1
|
Singh SL, Bhat R. Cyclic-NDGA Effectively Inhibits Human γ-Synuclein Fibrillation, Forms Nontoxic Off-Pathway Species, and Disintegrates Preformed Mature Fibrils. ACS Chem Neurosci 2024; 15:1770-1786. [PMID: 38637513 DOI: 10.1021/acschemneuro.3c00793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
Parkinson's disease arises from protein misfolding, aggregation, and fibrillation and is characterized by LB (Lewy body) deposits, which contain the protein α-synuclein (α-syn) as their major component. Another synuclein, γ-synuclein (γ-syn), coexists with α-syn in Lewy bodies and is also implicated in various types of cancers, especially breast cancer. It is known to seed α-syn fibrillation after its oxidation at methionine residue, thereby contributing in synucleinopathy. Despite its involvement in synucleinopathy, the search for small molecule inhibitors and modulators of γ-syn fibrillation remains largely unexplored. This work reveals the modulatory properties of cyclic-nordihydroguaiaretic acid (cNDGA), a natural polyphenol, on the structural and aggregational properties of human γ-syn employing various biophysical and structural tools, namely, thioflavin T (ThT) fluorescence, Rayleigh light scattering, 8-anilinonaphthalene-1-sulfonic acid binding, far-UV circular dichroism (CD), Fourier transform infrared spectroscopy (FTIR) spectroscopy, atomic force microscopy, ITC, molecular docking, and MTT-toxicity assay. cNDGA was observed to modulate the fibrillation of γ-syn to form off-pathway amorphous species that are nontoxic in nature at as low as 75 μM concentration. The modulation is dependent on oxidizing conditions, with cNDGA weakly interacting (Kd ∼10-5 M) with the residues at the N-terminal of γ-syn protein as investigated by isothermal titration calorimetry and molecular docking, respectively. Increasing cNDGA concentration results in an increased recovery of monomeric γ-syn as shown by sodium dodecyl sulfate and native-polyacrylamide gel electrophoresis. The retention of native structural properties of γ-syn in the presence of cNDGA was further confirmed by far-UV CD and FTIR. In addition, cNDGA is most effective in suppression of fibrillation when added at the beginning of the fibrillation kinetics and is also capable of disintegrating the preformed mature fibrils. These findings could, therefore, pave the ways for further exploring cNDGA as a potential therapeutic against γ-synucleinopathies.
Collapse
Affiliation(s)
- Sneh Lata Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rajiv Bhat
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
2
|
Sarkar K, Das RK. In Silico study of Rosmarinic Acid Derivatives as Novel Insulin Fibril Inhibitors. JOURNAL OF COMPUTATIONAL BIOPHYSICS AND CHEMISTRY 2021. [DOI: 10.1142/s2737416521500381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The self-assembly of human insulin (HI) plays a crucial role in regulating amyloid fibrils. Therefore, it is a significant problem for the medical management of diabetes therapy and these findings have led us to investigate the amyloid formation and its inhibition. Few potential inhibitors have been identified to inhibit amyloid fibrils. Rosmarinic acid (RA) is one of the things that inhibits amyloid formation completely by increasing the resistivity of the amyloidogenic insulin (dimer) protein to thermal unfolding. Here, we choose different tested derivative compounds for designing amyloid inhibitors by substituting various functional groups of RA. These derivative compounds were subjected to in silico studies to determine the best drug candidates. In comparison to RA, 14 molecules have higher binding affinity and interactions with the target receptor. After frontier molecular orbitals study, ADME and toxicity analysis, the eight best compounds may act as the best inhibitors. The stability of the docked complexes was visualized by molecular dynamics (MD) simulations. This finding opens a new proposal to explore future studies with these best compounds to increase the thermal stability of the insulin dimers.
Collapse
Affiliation(s)
- Kaushik Sarkar
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, India
| | - Rajesh Kumar Das
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, India
| |
Collapse
|
3
|
Liu H, Zou S, Dai S, Zhang J, Li W. Dopamine sheathing facilitates the anisotropic growth of lysozyme crystals. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Wu C, Wang J, Ma W, Cai Y, Wang T. Preheat-stabilized pea proteins with anti-aggregation properties. Int J Biol Macromol 2020; 155:1288-1295. [PMID: 31733245 DOI: 10.1016/j.ijbiomac.2019.11.100] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/14/2019] [Accepted: 11/11/2019] [Indexed: 11/20/2022]
Abstract
Solution stability of food proteins is a crucial factor determining their shelf-life and sensory properties; yet to obtain stable protein products such as beverages is generally challenged by the growing demand for non-additive foods. Here, we report a facile method stabilizing pea proteins (PPs) by a simple preheating process at a concentration below 4% (w/v) and a temperature >90 °C. Far ultraviolet circular dichroism, fluorescence spectra, together with light scattering analyses demonstrated that the PPs were unfolded and became crosslinked via exposed hydrophobic moieties and disulfide bonds, giving rise to the formation a stable spatio-temporal interconnected system that could withstand the initial nucleation of aggregations. In addition, for reheated samples treated at a sufficiently high concentration of 15% (w/v), rheological characterizations revealed decreased aggregation along with increased preheating temperature and decreased preheating concentration. The robust strategy, along with the stabilized PPs in this study, would give a strong insight into preparation of heat-stable proteins with a wide span of concentrations, which may serve the needs for protein-enriched ingredients and satisfy the demands for cost-effective protocols applied in food industry.
Collapse
Affiliation(s)
- Chao Wu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jiamei Wang
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Wuchao Ma
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yiru Cai
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Tao Wang
- State Key Laboratory of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, Jiangsu Provincial Research Center for Bioactive Product Processing Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
5
|
Sakaguchi T, Wada T, Kasai T, Shiratori T, Minami Y, Shimada Y, Otsuka Y, Komatsu K, Goto S. Effects of ionic and reductive atmosphere on the conformational rearrangement in hen egg white lysozyme prior to amyloid formation. Colloids Surf B Biointerfaces 2020; 190:110845. [DOI: 10.1016/j.colsurfb.2020.110845] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/08/2020] [Accepted: 02/04/2020] [Indexed: 12/20/2022]
|
6
|
Manda G, Rojo AI, Martínez-Klimova E, Pedraza-Chaverri J, Cuadrado A. Nordihydroguaiaretic Acid: From Herbal Medicine to Clinical Development for Cancer and Chronic Diseases. Front Pharmacol 2020; 11:151. [PMID: 32184727 PMCID: PMC7058590 DOI: 10.3389/fphar.2020.00151] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/05/2020] [Indexed: 12/11/2022] Open
Abstract
Nordihydroguaiaretic acid (NDGA) is a phenolic lignan obtained from Larrea tridentata, the creosote bush found in Mexico and USA deserts, that has been used in traditional medicine for the treatment of numerous diseases such as cancer, renal, cardiovascular, immunological, and neurological disorders, and even aging. NDGA presents two catechol rings that confer a very potent antioxidant activity by scavenging oxygen free radicals and this may explain part of its therapeutic action. Additional effects include inhibition of lipoxygenases (LOXs) and activation of signaling pathways that impinge on the transcription factor Nuclear Factor Erythroid 2-related Factor (NRF2). On the other hand, the oxidation of the catechols to the corresponding quinones my elicit alterations in proteins and DNA that raise safety concerns. This review describes the current knowledge on NDGA, its targets and side effects, and its synthetic analogs as promising therapeutic agents, highlighting their mechanism of action and clinical projection towards therapy of neurodegenerative, liver, and kidney disease, as well as cancer.
Collapse
Affiliation(s)
- Gina Manda
- Department Cellular and Molecular Medicine, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Ana I Rojo
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria la Paz (idiPAZ), Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Madrid, Spain
| | - Elena Martínez-Klimova
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Antonio Cuadrado
- Department Cellular and Molecular Medicine, Victor Babes National Institute of Pathology, Bucharest, Romania.,Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria la Paz (idiPAZ), Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Madrid, Spain
| |
Collapse
|
7
|
Masroor A, Zaidi N, Chandel TI, Aqueel Z, Malik S, Khan RH. Probing the Nongeneralized Amyloid Inhibitory Mechanism of Hydrophobic Chaperone. ACS Chem Neurosci 2020; 11:373-384. [PMID: 31935057 DOI: 10.1021/acschemneuro.9b00593] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Increasing prevalence of protein misfolding disorders urges the search for effective therapies. Although several antiaggregation molecules have been identified, their molecular process of aggregation and clinical trials are underway. The present study is focused on the mechanism through which phenyl butyrate (PB), a chemical chaperone, triggers inhibition of human serum albumin (HSA) fibrillation. Turbidity and Rayleigh light scattering (RLS) measurements reveal the marked presence of aggregates in HSA that were confirmed as amyloid fibrils by thioflavin T (ThT) and Congo red (CR) and were subsequently inhibited by PB in a dose dependent manner. ThT fluorescence kinetics reveals a decrease in the apparent rate constant, Kapp, in the presence of PB without triggering a lag phase in HSA suggesting PB's interference with the elongation phase. Dynamic light scattering (DLS) results display a reduction in the aggregate size in the presence of PB. Isothermal titration calorimetry (ITC) data reveals strong binding of PB at site II both at 25 °C (Kb ≈ 1.94 × 105 M-1) and 65 °C (Kb ≈ 2.90 × 104 M-1), mediated by hydrogen bonding. Overall, our finding establishes that PB stabilizes partially unfolded HSA molecules through hydrogen bonding, thereby preventing establishment of hydrogen bonds between them and hindering their progression into amyloid fibrils. This is in contrast to its chaperone effect manifested with other proteins.
Collapse
Affiliation(s)
- Aiman Masroor
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Nida Zaidi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Tajalli Ilm Chandel
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Zoha Aqueel
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Sadia Malik
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
8
|
Siddiqi MK, Majid N, Alam P, Malik S, Alam A, Rajan S, Ajmal MR, Khan RH. Both beta sheet breaker and alpha helix forming pentapeptide inhibits protein fibrillation: Implication for the treatment of amyloid disorders. Int J Biol Macromol 2019; 143:102-111. [PMID: 31811850 DOI: 10.1016/j.ijbiomac.2019.11.222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/29/2019] [Accepted: 11/27/2019] [Indexed: 12/26/2022]
Abstract
For the first time, the effect of two novel designed pentapeptides on amyloid growth of human insulin using combined biophysical, microscopic, cell viability and computational approaches. Collective experimental data from ThT, ANS, and TEM demonstrate that in spite of having contrasting features, both peptides can effectively inhibit amyloid formation by prolonging lag phase, slowing down aggregation rate, and reducing final fibril formation (up to 84.26% and 85.24% by P1 and P7 respectively). Although pure amyloid caused profound cellular toxicity in SH-SY5Y neuronal cells, amyloid formed in the presence of peptides showed much reduced cellular toxicity. Such an inhibitory effect can be attributed to interference with the structural transition of insulin toward β-sheet structure by peptides. Furthermore, molecular dynamic simulations confirm that peptide preferentially binds to nearby region which is more prone to form aggregates that consequently disrupts self-assembly into amyloid fibrils (P1 and P7 possess inhibition constant value of 0.000183 and 0.000216 nm, respectively), supporting our experimental observations. This study underscores the information about the sequence based inhibition mechanism of peptides that might dictate their inhibition or modulation capacity, which might be helpful in designing anti-amyloid therapeutics.
Collapse
Affiliation(s)
| | - Nabeela Majid
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Parvez Alam
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Sadia Malik
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Aftab Alam
- Centre for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, New Delhi 110025, India
| | - Sudeepa Rajan
- National Institute of Immunology, New Delhi, Delhi 110067, India
| | - Mohd Rehan Ajmal
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
9
|
Furkan M, Sidddiqi MK, Khan AN, Khan RH. An antibiotic (sulfamethoxazole) stabilizes polypeptide (human serum albumin) even under extreme condition (elevated temperature). Int J Biol Macromol 2019; 135:337-343. [DOI: 10.1016/j.ijbiomac.2019.05.152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/03/2019] [Accepted: 05/14/2019] [Indexed: 10/26/2022]
|
10
|
Protein misfolding, aggregation and mechanism of amyloid cytotoxicity: An overview and therapeutic strategies to inhibit aggregation. Int J Biol Macromol 2019; 134:1022-1037. [PMID: 31128177 DOI: 10.1016/j.ijbiomac.2019.05.109] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/18/2019] [Accepted: 05/18/2019] [Indexed: 12/18/2022]
Abstract
Protein and peptides are converted from their soluble forms into highly ordered fibrillar aggregates under various conditions inside the cell. Such transitions confer diverse neurodegenerative diseases including Alzheimer's disease, Huntington's disease Prion's disease, Parkinson's disease, polyQ and share abnormal folding of potentially cytotoxic protein species linked with degeneration and death of precise neuronal populations. Presently, major advances are made to understand and get detailed insight into the structural basis and mechanism of amyloid formation, cytotoxicity and therapeutic approaches to combat them. Here we highlight classifies and summarizes the detailed overview of protein misfolding and aggregation at their molecular level including the factors that promote protein aggregation under in vivo and in vitro conditions. In addition, we describe the recent technologies that aid the characterization of amyloid aggregates along with several models that might be responsible for amyloid induced cytotoxicity to cells. Overview on the inhibition of amyloidosis by targeting different small molecules (both natural and synthetic origin) have been also discussed, that provides important approaches to identify novel targets and develop specific therapeutic strategies to combat protein aggregation related neurodegenerative diseases.
Collapse
|
11
|
Al-Shabib NA, Khan JM, Malik A, Sen P, Ramireddy S, Chinnappan S, Alamery SF, Husain FM, Ahmad A, Choudhry H, Khan MI, Shahzad SA. Allura red rapidly induces amyloid-like fibril formation in hen egg white lysozyme at physiological pH. Int J Biol Macromol 2019; 127:297-305. [DOI: 10.1016/j.ijbiomac.2019.01.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 12/30/2022]
|
12
|
Characterization of the binding of triprolidine hydrochloride to hen egg white lysozyme by multi-spectroscopic and molecular docking techniques. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.08.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
13
|
Siddiqi MK, Alam P, Iqbal T, Majid N, Malik S, Nusrat S, Alam A, Ajmal MR, Uversky VN, Khan RH. Elucidating the Inhibitory Potential of Designed Peptides Against Amyloid Fibrillation and Amyloid Associated Cytotoxicity. Front Chem 2018; 6:311. [PMID: 30123793 PMCID: PMC6085999 DOI: 10.3389/fchem.2018.00311] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 07/09/2018] [Indexed: 01/09/2023] Open
Abstract
Inhibition of fibrillation process and disaggregation of mature fibrils using small peptide are the promising remedial strategies to combat neurodegenerative diseases. However, designing peptide-based drugs to target β-sheet-rich amyloid has been a major challenge. The current work describes, for the first time, the amyloid inhibitory potential of the two short peptides (selected on the basis of predisposition of their amino acid residues toward β-sheet formation) using combination of biophysical, imaging methods, and docking approaches. Results showed that peptides employed different mechanisms to inhibit the amyloid fibrillation. Furthermore, they were also effective in blocking the amyloid fibrillation pathway. In contrary to the insulin fibrillar mesh, significantly less fibrillar species appeared in the presence of peptides, as confirmed by transmission electron microscopy. Circular dichroism analysis indicated that although peptides did not stabilize the native state of insulin, they inhibited amyloid aggregation by reducing the formation of β-sheet rich structures. Hemolytic assay revealed the non-hemolytic nature of the species formed when insulin was co-incubated with the peptides. Therefore, despite the inherent potential to form β-sheet structure, these peptides inhibited the amyloid formation and potentially can be used as therapeutics for the treatment of amyloid-related diseases.
Collapse
Affiliation(s)
- Mohammad K Siddiqi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Parvez Alam
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Tabish Iqbal
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Nabeela Majid
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Sadia Malik
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Saima Nusrat
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Aftab Alam
- Center for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, New Delhi, India
| | - Mohd R Ajmal
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Vladimir N Uversky
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, Moscow, Russia.,Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Rizwan H Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
14
|
Thermal unfolding of human lysozyme induces aggregation: Recognition of the aggregates by antisera against the native protein. Int J Biol Macromol 2018; 113:976-982. [DOI: 10.1016/j.ijbiomac.2018.02.095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 02/05/2023]
|
15
|
Interaction of catecholamine precursor l-Dopa with lysozyme: A biophysical insight. Int J Biol Macromol 2018; 109:1132-1139. [DOI: 10.1016/j.ijbiomac.2017.11.107] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 12/13/2022]
|
16
|
Nusrat S, Khan RH. Exploration of ligand-induced protein conformational alteration, aggregate formation, and its inhibition: A biophysical insight. Prep Biochem Biotechnol 2018; 48:43-56. [PMID: 29106330 DOI: 10.1080/10826068.2017.1387561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The association of protein aggregates with plentiful human diseases has fascinated studies regarding the biophysical characterization of protein misfolding and ultimately their aggregate formation mechanism. Protein-ligand interaction, their mechanism, conformational changes by ligands, and protein aggregate formation have been studied upon exploiting experimental techniques and computational methodologies. Such studies for the exploration of ligand-induced conformational changes in protein, misfolding and aggregation, has confirmed drastic progresses in the study of aggregate formation pathways. This review comprises of an inclusive description of contemporary experimental techniques as well as theoretical improvements in the interpretation of the conformational properties of protein. We have also discussed various factors responsible for the microenvironment change around protein that sequentially causes amyloidoses. Biophysical techniques and cell-based assays to gain comprehensive understandings of protein-ligand interaction, protein folding, and aggregation pathways have also been described. The promising therapeutic methods used to inhibit the protein fibrillogenesis have also been discussed.
Collapse
Affiliation(s)
- Saima Nusrat
- a Interdisciplinary Biotechnology Unit , Aligarh Muslim University , Aligarh , Uttar Pradesh , India
| | - Rizwan Hasan Khan
- a Interdisciplinary Biotechnology Unit , Aligarh Muslim University , Aligarh , Uttar Pradesh , India
| |
Collapse
|
17
|
Nusrat S, Zaman M, Masroor A, Siddqi MK, Zaidi N, Neelofar K, Abdelhameed AS, Khan RH. Deciphering the enhanced inhibitory, disaggregating and cytoprotective potential of promethazine towards amyloid fibrillation. Int J Biol Macromol 2018; 106:851-863. [DOI: 10.1016/j.ijbiomac.2017.08.081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/12/2017] [Accepted: 08/13/2017] [Indexed: 11/26/2022]
|
18
|
Sharma S, Nehru B, Saini A. Inhibition of Alzheimer's amyloid-beta aggregation in-vitro by carbenoxolone: Insight into mechanism of action. Neurochem Int 2017; 108:481-493. [DOI: 10.1016/j.neuint.2017.06.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/09/2017] [Accepted: 06/22/2017] [Indexed: 10/19/2022]
|
19
|
Nusrat S, Zaidi N, Siddiqi MK, Zaman M, Siddique IA, Ajmal MR, Abdelhameed AS, Khan RH. Anti-Parkinsonian L-Dopa can also act as anti-systemic amyloidosis—A mechanistic exploration. Int J Biol Macromol 2017; 99:630-640. [DOI: 10.1016/j.ijbiomac.2017.03.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 03/05/2017] [Accepted: 03/06/2017] [Indexed: 01/15/2023]
|
20
|
Chong X, Sun L, Sun Y, Chang L, Chang AK, Lu X, Zhou X, Liu J, Zhang B, Jones GW, He J. Insights into the mechanism of how Morin suppresses amyloid fibrillation of hen egg white lysozyme. Int J Biol Macromol 2017; 101:321-325. [PMID: 28341174 DOI: 10.1016/j.ijbiomac.2017.03.107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 03/17/2017] [Accepted: 03/20/2017] [Indexed: 12/20/2022]
Abstract
This communication describes the inhibitory effect of Morin on the fibrillation of Hen Egg White Lysozyme (HEWL), a generic amyloid-forming model protein. This effect was dose-dependent and stronger than other small molecules we have tested previously. Spectrofluorometric and computational studies support a model suggesting that Morin inhibits amyloid fibril formation of HEWL by binding to the aggregation prone cleft region of the β-domain of HEWL, thereby stabilizing the molecule in its native-like state. Interestingly, transmission electron microscopy observations suggest that, along with increases in Morin concentration, the observed amorphous aggregates became larger and morphologically different. We propose that following occupation of the binding cleft, excess Morin adheres and coats the HEWL protein surface, thereby minimizing the interaction between the protein surface and water molecules.
Collapse
Affiliation(s)
- Xiaoying Chong
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Luchen Sun
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Yonghui Sun
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Lin Chang
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Alan K Chang
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Xian Lu
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Xuejie Zhou
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Junqing Liu
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Bing Zhang
- Experimental Center of Functional Subjects, China Medical University, 92 Bei Er Road, Heping District, Shenyang 110001, China
| | - Gary W Jones
- Centre for Biomedical Science Research, School of Clinical and Applied Sciences, Leeds Beckett University, City Campus, Leeds LS1 3HE, United Kingdom
| | - Jianwei He
- School of Life Science, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
21
|
Abdelhameed AS, Nusrat S, Paliwal S, Zaman M, Zaidi N, Khan RH. A multitechnique approach to probe the interaction of a therapeutic tyrosine kinase inhibitor nintedanib and bovine serum albumin. Prep Biochem Biotechnol 2017; 47:655-663. [DOI: 10.1080/10826068.2016.1275014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Ali Saber Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saima Nusrat
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Sanjhi Paliwal
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Masihuz Zaman
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Nida Zaidi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|