (4,698 lncRNAs and 2,735 mRNAs) were identified by pairwise comparison. These 7,433 differentially expressed genes were grouped into 11 clusters based on their expression patterns by K-means clustering. Using Weighted Gene Coexpression Network Analysis, we identified four stage-specific modules positively related to I0, I2, I4, and I6 stages and two stage-specific modules negatively related to I0 and I2 stages, respectively. Many well-known and novel pathways associated with intramuscular preadipocyte differentiation were identified. We also identified hub genes in each stage-specific module and visualized them in Cytoscape. Our analysis revealed many highly-connected genes, including XLOC_058593, BMP3, MYOD1, and LAMP3. This study provides a valuable resource for chicken lncRNA study and improves our understanding of the biology of preadipocyte differentiation in chicken.
Collapse
Affiliation(s)
- Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Xiangqian Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Kunpeng Han
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Jinyu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
- * E-mail:
| | - Kaizhou Xie
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Qian Xue
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Xiaomei Fan
- Vazyme Biotech Co.,Ltd., Economic and Technological Development Zone, Nanjing, Jiangsu, China
| |
Collapse
|
11
|
Franco R, Martínez-Pinilla E, Navarro G, Zamarbide M. Potential of GPCRs to modulate MAPK and mTOR pathways in Alzheimer's disease. Prog Neurobiol 2017; 149-150:21-38. [PMID: 28189739 DOI: 10.1016/j.pneurobio.2017.01.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 01/20/2017] [Accepted: 01/22/2017] [Indexed: 02/08/2023]
Abstract
Despite efforts to understand the mechanism of neuronal cell death, finding effective therapies for neurodegenerative diseases is still a challenge. Cognitive deficits are often associated with neurodegenerative diseases. Remarkably, in the absence of consensus biomarkers, diagnosis of diseases such as Alzheimer's still relies on cognitive tests. Unfortunately, all efforts to translate findings in animal models to the patients have been unsuccessful. Alzheimer's disease may be addressed from two different points of view, neuroprotection or cognitive enhancement. Based on recent data, the mammalian target of rapamycin (mTOR) pathway arises as a versatile player whose modulation may impact on mechanisms of both neuroprotection and cognition. Whereas direct targeting of mTOR does not seem to constitute a convenient approach in drug discovery, its indirect modulation by other signaling pathways seems promising. In fact, G-protein-coupled receptors (GPCRs) remain the most common 'druggable' targets and as such pharmacological manipulation of GPCRs with selective ligands may modulate phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), mitogen-activated protein (MAP) kinase and mTOR signaling pathways. Thus, GPCRs become important targets for potential drug treatments in different neurodegenerative disorders including, but not limited to, Alzheimer's disease. GPCR-mediated modulation of mTOR may take advantage of different GPCRs coupled to different G-dependent and G-independent signal transduction routes, of functional selectivity and/or of biased agonism. Signals mediated by GPCRs may act as coincidence detectors to achieve different benefits in different stages of the neurodegenerative disease.
Collapse
Affiliation(s)
- Rafael Franco
- Department of Biochemistry and Molecular Biomedicine and IBUB (Institute of Biomedicine of the University of Barcelona), University of Barcelona, Barcelona, Spain; Centro de investigación en Red: Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Eva Martínez-Pinilla
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Asturias, Spain
| | - Gemma Navarro
- Department of Biochemistry and Molecular Biomedicine and IBUB (Institute of Biomedicine of the University of Barcelona), University of Barcelona, Barcelona, Spain; Centro de investigación en Red: Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | | |
Collapse
|
12
|
Min-Wen JC, Yan-Jiang BC, Mishra S, Dai X, Magae J, Shyh-Chang N, Kumar AP, Sethi G. Molecular Targets of Ascochlorin and Its Derivatives for Cancer Therapy. STRESS AND INFLAMMATION IN DISORDERS 2017; 108:199-225. [DOI: 10.1016/bs.apcsb.2017.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|