1
|
Azimi A, Soveizi M, Salmanipour A, Mozafarybazargany M, Ghaffari Jolfayi A, Maleki M, Kalayinia S. Identification of a novel likely pathogenic TPM1 variant linked to hypertrophic cardiomyopathy in a family with sudden cardiac death. ESC Heart Fail 2024; 11:3180-3190. [PMID: 38874371 PMCID: PMC11424302 DOI: 10.1002/ehf2.14906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/19/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024] Open
Abstract
AIMS Hypertrophic cardiomyopathy (HCM) is an autosomal dominant genetic cardiac disorder characterized by unexplained left ventricular hypertrophy. It can cause a wide spectrum of clinical manifestations, ranging from asymptomatic to heart failure and sudden cardiac death (SCD). Approximately half of HCM cases are caused by variants in sarcomeric proteins, including α-tropomyosin (TPM1). In this study, we aimed to characterize the clinical and molecular phenotype of HCM in an Iranian pedigree with SCD. METHODS AND RESULTS The proband and available family members underwent comprehensive clinical evaluations, including echocardiography, cardiac magnetic resonance (CMR) imaging and electrocardiography (ECG). Whole-exome sequencing (WES) was performed in all available family members to identify the causal variant, which was validated, and segregation analysis was conducted via Sanger sequencing. WES identified a novel missense variant, c.761A>G:p.D254G (NM_001018005.2), in the TPM1 gene, in the proband, his father and one of his sisters. Bioinformatic analysis predicted it to be likely pathogenic. Clinical features in affected individuals were consistent with HCM. CONCLUSIONS The identification of a novel TPM1 variant in a family with HCM and SCD underscores the critical role of genetic screening in at-risk families. Early detection of pathogenic variants can facilitate timely intervention and management, potentially reducing the risk of SCD in individuals with HCM.
Collapse
Affiliation(s)
- Amir Azimi
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Mahdieh Soveizi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Alireza Salmanipour
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | | | - Amir Ghaffari Jolfayi
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Majid Maleki
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Samira Kalayinia
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| |
Collapse
|
2
|
Karpicheva OE. Hallmark Features of the Tropomyosin
Regulatory Function in Several Variants of Congenital Myopathy. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021030133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Simonyan AO, Sirenko VV, Karpicheva OE, Robaszkiewicz K, Śliwinska M, Moraczewska J, Krutetskaya ZI, Borovikov YS. The primary cause of muscle disfunction associated with substitutions E240K and R244G in tropomyosin is aberrant behavior of tropomyosin and response of actin and myosin during ATPase cycle. Arch Biochem Biophys 2018; 644:17-28. [PMID: 29510086 DOI: 10.1016/j.abb.2018.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 02/16/2018] [Accepted: 03/02/2018] [Indexed: 10/17/2022]
Abstract
Using the polarized photometry technique we have studied the effects of two amino acid replacements, E240K and R244G, in tropomyosin (Tpm1.1) on the position of Tpm1.1 on troponin-free actin filaments and the spatial arrangement of actin monomers and myosin heads at various mimicked stages of the ATPase cycle in the ghost muscle fibres. E240 and R244 are located in the C-terminal, seventh actin-binding period, in f and b positions of the coiled-coil heptapeptide repeat. Actin, Tpm1.1, and myosin subfragment-1 (S1) were fluorescently labeled: 1.5-IAEDANS was attached to actin and S1, 5-IAF was bound to Tpm1.1. The labeled proteins were incorporated in the ghost muscle fibres and changes in polarized fluorescence during the ATPase cycle have been measured. It was found that during the ATPase cycle both mutant tropomyosins occupied a position close to the inner domain of actin. The relative amount of the myosin heads in the strongly-bound conformations and of the switched on actin monomers increased at mimicking different stages of the ATPase cycle. This might be one of the reasons for muscle dysfunction in congenital fibre type disproportion caused by the substitutions E240K and R244G in tropomyosin.
Collapse
Affiliation(s)
- Armen O Simonyan
- Institute of Cytology of the Russian Academy of Sciences, Laboratory of Molecular Basis of Cell Motility, 4 Tikhoretsky Ave., 194064, Saint Petersburg, Russia; Saint Petersburg State University, Faculty of Biology, Department of Biophysics, 7/9 Universitetskaya Emb., 199034, Saint Petersburg, Russia
| | - Vladimir V Sirenko
- Institute of Cytology of the Russian Academy of Sciences, Laboratory of Molecular Basis of Cell Motility, 4 Tikhoretsky Ave., 194064, Saint Petersburg, Russia
| | - Olga E Karpicheva
- Institute of Cytology of the Russian Academy of Sciences, Laboratory of Molecular Basis of Cell Motility, 4 Tikhoretsky Ave., 194064, Saint Petersburg, Russia
| | - Katarzyna Robaszkiewicz
- Kazimierz Wielki University in Bydgoszcz, Institute of Experimental Biology, Department of Biochemistry and Cell Biology, Ks. J. Poniatowski 12 Str., 85-671, Bydgoszcz, Poland
| | - Małgorzata Śliwinska
- Kazimierz Wielki University in Bydgoszcz, Institute of Experimental Biology, Department of Biochemistry and Cell Biology, Ks. J. Poniatowski 12 Str., 85-671, Bydgoszcz, Poland
| | - Joanna Moraczewska
- Kazimierz Wielki University in Bydgoszcz, Institute of Experimental Biology, Department of Biochemistry and Cell Biology, Ks. J. Poniatowski 12 Str., 85-671, Bydgoszcz, Poland
| | - Zoya I Krutetskaya
- Saint Petersburg State University, Faculty of Biology, Department of Biophysics, 7/9 Universitetskaya Emb., 199034, Saint Petersburg, Russia
| | - Yurii S Borovikov
- Institute of Cytology of the Russian Academy of Sciences, Laboratory of Molecular Basis of Cell Motility, 4 Tikhoretsky Ave., 194064, Saint Petersburg, Russia.
| |
Collapse
|
4
|
Borovikov YS, Rysev NA, Avrova SV, Karpicheva OE, Borys D, Moraczewska J. Molecular mechanisms of deregulation of the thin filament associated with the R167H and K168E substitutions in tropomyosin Tpm1.1. Arch Biochem Biophys 2016; 614:28-40. [PMID: 27956029 DOI: 10.1016/j.abb.2016.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 12/06/2016] [Accepted: 12/08/2016] [Indexed: 12/01/2022]
Abstract
Point mutations R167H and K168E in tropomyosin Tpm1.1 (TM) disturb Ca2+-dependent regulation of the actomyosin ATPase. To understand mechanisms of this defect we studied multistep changes in mobility and spatial arrangement of tropomyosin, actin and myosin heads during the ATPase cycle in reconstituted ghost fibres using the polarized fluorescence microscopy. It was found that both mutations disturbed the mode of troponin operation in the fibres. At high Ca2+, troponin increased the fraction of actin monomers that were in the "switched on" state, but both mutant tropomyosins were shifted toward the outer actin domains, which decreased the fraction of strongly bound myosin heads throughout the ATPase cycle. At low Ca2+, the R167H-TM was located close to the outer actin domains, which reduced the number of strongly-bound myosin heads. However, under these conditions troponin increased the number of actin monomers that were switched on. The K168E-TM was displaced far to the outer actin domains and troponin binding decreased the fraction of switched on actin monomers, but the proportion of the strongly bound myosin heads was abnormally high. Thus, the mutations differently disturbed transmission of conformational changes between troponin, tropomyosin and actin, which is essential for the Са2+-dependent regulation of the thin filament.
Collapse
Affiliation(s)
- Yurii S Borovikov
- Institute of Cytology, Tikhoretsky Pr., 4, Saint Petersburg, 194064, Russia.
| | - Nikita A Rysev
- Institute of Cytology, Tikhoretsky Pr., 4, Saint Petersburg, 194064, Russia
| | | | - Olga E Karpicheva
- Institute of Cytology, Tikhoretsky Pr., 4, Saint Petersburg, 194064, Russia
| | - Danuta Borys
- Kazimierz Wielki University in Bydgoszcz, Ks. J. Poniatowski 12, Str., 85-671 Bydgoszcz, Poland
| | - Joanna Moraczewska
- Kazimierz Wielki University in Bydgoszcz, Ks. J. Poniatowski 12, Str., 85-671 Bydgoszcz, Poland
| |
Collapse
|