1
|
Santos MB, de Azevedo Teotônio Cavalcanti M, de Medeiros E Silva YMS, Dos Santos Nascimento IJ, de Moura RO. Overview of the New Bioactive Heterocycles as Targeting Topoisomerase Inhibitors Useful Against Colon Cancer. Anticancer Agents Med Chem 2024; 24:236-262. [PMID: 38038012 DOI: 10.2174/0118715206269722231121173311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/14/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023]
Abstract
Colorectal cancer (CRC) is the third most common cancer globally, with high mortality. Metastatic CRC is incurable in most cases, and multiple drug therapy can increase patients' life expectancy by 2 to 3 years. Efforts are being made to understand the relationship between topoisomerase enzymes and colorectal cancer. Some studies have shown that higher expression of these enzymes is correlated to a poor prognosis for this type of cancer. One of the primary drugs used in the treatment of CRC is Irinotecan, which can be used in monotherapy or, more commonly, in therapeutic schemes such as FOLFIRI (Fluorouracil, Leucovorin, and Irinotecan) and CAPIRI (Capecitabine and Irinotecan). Like Camptothecin, Irinotecan and other compounds have a mechanism of action based on the formation of a ternary complex with topoisomerase I and DNA providing damage to it, therefore leading to cell death. Thus, this review focused on the principal works published in the last ten years that demonstrate a correlation between the inhibition of different isoforms of topoisomerase and in vitro cytotoxic activity against CRC by natural products, semisynthetic and synthetic compounds of pyridine, quinoline, acridine, imidazoles, indoles, and metal complexes. The results revealed that natural compounds, semisynthetic and synthetic derivatives showed potential in vitro cytotoxicity against several colon cancer cell lines, and this activity was often accompanied by the ability to inhibit both isoforms of topoisomerase (I and II), highlighting that these enzymes can be promising targets for the development of new chemotherapy against CRC. Pyridine analogs were considered the most promising for this study, while the evaluation of the real potential of natural products was limited by the lack of information in their work. Moreover, the complexes, although promising, presented as the main limitation the lack of selectivity.
Collapse
Affiliation(s)
- Mirelly Barbosa Santos
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil
| | - Misael de Azevedo Teotônio Cavalcanti
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil
| | - Yvnni Maria Sales de Medeiros E Silva
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil
| | - Igor José Dos Santos Nascimento
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil
- Departament of Pharmacy, Cesmac University Center, Maceió, Brazil
| | - Ricardo Olimpio de Moura
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil
| |
Collapse
|
2
|
Miao W, Liu Y, Tang J, Chen T, Yang F. A Moexitecan Magnetic Liposomal Strategy for Ferroptosis-Enhanced Chemotherapy. Pharmaceutics 2023; 15:2012. [PMID: 37514198 PMCID: PMC10386037 DOI: 10.3390/pharmaceutics15072012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Moexitecan (Mex) is a novel camptothecin derivative that retains the potent antitumor properties of camptothecin drugs and has improved hydrophilicity to enhance biocompatibility in vitro. However, single-drug therapy still has limitations. In this study, magnetic liposomes loaded with both moexitecan and superparamagnetic iron oxide nanoparticles (SPIO) have been fabricated by a film hydration and filtration method, which is abbreviated as Mex@MLipo. By using liposomes as drug carriers, Mex can be delivered specifically to the target site, resulting in improved therapeutic efficacy and reduced toxicity. Morphology characterization results show that Mex@MLipo has a mean diameter of 180-200 nm with a round morphology. The loading efficiencies of Mex and SPIO are 65.86% and 76.86%, respectively. Cell toxicity, in vitro cell uptake, and in vivo fluorescence imaging experiments showed that Mex@MLipo was the most effective in killing HT-29 cells compared with HepG-2 and PC-3 cells, due to its ability to combine chemotherapy and induce ferroptosis, resulting in a strong anti-tumor effect. Thus, this study developed an innovative nanoscale drug delivery system that paves the way for clinical applications of moexitecan.
Collapse
Affiliation(s)
- Weiling Miao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yang Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jian Tang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Tiandong Chen
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Fang Yang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
3
|
Li Y, Zhao D, Zhang W, Yang M, Wu Z, Shi W, Lan S, Guo Z, Yu H, Wu D. A novel camptothecin derivative, ZBH-01, exhibits superior antitumor efficacy than irinotecan by regulating the cell cycle. J Transl Med 2023; 21:422. [PMID: 37386467 PMCID: PMC10308760 DOI: 10.1186/s12967-023-04196-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 05/14/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Irinotecan (CPT-11) is a classic chemotherapeutic agent that plays an important role in the clinical treatment of metastatic colon cancer and other malignant tumors. We previously designed a series of novel irinotecan derivatives. In this study, we select one representative, ZBH-01, to investigate its sophisticated antitumor mechanism in colon tumor cells. METHODS The cytotoxic activity of ZBH-01 on colon cancer cells was evaluate by MTT or Cell Counting Kit-8 (CCK8) assay, 3D and xenograft model. The inhibitory effect of ZBH-01 on TOP1 was detected by DNA relaxation assay and Immuno Complex of Ezyme (ICE) bioassay. The molecular mechanism of ZBH-01 was explored by Next-Generation Sequencing (NGS), bioinformatics analyses, flow cytometry, qRT-PCR, and western blot etc. RESULTS: ZBH-01 can induce obvious DNA damage and has superior antitumor activity against colon cancer cells compared to CPT-11 and SN38 (7-Ethyl-10-hydroxy camptothecin, the in vivo active form of CPT-11) both in vivo and in vitro. Its inhibitory effect on topoisomerase I (TOP1) was also comparable with these two control drugs. There are a much larger number of 842 downregulated and 927 upregulated mRNAs in ZBH-01 treatment group than that in the controls. The most significantly enriched KEGG pathways for these dysregulated mRNAs were DNA replication, the p53 signaling pathway, and the cell cycle. After constructing a protein-protein interaction (PPI) network and screening out a prominent cluster, 14 involved in the cell cycle process was identified. Consistently, ZBH-01 induced G0/G1 phase arrest in colon cancer cells, while CPT-11/SN38 caused S phase arrest. The initiation of apoptosis by ZBH-01 was also superior to CPT-11/SN38, followed by the increased expression of Bax, active caspase 3, and cleaved-PARP, and decreased expression of Bcl-2. Additionally, CCNA2 (cyclin A2), CDK2 (cyclin-dependent kinase 2), and MYBL2 (MYB proto-oncogene like 2) might be involved in the G0/G1 cell cycle arrest induced by ZBH-01. CONCLUSIONS ZBH-01 can be an antitumor candidate drug for preclinical study in the future.
Collapse
Affiliation(s)
- Yongqi Li
- Department of Cancer Centre, The First Hospital of Jilin University, Changchun, 130021, China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, 130061, China
| | - Dawei Zhao
- Department of Breast Tumor, Jilin Cancer Hospital, Changchun, 130012, China
| | - Wenqiu Zhang
- Department of Cancer Centre, The First Hospital of Jilin University, Changchun, 130021, China
| | - Miaomiao Yang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, 130061, China
| | - Zhihui Wu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, 130061, China
| | - Weiguo Shi
- Institute of Pharmacology and Toxicology Academy of Military Medical Sciences, Beijing, 100850, China
| | - Shijie Lan
- Department of Cancer Centre, The First Hospital of Jilin University, Changchun, 130021, China
| | - Zhen Guo
- Department of Cancer Centre, The First Hospital of Jilin University, Changchun, 130021, China
| | - Hong Yu
- Cell Biology Laboratory, Jilin Province Institute of Cancer Prevention and Treatment, Jilin Cancer Hospital, Changchun, 130012, China.
| | - Di Wu
- Department of Cancer Centre, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
4
|
Anti-Colorectal Cancer Effects of a Novel Camptothecin Derivative PCC0208037 In Vitro and In Vivo. Pharmaceuticals (Basel) 2022; 16:ph16010053. [PMID: 36678550 PMCID: PMC9862597 DOI: 10.3390/ph16010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/26/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Colorectal cancer is one of the most common malignancies, and the topoisomerase inhibitor irinotecan (CPT-11)-based chemotherapeutic regimen is currently the first-line treatment with impressive therapeutic efficacy. However, irinotecan has several clinically significant side effects, including diarrhea, which limit its clinical utility and efficacy in many patients. In an effort to discover better and improved pharmacotherapy against colorectal cancer, we synthesized a novel topoisomerase inhibitor, PCC0208037, examined its anti-tumor efficacy and related molecular mechanisms, and characterized its toxicity and pharmacokinetic profiles. PCC0208037 suppressed colorectal cancer cell (CRC) proliferation and increased cell cycle arrest, which may be related to its effects on up-regulating DNA damage response (DDR)-related molecules and apoptosis-related proteins. PCC0208037 demonstrated robust anti-tumor activity in vivo in a colorectal cancer cell xenograft model, which was comparable to or slightly better than CPT-11. In a preliminary toxicology study, PCC0208037 demonstrated much weaker tissue damage to colorectal tissue than CPT-11, and its impacts on food intake and body weight loss were more transient and recovered faster than CPT-11 in mice. This could be partially explained by the pharmacokinetic findings, which showed that PCC0208037 and its active metabolite, SN-38, were more accumulated in tumor tissue than in the intestine, as compared to CPT-11. Taken together, these results described a novel Topo I inhibitor with a comparative advantage over the standard treatment of colorectal cancer CPT-11 and could be a promising candidate compound for the treatment of colorectal cancer that warrants further investigation.
Collapse
|
5
|
A novel irinotecan derivative ZBH-1207 with different anti-tumor mechanism from CPT-11 against colon cancer cells. Mol Biol Rep 2022; 49:8359-8368. [PMID: 35764749 DOI: 10.1007/s11033-022-07652-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/25/2022] [Indexed: 10/17/2022]
Abstract
PURPOSE Irinotecan (CPT-11) is a camptothecin derivative whose potent anti-tumor activity depends on the rapid formation of an in vivo active metabolite, SN38 (7-ethyl-10-hydroxycamptothecin). CPT-11 combine with other agents are often the treatment of choice for patients with advanced or metastatic colorectal cancer (CRC). This study evaluates the cytotoxic mechanism of a novel CPT-11 derivative, ZBH-1207 in CRC cells in vitro. METHODS The anti-proliferation effect of ZBH-1207 on tumor cells was assessed by MTT assay. The inhibition of TOP1, the alteration of cell cycle and apoptosis, and the expression of caspase-3 and PARP in CRC cells induced by ZBH-1207 were detected by DNA relaxation assay, flow cytometry, and Western blot, respectively. RESULTS ZBH-1207 significantly inhibits the proliferation of seven tumor cell lines and retains the activity of TOP1 as compared with CPT-11. Treatment with ZBH-1207 results in more apparent cell cycle arrests and apoptosis of CRC cells than that of CPT-11 and SN38. Accordingly, up-regulation of active caspase-3 and PARP expression were relatively higher in ZBH-1207 group than that in CPT-11 and SN38 group. CONCLUSION ZBH-1207 has higher cytotoxicity than CPT-11/SN38 in CRC cells. Its molecular mechanism involves apoptosis signaling pathway.
Collapse
|
6
|
Khaiwa N, Maarouf NR, Darwish MH, Alhamad DWM, Sebastian A, Hamad M, Omar HA, Orive G, Al-Tel TH. Camptothecin's journey from discovery to WHO Essential Medicine: Fifty years of promise. Eur J Med Chem 2021; 223:113639. [PMID: 34175539 DOI: 10.1016/j.ejmech.2021.113639] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/24/2021] [Accepted: 06/06/2021] [Indexed: 12/16/2022]
Abstract
Nature represents a rich source of compounds used for the treatment of many diseases. Camptothecin (CPT), isolated from the bark of Camptotheca acuminata, is a cytotoxic alkaloid that attenuates cancer cell replication by inhibiting DNA topoisomerase 1. Despite its promising and wide spectrum antiproliferative activity, its use is limited due to low solubility, instability, acquired tumour cell resistance, and remarkable toxicity. This has led to the development of numerous CPT analogues with improved pharmacodynamic and pharmacokinetic profiles. Three natural product-inspired drugs, namely, topotecan, irinotecan, and belotecan, are clinically approved and prescribed drugs for the treatment of several types of cancer, whereas other derivatives are in clinical trials. In this review, which covers literature from 2015 to 2020, we aim to provide a comprehensive overview and describe efforts that led to the development of a variety of CPT analogues. These efforts have led to the discovery of potent, first-in-class chemotherapeutic agents inspired by CPT. In addition, the mechanism of action, SAR studies, and recent advances of novel CPT drug delivery systems and antibody drug conjugates are discussed.
Collapse
Affiliation(s)
- Noura Khaiwa
- College of Pharmacy, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Noor R Maarouf
- College of Pharmacy, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Mhd H Darwish
- College of Pharmacy, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Dima W M Alhamad
- Sharjah Institute for Medical Research, 27272, Sharjah, United Arab Emirates
| | - Anusha Sebastian
- Sharjah Institute for Medical Research, 27272, Sharjah, United Arab Emirates
| | - Mohamad Hamad
- Sharjah Institute for Medical Research, 27272, Sharjah, United Arab Emirates; College of Health Sciences, 27272, Sharjah, United Arab Emirates
| | - Hany A Omar
- College of Pharmacy, University of Sharjah, 27272, Sharjah, United Arab Emirates; Sharjah Institute for Medical Research, 27272, Sharjah, United Arab Emirates
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
| | - Taleb H Al-Tel
- College of Pharmacy, University of Sharjah, 27272, Sharjah, United Arab Emirates; Sharjah Institute for Medical Research, 27272, Sharjah, United Arab Emirates.
| |
Collapse
|
7
|
Liu Q, Zhao S, Meng F, Wang H, Sun L, Li G, Gao F, Chen F. Nrf2 Down-Regulation by Camptothecin Favors Inhibiting Invasion, Metastasis and Angiogenesis in Hepatocellular Carcinoma. Front Oncol 2021; 11:661157. [PMID: 34178646 PMCID: PMC8219964 DOI: 10.3389/fonc.2021.661157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
Higher oxidant stress capacity could promote invasion and metastasis. A previous study showed hepatocellular carcinoma (HCC) expressed more Nrf2 than para-carcinoma tissue. The chemotherapeutics such as epirubicin (EPI) could increase Nrf2 expression, while Camptothecin (CPT) could inhibit tumor growth by down-regulating the key molecule of antioxidant stress signal-Nrf2. The role of Nrf2 in invasion and metastasis was still unclear. In this study, we use EPI and CPT to determine the invasion and metastasis in Huh7 cells, H22 and Huh7 mouse models. In Huh7 cells, Nrf2 expression and ROS level were found increased after incubation with EPI by western blot and flow cytometry assay. But with the combination of EPI and CPT, inhibition of Nrf2 could decrease proliferation, invasion, and metastasis, which were investigated by CCK8 assay, wound healing, and Transwell assays. In Huh7 and H22 mouse models, EPI promoted Nrf2 up-regulation and nucleus translocation. Tumor growth was obviously inhibited with a single application of EPI or CPT. The combination of EPI and CPT could inhibit Nrf2 expression but demonstrated more suppressing effect of tumor growth than EPI. Western blot and immunohistochemical staining study revealed that Nrf2 inhibition was beneficial in decreasing the expression of N-cadherin, MMP9, Snail as well as Twist, and increasing E-cadherin, which were associated with epithelial-mesenchymal transition (EMT). Nrf2 down-regulation promoted lung metastasis of H22 cells in vivo. In addition, H&E staining and immunofluorescence staining of VEGFR suggested angiogenesis of Huh7 and H22 tumors was reduced. In conclusion, down-regulation of Nrf2 demonstrated inhibition of invasion, metastasis, and angiogenesis of hepatoma, which may provide a potential therapy in HCC.
Collapse
Affiliation(s)
- Qian Liu
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Shanshan Zhao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Biomedical Isotope Research Center, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Fanguang Meng
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Hankang Wang
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Liwei Sun
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Guijie Li
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Feng Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Biomedical Isotope Research Center, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Feng Chen
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| |
Collapse
|
8
|
Kaur H, Singh J, Narasimhan B. Antimicrobial, antioxidant and cytotoxic evaluation of diazenyl chalcones along with insights to mechanism of interaction by molecular docking studies. BMC Chem 2019; 13:87. [PMID: 31384834 PMCID: PMC6661766 DOI: 10.1186/s13065-019-0596-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/25/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In continuation of our work, new diazenyl chalcones scaffolds (C-18 to C-27) were efficiently synthesized from substituted acetophenone azo dyes (A-E) by base catalyzed Claisen-Schmidt condensation with different substituted aromatic/heteroaromatic aldehydes. METHODOLOGY The synthesized chalcones were assessed for their in vitro antimicrobial potential towards several pathogenic microbial strains by tube dilution method and further evaluated for antioxidant potential by DPPH assay. These derivatives were also assessed for the cytotoxicity towards the human lung cancer cell line (A549) and normal cell line (HEK) by MTT assay. The most active antimicrobial compounds were docked using Schrodinger v18.1 software with the various potential bacterial receptors to explore the mechanism of interaction. RESULTS The derivative C-22 exhibited high antibacterial activity with very low MIC (1.95-3.90 µg ml-1) and MBC (3.90-7.81 µg ml-1) values. The derivatives C-23, C-24 and C-27 have demonstrated good antioxidant potential (IC50 = 7-18 µg ml-1) correlated to the ascorbic acid (IC50 = 4.45 µg ml-1). The derivative C-25 had shown comparable cytotoxicity to camptothecin against A549 cell line. The docking studies predicted the bacterial dihydrofolate reductase (PDB ID: 3SRW) and bacterial DNA gyrase (PDB ID: 4ZVI) as the possible targets for most of the active antimicrobial compounds. These derivatives affirmed their safety by presenting less cytotoxicity towards HEK cells. Further the ADME prediction by qikprop module of the Schrodinger proved that these compounds exhibited drug-like attributes. CONCLUSION Hence, these compounds have shown their potential as lead for future expansion of novel antimicrobial and cytotoxic drugs.
Collapse
Affiliation(s)
- Harmeet Kaur
- Faculty of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001 India
| | - Jasbir Singh
- College of Pharmacy, Postgraduate Institute of Medical Sciences, Rohtak, 124001 India
| | | |
Collapse
|
9
|
Abstract
Twenty-five years ago, the cytotoxic drug irinotecan (IRT) was first approved in Japan for the treatment of cancer. For more than two decades, the IRT prodrug has largely contributed to the treatment of solid tumors worldwide. Nowadays, this camptothecin derivative targeting topoisomerase 1 remains largely used in combination regimen, like FOLFIRI and FOLFIRINOX, to treat metastatic or advanced solid tumors, such as colon, gastric and pancreatic cancers and others. This review highlights recent discoveries in the field of IRT and its derivatives, including analogues of the active metabolite SN38 (such as FL118), the recently approved liposomal form Nal-IRI and SN38-based immuno-conjugates currently in development (such as sacituzumab govitecan). New information about the IRT mechanism of action are presented, including the discovery of a new protein target, the single-stranded DNA-binding protein FUBP1. Significant progress has been made also to better understand and manage the main limiting toxicities of IRT, chiefly neutropenia and diarrhea. The role of drug-induced inflammation and dysbiosis is underlined and strategies to limit the intestinal toxicity of IRT are discussed (use of β-glucuronidase inhibitors, plant extracts, probiotics). The detailed knowledge of the metabolism of IRT has enabled the identification of potential biomarkers to guide patient selection and to limit drug-induced toxicities, but no robust IRT-specific therapeutic biomarker has been approved yet. IRT is a versatile chemotherapeutic agent which combines well with a variety of anticancer drugs. It offers a large range of drug combinations with cytotoxic agents, targeted products and immuno-active biotherapeutics, to treat a variety of advanced solid carcinoma, sarcoma and cancers with progressive central nervous system diseases. A quarter of century after its first launch, IRT remains an essential anticancer drug, largely prescribed, useful to many patients and scientifically inspiring.
Collapse
|