1
|
Wen Y, Sun Z, Xie S, Hu Z, Lan Q, Sun Y, Yuan L, Zhai C. Intestinal Flora Derived Metabolites Affect the Occurrence and Development of Cardiovascular Disease. J Multidiscip Healthc 2022; 15:2591-2603. [PMID: 36388628 PMCID: PMC9656419 DOI: 10.2147/jmdh.s367591] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/10/2022] [Indexed: 10/31/2023] Open
Abstract
In recent years, increasing evidence has shown that the gut microbiota and their metabolites play a pivotal role in human health and diseases, especially the cardiovascular diseases (CVDs). Intestinal flora imbalance (changes in the composition and function of intestinal flora) accelerates the progression of CVDs. The intestinal flora breaks down the food ingested by the host into a series of metabolically active products, including trimethylamine N-Oxide (TMAO), short-chain fatty acids (SCFAs), primary and secondary bile acids, tryptophan and indole derivatives, phenylacetylglutamine (PAGln) and branched chain amino acids (BCAA). These metabolites participate in the occurrence and development of CVDs via abnormally activating these signaling pathways more swiftly when the gut barrier integrity is broken down. This review focuses on the production and metabolism of TMAO and SCFAs. At the same time, we summarize the roles of intestinal flora metabolites in the occurrence and development of coronary heart disease and hypertension, pulmonary hypertension and other CVDs. The theories of "gut-lung axis" and "gut-heart axis" are provided, aiming to explore the potential targets for the treatment of CVDs based on the roles of the intestinal flora in the CVDs.
Collapse
Affiliation(s)
- Yinuo Wen
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, People’s Republic of China
- The First Clinical College, Wenzhou Medical University, Wenzhou, 325035, People’s Republic of China
| | - Zefan Sun
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, People’s Republic of China
| | - Shuoyin Xie
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, People’s Republic of China
- The First Clinical College, Wenzhou Medical University, Wenzhou, 325035, People’s Republic of China
| | - Zixuan Hu
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, People’s Republic of China
- The First Clinical College, Wenzhou Medical University, Wenzhou, 325035, People’s Republic of China
| | - Qicheng Lan
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, People’s Republic of China
- The First Clinical College, Wenzhou Medical University, Wenzhou, 325035, People’s Republic of China
| | - Yupeng Sun
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, People’s Republic of China
- The First Clinical College, Wenzhou Medical University, Wenzhou, 325035, People’s Republic of China
| | - Linbo Yuan
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, People’s Republic of China
| | - Changlin Zhai
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, People’s Republic of China
- The First Clinical College, Wenzhou Medical University, Wenzhou, 325035, People’s Republic of China
| |
Collapse
|
2
|
Wilkerson JL, Basu SK, Stiles MA, Prislovsky A, Grambergs RC, Nicholas SE, Karamichos D, Allegood JC, Proia RL, Mandal N. Ablation of Sphingosine Kinase 1 Protects Cornea from Neovascularization in a Mouse Corneal Injury Model. Cells 2022; 11:cells11182914. [PMID: 36139489 PMCID: PMC9497123 DOI: 10.3390/cells11182914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/03/2022] [Accepted: 09/10/2022] [Indexed: 11/24/2022] Open
Abstract
The purpose of this study was to investigate the role of sphingosine kinase 1 (SphK1), which generates sphingosine-1-phosphate (S1P), in corneal neovascularization (NV). Wild-type (WT) and Sphk1 knockout (Sphk1−/−) mice received corneal alkali-burn treatment to induce corneal NV by placing a 2 mm round piece of Whatman No. 1 filter paper soaked in 1N NaOH on the center of the cornea for 20 s. Corneal sphingolipid species were extracted and identified using liquid chromatography/mass spectrometry (LC/MS). The total number of tip cells and those positive for ethynyl deoxy uridine (EdU) were quantified. Immunocytochemistry was done to examine whether pericytes were present on newly forming blood vessels. Cytokine signaling and angiogenic markers were compared between the two groups using multiplex assays. Data were analyzed using appropriate statistical tests. Here, we show that ablation of SphK1 can significantly reduce NV invasion in the cornea following injury. Corneal sphingolipid analysis showed that total levels of ceramides, monohexosyl ceramides (HexCer), and sphingomyelin were significantly elevated in Sphk−/− corneas compared to WT corneas, with a comparable level of sphingosine among the two genotypes. The numbers of total and proliferating endothelial tip cells were also lower in the Sphk1−/− corneas following injury. This study underscores the role of S1P in post-injury corneal NV and raises further questions about the roles played by ceramide, HexCer, and sphingomyelin in regulating corneal NV. Further studies are needed to unravel the role played by bioactive sphingolipids in maintenance of corneal transparency and clear vision.
Collapse
Affiliation(s)
- Joseph L. Wilkerson
- Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA
| | - Sandip K. Basu
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Megan A. Stiles
- Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Amanda Prislovsky
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Richard C. Grambergs
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Sarah E. Nicholas
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Jeremy C. Allegood
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Richard L. Proia
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nawajes Mandal
- Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
- Departments of Anatomy and Neurobiology, and Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
- Memphis VA Medical Center, Memphis, TN 38104, USA
- Correspondence:
| |
Collapse
|
3
|
Ji Y, Chen H, Gow W, Ma L, Jin Y, Hui B, Yang Z, Wang Z. Potential biomarkers Ang II/AT1R and S1P/S1PR1 predict the prognosis of hepatocellular carcinoma. Oncol Lett 2020; 20:208. [PMID: 32963614 PMCID: PMC7491028 DOI: 10.3892/ol.2020.12071] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the major causes of cancer-associated morbidity and mortality worldwide. Sphingosine-1-phosphate (S1P) and S1P receptor 1 (S1PR1) have been associated with the development and progression of HCC. Angiotensin II (Ang II) and Ang II receptor type 1 (AT1R) serve key roles in the progression and metastasis of HCC. However, the association and roles of Ang II/AT1R and S1P/S1PR1 in HCC have remained elusive. Therefore, the aim of the present study was to investigate the potential association between Ang II/AT1R and S1P/S1PR1 in HCC, as well as the association of AT1R and S1PR1 protein expression levels with the progression and prognosis of HCC. The results found that the serum levels of Ang II and S1P were significantly higher in patients with HCC compared with those in healthy donors. Furthermore, mRNA and protein levels of AT1R and S1PR1 were highly expressed in human HCC tissues. In addition, a positive correlation between Ang II/S1P and AT1R/S1PR1 in HCC was noted. Upregulation of AT1R and S1PR1 was associated with the progression of HCC. Patients with high AT1R and S1PR1 protein expression levels had unfavorable outcomes with respect to overall survival and recurrence-free survival compared with patients with low AT1R and S1PR1 expression levels. The present results demonstrated an association between AT1R and S1PR1 overexpression and the progression of HCC, indicating that Ang II/AT1R and S1P/S1PR may serve as valuable prognostic biomarkers for HCC.
Collapse
Affiliation(s)
- Yuanyuan Ji
- Scientific Research Center and Precision Medical Institute, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Haiyan Chen
- Scientific Research Center and Precision Medical Institute, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Wei Gow
- Basic Medical Experiment Teaching Center, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Li Ma
- Department of Pathology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yaofeng Jin
- Department of Pathology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Bo Hui
- Department of General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Zhengan Yang
- Department of General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Zhidong Wang
- Department of General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
4
|
Targeting sphingosine kinase 1 for the treatment of pulmonary arterial hypertension. Future Med Chem 2019; 11:2939-2953. [DOI: 10.4155/fmc-2019-0130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pulmonary arterial hypertension (PAH), characterized by high morbidity and mortality, is a serious hazard to human life. Until now, the long-term survival of the PAH patients is still suboptimal. Recently, sphingosine kinase 1 (SPHK1) has drawn more and more attention due to its essential role in the pulmonary vasoconstriction, remodeling of pulmonary blood vessels and right cardiac lesions in PAH patients, and this enzyme is regarded as a new target for the treatment of PAH. Here, we discussed the multifarious functions of SPHK1 in PAH physiology and pathogenesis. Moreover, the structural features of SPHK1 and binding modes with different inhibitors were summarized. Finally, recent advances in the medicinal chemistry research of SPHK1 inhibitors are presented.
Collapse
|
5
|
Montalva L, Antounians L, Zani A. Pulmonary hypertension secondary to congenital diaphragmatic hernia: factors and pathways involved in pulmonary vascular remodeling. Pediatr Res 2019; 85:754-768. [PMID: 30780153 DOI: 10.1038/s41390-019-0345-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/10/2019] [Indexed: 02/06/2023]
Abstract
Congenital diaphragmatic hernia (CDH) is a severe birth defect that is characterized by pulmonary hypoplasia and pulmonary hypertension (PHTN). PHTN secondary to CDH is a result of vascular remodeling, a structural alteration in the pulmonary vessel wall that occurs in the fetus. Factors involved in vascular remodeling have been reported in several studies, but their interactions remain unclear. To help understand PHTN pathophysiology and design novel preventative and treatment strategies, we have conducted a systematic review of the literature and comprehensively analyzed all factors and pathways involved in the pathogenesis of pulmonary vascular remodeling secondary to CDH in the nitrofen model. Moreover, we have linked the dysregulated factors with pathways involved in human CDH. Of the 358 full-text articles screened, 75 studies reported factors that play a critical role in vascular remodeling secondary to CDH. Overall, the impairment of epithelial homeostasis present in pulmonary hypoplasia results in altered signaling to endothelial cells, leading to endothelial dysfunction. This causes an impairment of the crosstalk between endothelial cells and pulmonary artery smooth muscle cells, resulting in increased smooth muscle cell proliferation, resistance to apoptosis, and vasoconstriction, which clinically translate into PHTN.
Collapse
Affiliation(s)
- Louise Montalva
- Division of General and Thoracic Surgery, Department of Surgery, The Hospital for Sick Children, Toronto, Canada.,Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Lina Antounians
- Division of General and Thoracic Surgery, Department of Surgery, The Hospital for Sick Children, Toronto, Canada.,Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Augusto Zani
- Division of General and Thoracic Surgery, Department of Surgery, The Hospital for Sick Children, Toronto, Canada. .,Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada.
| |
Collapse
|
6
|
Contribution of acid sphingomyelinase to angiotensin II-induced vascular adventitial remodeling via membrane rafts/Nox2 signal pathway. Life Sci 2019; 219:303-310. [PMID: 30677425 DOI: 10.1016/j.lfs.2019.01.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/14/2019] [Accepted: 01/20/2019] [Indexed: 11/21/2022]
Abstract
AIMS Vascular adventitial fibroblasts (AFs) in the vascular remodeling during atherosclerosis are increasing arousing attention. Acid sphingomyelinase (ASM) is a soluble glycoprotein which is involved in the development and progression of atherosclerosis. However, it remains unknown if ASM is expressed in vascular AFs and regulates vascular adventitial remodeling and underlying mechanisms. MAIN METHODS AND KEY FINDINGS ASM downregulation with gene silencing was used in the rat AFs treated with angiotensin (Ang) II, which is universally demonstrated to induce vascular adventitia remodeling. It was showed that ASM was indeed expressed in vascular AFs and ASM downregulation resulted in a significant decrease in the protein level of PCNA and collagen I and cell migration under Ang II stimulation. Such improvement of adventitial remodeling was not further augmented by Ang-(1-7), which is deemed as an endogenous Ang II blocker. We further found that ASM downregulation blocked the Nox2-dependent superoxide (O2-) generation, which regulated vascular remodeling in AFs under Ang II. ASM siRNA decreased the aggregation of membrane rafts (MRs) and the consequent recruiting of ceramide and Nox2 in MRs. SIGNIFICANCE In conclusion, these results suggested that ASM downregulation could improve vascular adventitial remodeling which was attributed to inhibiting MRs/Nox2 redox signaling pathway in AFs. Thus, these data supported the idea that ASM is a potential therapeutic target for diabetic vascular complication.
Collapse
|
7
|
Barhoumi T, Fraulob-Aquino JC, Mian MOR, Ouerd S, Idris-Khodja N, Huo KG, Rehman A, Caillon A, Dancose-Giambattisto B, Ebrahimian T, Lehoux S, Paradis P, Schiffrin EL. Matrix metalloproteinase-2 knockout prevents angiotensin II-induced vascular injury. Cardiovasc Res 2018; 113:1753-1762. [PMID: 29016715 DOI: 10.1093/cvr/cvx115] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 06/08/2017] [Indexed: 12/24/2022] Open
Abstract
Aims Matrix metalloproteinases (MMPs) have been implicated in the development of hypertension in animal models and humans. Mmp2 deletion did not change Ang II-induced blood pressure (BP) rise. However, whether Mmp2 knockout affects angiotensin (Ang) II-induced vascular injury has not been tested. We sought to determine whether Mmp2 knockout will prevent Ang II-induced vascular injury. Methods and results A fourteen-day Ang II infusion (1000 ng/kg/min, SC) increased systolic BP, decreased vasodilatory responses to acetylcholine, induced mesenteric artery (MA) hypertrophic remodelling, and enhanced MA stiffness in wild-type (WT) mice. Ang II enhanced aortic media and perivascular reactive oxygen species generation, aortic vascular cell adhesion molecule-1 and monocyte chemotactic protein-1 expression, perivascular monocyte/macrophage and T cell infiltration, and the fraction of spleen activated CD4+CD69+ and CD8+CD69+ T cells, and Ly-6Chi monocytes. Study of intracellular signalling showed that Ang II increased phosphorylation of epidermal growth factor receptor and extracellular-signal-regulated kinase 1/2 in vascular smooth muscle cells isolated from WT mice. All these effects were reduced or prevented by Mmp2 knockout, except for systolic BP elevation. Ang II increased Mmp2 expression in immune cells infiltrating the aorta and perivascular fat. Bone marrow (BM) transplantation experiments revealed that in absence of MMP2 in immune cells, Ang II-induced BP elevation was decreased, and that when MMP2 was deficient in either immune or vascular cells, Ang II-induced endothelial dysfunction was blunted. Conclusions Mmp2 knockout impaired Ang II-induced vascular injury but not BP elevation. BM transplantation revealed a role for immune cells in Ang II-induced BP elevation, and for both vascular and immune cell MMP2 in Ang II-induced endothelial dysfunction.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Ernesto L Schiffrin
- Lady Davis Institute for Medical Research.,Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, #B-127, 3755 Côte-Ste-Catherine Road, Montreal, QC H3T 1E2, Canada
| |
Collapse
|