1
|
Lin QT, Colussi DM, Stathopulos PB. The apo LETM1 F-EF-hand adopts a closed conformation that underlies a multi-modal sensory role in mitochondria. FEBS Lett 2025. [PMID: 39927520 DOI: 10.1002/1873-3468.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/27/2024] [Accepted: 01/20/2025] [Indexed: 02/11/2025]
Abstract
Leucine zipper EF-hand containing transmembrane protein-1 (LETM1) plays a critical role in mitochondrial function, with haploinsufficiency linked to Wolf-Hirschhorn syndrome. Here, we present the solution NMR structure of the calcium (Ca2+)-depleted LETM1 EF-hand domain, revealing a closed conformation facilitated by a distinct F1-helix pivot rather than decreased interhelical angle. Further, we observe regiospecific unfolding in response to hot and cold denaturation and show H662 has a pKa in-line with physiological pH fluctuations. Finally, we demonstrate Ca2+-dependent transient interactions between the EF-hand and other LETM1 or GHITM protein domains. Collectively, our data reveal the apo-to-holo structural dynamics and mechanisms underlying the multi-modal sensing by the LETM1 EF-hand domain, highlighting its role as an adaptable regulatory element within the mitochondrial matrix.
Collapse
Affiliation(s)
- Qi-Tong Lin
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| | - Danielle M Colussi
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| |
Collapse
|
2
|
Lin QT, Colussi DM, Lake T, Stathopulos PB. An AI-informed NMR structure reveals an extraordinary LETM1 F-EF-hand domain that functions as a two-way regulator of mitochondrial calcium. Structure 2024; 32:2063-2082.e5. [PMID: 39317198 DOI: 10.1016/j.str.2024.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/03/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024]
Abstract
AlphaFold can accurately predict static protein structures but does not account for solvent conditions. Human leucine zipper EF-hand transmembrane protein-1 (LETM1) has one sequence-identifiable EF-hand but how calcium (Ca2+) affects structure and function remains enigmatic. Here, we used highly confident AlphaFold Cα predictions to guide nuclear Overhauser effect (NOE) assignments and structure calculation of the LETM1 EF-hand in the presence of Ca2+. The resultant NMR structure exposes pairing between a partial loop-helix and full helix-loop-helix, forming an unprecedented F-EF-hand with non-canonical Ca2+ coordination but enhanced hydrophobicity for protein interactions compared to calmodulin. The structure also reveals the basis for pH sensing at the link between canonical and partial EF-hands. Functionally, mutations that augmented or weakened Ca2+ binding increased or decreased matrix Ca2+, respectively, establishing F-EF as a two-way mitochondrial Ca2+ regulator. Thus, we show how to synergize AI prediction with NMR data, elucidating a solution-specific and extraordinary LETM1 F-EF-hand.
Collapse
Affiliation(s)
- Qi-Tong Lin
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A5C1, Canada
| | - Danielle M Colussi
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A5C1, Canada
| | - Taylor Lake
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A5C1, Canada
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A5C1, Canada.
| |
Collapse
|
3
|
Das NR, Chaudhury KN, Pal D. DREAMweb: An online tool for graph-based modeling of NMR protein structure. Proteomics 2024; 24:e2300379. [PMID: 38629186 DOI: 10.1002/pmic.202300379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/17/2024] [Accepted: 03/27/2024] [Indexed: 10/04/2024]
Abstract
The value of accurate protein structural models closely conforming to the experimental data is indisputable. DREAMweb deploys an improved DREAM algorithm, DREAMv2, that incorporates a tighter bound in the constraint set of the underlying optimization approach. This reduces the artifacts while modeling the protein structure by solving the distance-geometry problem. DREAMv2 follows a bottom-up strategy of building smaller substructures for regions with a larger concentration of experimental bounds and consolidating them before modeling the rest of the protein structure. This improves secondary structure conformance in the final models consistent with experimental data. The proposed method efficiently models regions with sparse coverage of experimental data by reducing the possibility of artifacts compared to DREAM. To balance performance and accuracy, smaller substructures (∼ 200 $\sim 200$ atoms) are solved in this regime, allowing faster builds for the other parts under relaxed conditions. DREAMweb is accessible as an internet resource. The improvements in results are showcased through benchmarks on 10 structures. DREAMv2 can be used in tandem with any NMR-based protein structure determination workflow, including an iterative framework where the NMR assignment for the NOESY spectra is incomplete or ambiguous. DREAMweb is freely available for public use at http://pallab.cds.iisc.ac.in/DREAM/ and downloadable at https://github.com/niladriranjandas/DREAMv2.git.
Collapse
Affiliation(s)
- Niladri Ranajan Das
- IISc Mathematics Initiative, Indian Institute of Science, Bangalore, Karnataka, India
| | - Kunal Narayan Chaudhury
- Department of Electrical Engineering, Indian Institute of Science, Bangalore, Karnataka, India
| | - Debnath Pal
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
4
|
Klukowski P, Riek R, Güntert P. Time-optimized protein NMR assignment with an integrative deep learning approach using AlphaFold and chemical shift prediction. SCIENCE ADVANCES 2023; 9:eadi9323. [PMID: 37992167 PMCID: PMC10664993 DOI: 10.1126/sciadv.adi9323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/20/2023] [Indexed: 11/24/2023]
Abstract
Chemical shift assignment is vital for nuclear magnetic resonance (NMR)-based studies of protein structures, dynamics, and interactions, providing crucial atomic-level insight. However, obtaining chemical shift assignments is labor intensive and requires extensive measurement time. To address this limitation, we previously proposed ARTINA, a deep learning method for automatic assignment of two-dimensional (2D)-4D NMR spectra. Here, we present an integrative approach that combines ARTINA with AlphaFold and UCBShift, enabling chemical shift assignment with reduced experimental data, increased accuracy, and enhanced robustness for larger systems, as presented in a comprehensive study with more than 5000 automated assignment calculations on 89 proteins. We demonstrate that five 3D spectra yield more accurate assignments (92.59%) than pure ARTINA runs using all experimentally available NMR data (on average 10 3D spectra per protein, 91.37%), considerably reducing the required measurement time. We also showcase automated assignments of only 15N-labeled samples, and report improved assignment accuracy in larger synthetic systems of up to 500 residues.
Collapse
Affiliation(s)
- Piotr Klukowski
- Institute of Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Roland Riek
- Institute of Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Peter Güntert
- Institute of Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
- Institute of Biophysical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, 192-0397 Tokyo, Japan
| |
Collapse
|
5
|
Das NR, Chaudhury KN, Pal D. Improved NMR-data-compliant protein structure modeling captures context-dependent variations and expands the scope of functional inference. Proteins 2023; 91:412-435. [PMID: 36287124 DOI: 10.1002/prot.26439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/12/2022] [Accepted: 10/20/2022] [Indexed: 11/13/2022]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy can reveal conformational states of a protein in physiological conditions. However, sparsely available NMR data for a protein with large degrees of freedom can introduce structural artifacts in the built models. Currently used state-of-the-art methods deriving protein structure and conformation from NMR deploy molecular dynamics (MD) coupled with simulated annealing for building models. We provide an alternate graph-based modeling approach, where we first build substructures from NMR-derived distance-geometry constraints combined in one shot to form the core structure. The remaining molecule with inadequate data is modeled using a hybrid approach respecting the observed distance-geometry constraints. One-shot structure building is rarely undertaken for large and sparse data systems, but our data-driven bottom-up approach makes this uniquely feasible by suitable partitioning of the problem. A detailed comparison of select models with state-of-art methods reveals differences in the secondary structure regions wherein the correctness of our models is confirmed by NMR data. Benchmarking of 106 protein-folds covering 38-282 length structures shows minimal experimental-constraint violations while conforming to other structure quality parameters such as the proper folding, steric clash, and torsion angle violation based on Ramachandran plot criteria. Comparative MD studies using select protein models from a state-of-art method and ours under identical experimental parameters reveal distinct conformational dynamics that could be attributed to protein structure-function. Our work is thus useful in building enhanced NMR-evidence-based models that encapsulate the contextual secondary and tertiary structure variations present during the experimentation and expand the scope of functional inference.
Collapse
Affiliation(s)
- Niladri R Das
- IISc Mathematics Initiative, Indian Institute of Science, Bangalore, India.,Department of Electrical Engineering, Indian Institute of Science, Bangalore, India
| | - Kunal N Chaudhury
- Department of Electrical Engineering, Indian Institute of Science, Bangalore, India
| | - Debnath Pal
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, India
| |
Collapse
|
6
|
Klukowski P, Riek R, Güntert P. NMRtist: an online platform for automated biomolecular NMR spectra analysis. Bioinformatics 2023; 39:7019933. [PMID: 36723167 PMCID: PMC9913044 DOI: 10.1093/bioinformatics/btad066] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/01/2023] [Accepted: 01/31/2023] [Indexed: 02/02/2023] Open
Abstract
SUMMARY We present NMRtist, an online platform that combines deep learning, large-scale optimization and cloud computing to automate protein NMR spectra analysis. Our website provides virtual storage for NMR spectra deposition together with a set of applications designed for automated peak picking, chemical shift assignment and protein structure determination. The system can be used by non-experts and allows protein assignments and structures to be determined within hours after the measurements, strictly without any human intervention. AVAILABILITY AND IMPLEMENTATION NMRtist is freely available to non-commercial users at https://nmrtist.org. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Piotr Klukowski
- Laboratory of Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Roland Riek
- Laboratory of Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Peter Güntert
- Laboratory of Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland.,Institute of Biophysical Chemistry, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany.,Department of Chemistry, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
7
|
Hoch JC, Baskaran K, Burr H, Chin J, Eghbalnia H, Fujiwara T, Gryk M, Iwata T, Kojima C, Kurisu G, Maziuk D, Miyanoiri Y, Wedell J, Wilburn C, Yao H, Yokochi M. Biological Magnetic Resonance Data Bank. Nucleic Acids Res 2023; 51:D368-D376. [PMID: 36478084 PMCID: PMC9825541 DOI: 10.1093/nar/gkac1050] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/20/2022] [Accepted: 10/23/2022] [Indexed: 12/12/2022] Open
Abstract
The Biological Magnetic Resonance Data Bank (BMRB, https://bmrb.io) is the international open data repository for biomolecular nuclear magnetic resonance (NMR) data. Comprised of both empirical and derived data, BMRB has applications in the study of biomacromolecular structure and dynamics, biomolecular interactions, drug discovery, intrinsically disordered proteins, natural products, biomarkers, and metabolomics. Advances including GHz-class NMR instruments, national and trans-national NMR cyberinfrastructure, hybrid structural biology methods and machine learning are driving increases in the amount, type, and applications of NMR data in the biosciences. BMRB is a Core Archive and member of the World-wide Protein Data Bank (wwPDB).
Collapse
Affiliation(s)
- Jeffrey C Hoch
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030-3305, USA
| | - Kumaran Baskaran
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030-3305, USA
| | - Harrison Burr
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030-3305, USA
| | - John Chin
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030-3305, USA
| | - Hamid R Eghbalnia
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030-3305, USA
| | - Toshimichi Fujiwara
- Protein Data Bank Japan, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871. Japan
| | - Michael R Gryk
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030-3305, USA
| | - Takeshi Iwata
- Protein Data Bank Japan, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871. Japan
| | - Chojiro Kojima
- Protein Data Bank Japan, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871. Japan
- Graduate School of Engineering Science, Yokohama National University, Yokohama 240-8501, Japan
| | - Genji Kurisu
- Protein Data Bank Japan, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871. Japan
| | - Dmitri Maziuk
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030-3305, USA
| | - Yohei Miyanoiri
- Protein Data Bank Japan, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871. Japan
| | - Jonathan R Wedell
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030-3305, USA
| | - Colin Wilburn
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030-3305, USA
| | - Hongyang Yao
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030-3305, USA
| | - Masashi Yokochi
- Protein Data Bank Japan, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871. Japan
| |
Collapse
|
8
|
The accuracy of protein structures in solution determined by AlphaFold and NMR. Structure 2022; 30:925-933.e2. [DOI: 10.1016/j.str.2022.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/18/2022] [Accepted: 04/13/2022] [Indexed: 02/05/2023]
|
9
|
Szabó PB, Sabanés Zariquiey F, Nogueira JJ. Cosolvent and Dynamic Effects in Binding Pocket Search by Docking Simulations. J Chem Inf Model 2021; 61:5508-5523. [PMID: 34730967 PMCID: PMC8659376 DOI: 10.1021/acs.jcim.1c00924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Indexed: 11/30/2022]
Abstract
The lack of conformational sampling in virtual screening projects can lead to inefficient results because many of the potential drugs may not be able to bind to the target protein during the static docking simulations. Here, we performed ensemble docking for around 2000 United States Food and Drug Administration (FDA)-approved drugs with the RNA-dependent RNA polymerase (RdRp) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as a target. The representative protein structures were generated by clustering classical molecular dynamics trajectories, which were evolved using three solvent scenarios, namely, pure water, benzene/water and phenol/water mixtures. The introduction of dynamic effects in the theoretical model showed improvement in docking results in terms of the number of strong binders and binding sites in the protein. Some of the discovered pockets were found only for the cosolvent simulations, where the nonpolar probes induced local conformational changes in the protein that lead to the opening of transient pockets. In addition, the selection of the ligands based on a combination of the binding free energy and binding free energy gap between the best two poses for each ligand provided more suitable binders than the selection of ligands based solely on one of the criteria. The application of cosolvent molecular dynamics to enhance the sampling of the configurational space is expected to improve the efficacy of virtual screening campaigns of future drug discovery projects.
Collapse
Affiliation(s)
- P. Bernát Szabó
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
- Department
of Chemistry, Universidad Autónoma
de Madrid, Calle Francisco Tomás y Valiente, 7, 28049 Madrid, Spain
| | | | - Juan J. Nogueira
- Department
of Chemistry, Universidad Autónoma
de Madrid, Calle Francisco Tomás y Valiente, 7, 28049 Madrid, Spain
- IADCHEM,
Institute for Advanced Research in Chemistry, Universidad Autónoma de Madrid, Calle Francisco Tomás y Valiente, 7, 28049 Madrid, Spain
| |
Collapse
|
10
|
Vincenzi M, Mercurio FA, Leone M. NMR Spectroscopy in the Conformational Analysis of Peptides: An Overview. Curr Med Chem 2021; 28:2729-2782. [PMID: 32614739 DOI: 10.2174/0929867327666200702131032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/21/2020] [Accepted: 05/28/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND NMR spectroscopy is one of the most powerful tools to study the structure and interaction properties of peptides and proteins from a dynamic perspective. Knowing the bioactive conformations of peptides is crucial in the drug discovery field to design more efficient analogue ligands and inhibitors of protein-protein interactions targeting therapeutically relevant systems. OBJECTIVE This review provides a toolkit to investigate peptide conformational properties by NMR. METHODS Articles cited herein, related to NMR studies of peptides and proteins were mainly searched through PubMed and the web. More recent and old books on NMR spectroscopy written by eminent scientists in the field were consulted as well. RESULTS The review is mainly focused on NMR tools to gain the 3D structure of small unlabeled peptides. It is more application-oriented as it is beyond its goal to deliver a profound theoretical background. However, the basic principles of 2D homonuclear and heteronuclear experiments are briefly described. Protocols to obtain isotopically labeled peptides and principal triple resonance experiments needed to study them, are discussed as well. CONCLUSION NMR is a leading technique in the study of conformational preferences of small flexible peptides whose structure can be often only described by an ensemble of conformations. Although NMR studies of peptides can be easily and fast performed by canonical protocols established a few decades ago, more recently we have assisted to tremendous improvements of NMR spectroscopy to investigate instead large systems and overcome its molecular weight limit.
Collapse
Affiliation(s)
- Marian Vincenzi
- Institute of Biostructures and Bioimaging, National Research Council of Italy, Via Mezzocannone 16, 80134, Naples, Italy
| | - Flavia Anna Mercurio
- Institute of Biostructures and Bioimaging, National Research Council of Italy, Via Mezzocannone 16, 80134, Naples, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging, National Research Council of Italy, Via Mezzocannone 16, 80134, Naples, Italy
| |
Collapse
|
11
|
Sinelnikova A, Spoel DVD. NMR refinement and peptide folding using the GROMACS software. JOURNAL OF BIOMOLECULAR NMR 2021; 75:143-149. [PMID: 33778935 PMCID: PMC8131288 DOI: 10.1007/s10858-021-00363-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/18/2021] [Indexed: 05/11/2023]
Abstract
Nuclear magnetic resonance spectroscopy is used routinely for studying the three-dimensional structures and dynamics of proteins and nucleic acids. Structure determination is usually done by adding restraints based upon NMR data to a classical energy function and performing restrained molecular simulations. Here we report on the implementation of a script to extract NMR restraints from a NMR-STAR file and export it to the GROMACS software. With this package it is possible to model distance restraints, dihedral restraints and orientation restraints. The output from the script is validated by performing simulations with and without restraints, including the ab initio refinement of one peptide.
Collapse
Affiliation(s)
- Anna Sinelnikova
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - David van der Spoel
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
12
|
Seffernick JT, Lindert S. Hybrid methods for combined experimental and computational determination of protein structure. J Chem Phys 2020; 153:240901. [PMID: 33380110 PMCID: PMC7773420 DOI: 10.1063/5.0026025] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/10/2020] [Indexed: 02/04/2023] Open
Abstract
Knowledge of protein structure is paramount to the understanding of biological function, developing new therapeutics, and making detailed mechanistic hypotheses. Therefore, methods to accurately elucidate three-dimensional structures of proteins are in high demand. While there are a few experimental techniques that can routinely provide high-resolution structures, such as x-ray crystallography, nuclear magnetic resonance (NMR), and cryo-EM, which have been developed to determine the structures of proteins, these techniques each have shortcomings and thus cannot be used in all cases. However, additionally, a large number of experimental techniques that provide some structural information, but not enough to assign atomic positions with high certainty have been developed. These methods offer sparse experimental data, which can also be noisy and inaccurate in some instances. In cases where it is not possible to determine the structure of a protein experimentally, computational structure prediction methods can be used as an alternative. Although computational methods can be performed without any experimental data in a large number of studies, inclusion of sparse experimental data into these prediction methods has yielded significant improvement. In this Perspective, we cover many of the successes of integrative modeling, computational modeling with experimental data, specifically for protein folding, protein-protein docking, and molecular dynamics simulations. We describe methods that incorporate sparse data from cryo-EM, NMR, mass spectrometry, electron paramagnetic resonance, small-angle x-ray scattering, Förster resonance energy transfer, and genetic sequence covariation. Finally, we highlight some of the major challenges in the field as well as possible future directions.
Collapse
Affiliation(s)
- Justin T. Seffernick
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210, USA
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
13
|
Pritišanac I, Alderson TR, Güntert P. Automated assignment of methyl NMR spectra from large proteins. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 118-119:54-73. [PMID: 32883449 DOI: 10.1016/j.pnmrs.2020.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 05/05/2023]
Abstract
As structural biology trends towards larger and more complex biomolecular targets, a detailed understanding of their interactions and underlying structures and dynamics is required. The development of methyl-TROSY has enabled NMR spectroscopy to provide atomic-resolution insight into the mechanisms of large molecular assemblies in solution. However, the applicability of methyl-TROSY has been hindered by the laborious and time-consuming resonance assignment process, typically performed with domain fragmentation, site-directed mutagenesis, and analysis of NOE data in the context of a crystal structure. In response, several structure-based automatic methyl assignment strategies have been developed over the past decade. Here, we present a comprehensive analysis of all available methods and compare their input data requirements, algorithmic strategies, and reported performance. In general, the methods fall into two categories: those that primarily rely on inter-methyl NOEs, and those that utilize methyl PRE- and PCS-based restraints. We discuss their advantages and limitations, and highlight the potential benefits from standardizing and combining different methods.
Collapse
Affiliation(s)
- Iva Pritišanac
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | - T Reid Alderson
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter Güntert
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt am Main, 60438 Frankfurt am Main, Germany; Laboratory of Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland; Department of Chemistry, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan.
| |
Collapse
|
14
|
Wilson DT, Bansal PS, Carter DA, Vetter I, Nicke A, Dutertre S, Daly NL. Characterisation of a Novel A-Superfamily Conotoxin. Biomedicines 2020; 8:biomedicines8050128. [PMID: 32443665 PMCID: PMC7277881 DOI: 10.3390/biomedicines8050128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
Conopeptides belonging to the A-superfamily from the venomous molluscs, Conus, are typically α-conotoxins. The α-conotoxins are of interest as therapeutic leads and pharmacological tools due to their selectivity and potency at nicotinic acetylcholine receptor (nAChR) subtypes. Structurally, the α-conotoxins have a consensus fold containing two conserved disulfide bonds that define the two-loop framework and brace a helical region. Here we report on a novel α-conotoxin Pl168, identified from the transcriptome of Conus planorbis, which has an unusual 4/8 loop framework. Unexpectedly, NMR determination of its three-dimensional structure reveals a new structural type of A-superfamily conotoxins with a different disulfide-stabilized fold, despite containing the conserved cysteine framework and disulfide connectivity of classical α-conotoxins. The peptide did not demonstrate activity on a range of nAChRs, or Ca2+ and Na+ channels suggesting that it might represent a new pharmacological class of conotoxins.
Collapse
Affiliation(s)
- David T. Wilson
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, QLD 4878, Australia; (D.T.W.); (P.S.B.)
| | - Paramjit S. Bansal
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, QLD 4878, Australia; (D.T.W.); (P.S.B.)
| | - David A. Carter
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; (D.A.C.); (I.V.)
| | - Irina Vetter
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; (D.A.C.); (I.V.)
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Annette Nicke
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Nußbaumstraße 26, 80336 Munich, Germany;
| | - Sébastien Dutertre
- Institut des Biomolécules Max Mousseron, UMR 5247, Université de Montpellier, CNRS, 34095 Montpellier, France;
| | - Norelle L. Daly
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, QLD 4878, Australia; (D.T.W.); (P.S.B.)
- Correspondence: ; Tel.: +61-7-4232-1815
| |
Collapse
|
15
|
Wiegand T. A solid-state NMR tool box for the investigation of ATP-fueled protein engines. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 117:1-32. [PMID: 32471533 DOI: 10.1016/j.pnmrs.2020.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 06/11/2023]
Abstract
Motor proteins are involved in a variety of cellular processes. Their main purpose is to convert the chemical energy released during adenosine triphosphate (ATP) hydrolysis into mechanical work. In this review, solid-state Nuclear Magnetic Resonance (NMR) approaches are discussed allowing studies of structures, conformational events and dynamic features of motor proteins during a variety of enzymatic reactions. Solid-state NMR benefits from straightforward sample preparation based on sedimentation of the proteins directly into the Magic-Angle Spinning (MAS) rotor. Protein resonance assignment is the crucial and often time-limiting step in interpreting the wealth of information encoded in the NMR spectra. Herein, potentials, challenges and limitations in resonance assignment for large motor proteins are presented, focussing on both biochemical and spectroscopic approaches. This work highlights NMR tools available to study the action of the motor domain and its coupling to functional processes, as well as to identify protein-nucleotide interactions during events such as DNA replication. Arrested protein states of reaction coordinates such as ATP hydrolysis can be trapped for NMR studies by using stable, non-hydrolysable ATP analogues that mimic the physiological relevant states as accurately as possible. Recent advances in solid-state NMR techniques ranging from Dynamic Nuclear Polarization (DNP), 31P-based heteronuclear correlation experiments, 1H-detected spectra at fast MAS frequencies >100 kHz to paramagnetic NMR are summarized and their applications to the bacterial DnaB helicase from Helicobacter pylori are discussed.
Collapse
Affiliation(s)
- Thomas Wiegand
- Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
16
|
Duggan BM, Cullum R, Fenical W, Amador LA, Rodríguez AD, La Clair JJ. Searching for Small Molecules with an Atomic Sort. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201911862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Brendan M. Duggan
- Skaggs School of Pharmacy and Pharmaceutical Sciences University of California, San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Reiko Cullum
- Center for Marine Biotechnology and Biomedicine Scripps Institution of Oceanography University of California, San Diego La Jolla CA 92093-0204 USA
| | - William Fenical
- Center for Marine Biotechnology and Biomedicine Scripps Institution of Oceanography University of California, San Diego La Jolla CA 92093-0204 USA
| | - Luis A. Amador
- Molecular Sciences Research Center University of Puerto Rico 1390 Ponce de León Avenue San Juan 00926 Puerto Rico
| | - Abimael D. Rodríguez
- Molecular Sciences Research Center University of Puerto Rico 1390 Ponce de León Avenue San Juan 00926 Puerto Rico
| | - James J. La Clair
- Department of Chemistry and Biochemistry University of California San Diego 9500 Gilman Drive, La Jolla CA 92093 USA
| |
Collapse
|
17
|
Duggan BM, Cullum R, Fenical W, Amador LA, Rodríguez AD, La Clair JJ. Searching for Small Molecules with an Atomic Sort. Angew Chem Int Ed Engl 2020; 59:1144-1148. [PMID: 31696595 PMCID: PMC6942196 DOI: 10.1002/anie.201911862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/24/2019] [Indexed: 12/14/2022]
Abstract
The discovery of biologically active small molecules requires sifting through large amounts of data to identify unique or unusual arrangements of atoms. Here, we develop, test and evaluate an atom-based sort to identify novel features of secondary metabolites and demonstrate its use to evaluate novelty in marine microbial and sponge extracts. This study outlines an important ongoing advance towards the translation of autonomous systems to identify, and ultimately elucidate, atomic novelty within a complex mixture of small molecules.
Collapse
Affiliation(s)
- Brendan M Duggan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Reiko Cullum
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093-0204, USA
| | - William Fenical
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093-0204, USA
| | - Luis A Amador
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce de León Avenue, San Juan, 00926, Puerto Rico
| | - Abimael D Rodríguez
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce de León Avenue, San Juan, 00926, Puerto Rico
| | - James J La Clair
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| |
Collapse
|
18
|
Badaczewska-Dawid AE, Kolinski A, Kmiecik S. Computational reconstruction of atomistic protein structures from coarse-grained models. Comput Struct Biotechnol J 2019; 18:162-176. [PMID: 31969975 PMCID: PMC6961067 DOI: 10.1016/j.csbj.2019.12.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 01/02/2023] Open
Abstract
Three-dimensional protein structures, whether determined experimentally or theoretically, are often too low resolution. In this mini-review, we outline the computational methods for protein structure reconstruction from incomplete coarse-grained to all atomistic models. Typical reconstruction schemes can be divided into four major steps. Usually, the first step is reconstruction of the protein backbone chain starting from the C-alpha trace. This is followed by side-chains rebuilding based on protein backbone geometry. Subsequently, hydrogen atoms can be reconstructed. Finally, the resulting all-atom models may require structure optimization. Many methods are available to perform each of these tasks. We discuss the available tools and their potential applications in integrative modeling pipelines that can transfer coarse-grained information from computational predictions, or experiment, to all atomistic structures.
Collapse
Affiliation(s)
| | | | - Sebastian Kmiecik
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
19
|
Malliavin TE, Mucherino A, Lavor C, Liberti L. Systematic Exploration of Protein Conformational Space Using a Distance Geometry Approach. J Chem Inf Model 2019; 59:4486-4503. [PMID: 31442036 DOI: 10.1021/acs.jcim.9b00215] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The optimization approaches classically used during the determination of protein structure encounter various difficulties, especially when the size of the conformational space is large. Indeed, in such a case, algorithmic convergence criteria are more difficult to set up. Moreover, the size of the search space makes it difficult to achieve a complete exploration. The interval branch-and-prune (iBP) approach, based on the reformulation of the distance geometry problem (DGP) provides a theoretical frame for the generation of protein conformations, by systematically sampling the conformational space. When an appropriate subset of interatomic distances is known exactly, this worst-case exponential-time algorithm is provably complete and fixed-parameter tractable. These guarantees, however, immediately disappear as distance measurement errors are introduced. Here we propose an improvement of this approach: threading-augmented interval branch-and-prune (TAiBP), where the combinatorial explosion of the original iBP approach arising from its exponential complexity is alleviated by partitioning the input instances into consecutive peptide fragments and by using self-organizing maps (SOMs) to obtain clusters of similar solutions. A validation of the TAiBP approach is presented here on a set of proteins of various sizes and structures. The calculation inputs are a uniform covalent geometry extracted from force field covalent terms, the backbone dihedral angles with error intervals, and a few long-range distances. For most of the proteins smaller than 50 residues and interval widths of 20°, the TAiBP approach yielded solutions with RMSD values smaller than 3 Å with respect to the initial protein conformation. The efficiency of the TAiBP approach for proteins larger than 50 residues will require the use of nonuniform covalent geometry and may have benefits from the recent development of residue-specific force-fields.
Collapse
Affiliation(s)
- Thérèse E Malliavin
- Unité de Bioinformatique Structurale, UMR 3528, CNRS, and Departement de Bioinformatique, Biostatistique et Biologie Intégrative, USR 3756, CNRS , Institut Pasteur , 75015 Paris , France
| | | | - Carlile Lavor
- Applied Math Department , IMECC-University of Campinas , Campinas , SP 13083-970 , Brazil
| | - Leo Liberti
- LIX CNRS, Ecole Polytechnique , Institut Polytechnique de Paris , Route de Saclay , 91128 Palaiseau , France
| |
Collapse
|
20
|
Heiby JC, Goretzki B, Johnson CM, Hellmich UA, Neuweiler H. Methionine in a protein hydrophobic core drives tight interactions required for assembly of spider silk. Nat Commun 2019; 10:4378. [PMID: 31558722 PMCID: PMC6763431 DOI: 10.1038/s41467-019-12365-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/05/2019] [Indexed: 01/21/2023] Open
Abstract
Web spiders connect silk proteins, so-called spidroins, into fibers of extraordinary toughness. The spidroin N-terminal domain (NTD) plays a pivotal role in this process: it polymerizes spidroins through a complex mechanism of dimerization. Here we analyze sequences of spidroin NTDs and find an unusually high content of the amino acid methionine. We simultaneously mutate all methionines present in the hydrophobic core of a spidroin NTD from a nursery web spider’s dragline silk to leucine. The mutated NTD is strongly stabilized and folds at the theoretical speed limit. The structure of the mutant is preserved, yet its ability to dimerize is substantially impaired. We find that side chains of core methionines serve to mobilize the fold, which can thereby access various conformations and adapt the association interface for tight binding. Methionine in a hydrophobic core equips a protein with the capacity to dynamically change shape and thus to optimize its function. Spider silk is of interest in material science research. Here the authors show that the tight binding of a spider silk protein domain relies on the amino acid methionine, which is abundant in the domain core where it facilitates dynamic shape adaption of the binding interface.
Collapse
Affiliation(s)
- Julia C Heiby
- Department of Biotechnology and Biophysics, Julius-Maximilians-University Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Benedikt Goretzki
- Institute for Pharmacy and Biochemistry, Johannes-Gutenberg-University Mainz, Johann-Joachim Becherweg 30, 55128, Mainz, Germany.,Center for Biomolecular Magnetic Resonance, Goethe-University, Max-von-Laue-Strasse 9, 60438, Frankfurt, Germany
| | - Christopher M Johnson
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Ute A Hellmich
- Institute for Pharmacy and Biochemistry, Johannes-Gutenberg-University Mainz, Johann-Joachim Becherweg 30, 55128, Mainz, Germany. .,Center for Biomolecular Magnetic Resonance, Goethe-University, Max-von-Laue-Strasse 9, 60438, Frankfurt, Germany.
| | - Hannes Neuweiler
- Department of Biotechnology and Biophysics, Julius-Maximilians-University Würzburg, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|
21
|
Schanda P. Relaxing with liquids and solids - A perspective on biomolecular dynamics. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 306:180-186. [PMID: 31350165 PMCID: PMC7302934 DOI: 10.1016/j.jmr.2019.07.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 05/05/2019] [Accepted: 07/08/2019] [Indexed: 05/05/2023]
Affiliation(s)
- Paul Schanda
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71 Avenue des Martyrs, 38000 Grenoble, France.
| |
Collapse
|
22
|
Wang CK, Craik DJ. Toward Structure Determination of Disulfide-Rich Peptides Using Chemical Shift-Based Methods. J Phys Chem B 2019; 123:1903-1912. [PMID: 30730741 DOI: 10.1021/acs.jpcb.8b10649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Disulfide-rich peptides are a class of molecules for which NMR spectroscopy has been the primary tool for structural characterization. Here, we explore whether the process can be achieved by using structural information encoded in chemical shifts. We examine (i) a representative set of five cyclic disulfide-rich peptides that have high-resolution NMR and X-ray structures and (ii) a larger set of 100 disulfide-rich peptides from the PDB. Accuracy of the calculated structures was dependent on the methods used for searching through conformational space and for identifying native conformations. Although Hα chemical shifts could be predicted reasonably well using SHIFTX, agreement between predicted and experimental chemical shifts was sufficient for identifying native conformations for only some peptides in the representative set. Combining chemical shift data with the secondary structure information and potential energy calculations improved the ability to identify native conformations. Additional use of sparse distance restraints or homology information to restrict the search space also improved the resolution of the calculated structures. This study demonstrates that abbreviated methods have potential for elucidation of peptide structures to high resolution and further optimization of these methods, e.g., improvement in chemical shift prediction accuracy, will likely help transition these methods into the mainstream of disulfide-rich peptide structural biology.
Collapse
Affiliation(s)
- Conan K Wang
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - David J Craik
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
| |
Collapse
|
23
|
Mureddu L, Vuister GW. Simple high-resolution NMR spectroscopy as a tool in molecular biology. FEBS J 2019; 286:2035-2042. [PMID: 30706658 PMCID: PMC6563160 DOI: 10.1111/febs.14771] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/19/2018] [Accepted: 01/30/2019] [Indexed: 12/23/2022]
Abstract
NMR is one of the major techniques for investigating the structure, dynamics and interactions between biomolecules. However, non-experts often experience NMR experimentation and data analysis as intimidating. We discuss a simple yet powerful NMR technique, the so-called chemical shift perturbation (CSP) analysis, as a tool to elucidate macromolecular interactions in small- and medium-sized complexes, including protein-protein, protein-drug, and protein-DNA/RNA interactions. We discuss current software packages for NMR data analysis and present a new interactive graphical tool implemented in CcpNmr AnalysisAssign version-3, which can drastically reduce the time required for the CSP analysis. Lastly, we illustrate the usefulness of a protein three-dimensional structure for interpretation of the CSP data.
Collapse
Affiliation(s)
- Luca Mureddu
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, UK
| | - Geerten W Vuister
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, UK
| |
Collapse
|
24
|
Goretzki B, Glogowski NA, Diehl E, Duchardt-Ferner E, Hacker C, Gaudet R, Hellmich UA. Structural Basis of TRPV4 N Terminus Interaction with Syndapin/PACSIN1-3 and PIP 2. Structure 2018; 26:1583-1593.e5. [PMID: 30244966 DOI: 10.1016/j.str.2018.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/13/2018] [Accepted: 08/01/2018] [Indexed: 12/15/2022]
Abstract
Transient receptor potential (TRP) channels are polymodally regulated ion channels. TRPV4 (vanilloid 4) is sensitized by PIP2 and desensitized by Syndapin3/PACSIN3, which bind to the structurally uncharacterized TRPV4 N terminus. We determined the nuclear magnetic resonance structure of the Syndapin3/PACSIN3 SH3 domain in complex with the TRPV4 N-terminal proline-rich region (PRR), which binds as a class I polyproline II (PPII) helix. This PPII conformation is broken by a conserved proline in a cis conformation. Beyond the PPII, we find that the proximal TRPV4 N terminus is unstructured, a feature conserved across species thus explaining the difficulties in resolving it in previous structural studies. Syndapin/PACSIN SH3 domain binding leads to rigidification of both the PRR and the adjacent PIP2 binding site. We determined the affinities of the TRPV4 N terminus for PACSIN1, 2, and 3 SH3 domains and PIP2 and deduce a hierarchical interaction network where Syndapin/PACSIN binding influences the PIP2 binding site but not vice versa.
Collapse
Affiliation(s)
- Benedikt Goretzki
- Institute for Pharmacy and Biochemistry, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany; Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-Universität, 60438 Frankfurt am Main, Germany
| | - Nina A Glogowski
- Institute for Pharmacy and Biochemistry, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany; Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-Universität, 60438 Frankfurt am Main, Germany
| | - Erika Diehl
- Institute for Pharmacy and Biochemistry, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany; Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-Universität, 60438 Frankfurt am Main, Germany
| | - Elke Duchardt-Ferner
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-Universität, 60438 Frankfurt am Main, Germany; Institute for Molecular Biosciences, Goethe-Universität, 60438 Frankfurt am Main, Germany
| | - Carolin Hacker
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-Universität, 60438 Frankfurt am Main, Germany; Institute for Molecular Biosciences, Goethe-Universität, 60438 Frankfurt am Main, Germany
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Ute A Hellmich
- Institute for Pharmacy and Biochemistry, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany; Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-Universität, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
25
|
Abstract
Chemical Shift-Rosetta (CS-Rosetta) is an automated method that employs NMR chemical shifts to model protein structures de novo. In this chapter, we introduce the terminology and central concepts of CS-Rosetta. We describe the architecture and functionality of automatic NOESY assignment (AutoNOE) and structure determination protocols (Abrelax and RASREC) within the CS-Rosetta framework. We further demonstrate how CS-Rosetta can discriminate near-native structures against a large conformational search space using restraints obtained from NMR data, and/or sequence and structure homology. We highlight how CS-Rosetta can be combined with alternative automated approaches to (i) model oligomeric systems and (ii) create NMR-based structure determination pipeline. To show its practical applicability, we emphasize on the computational requirements and performance of CS-Rosetta for protein targets of varying molecular weight and complexity. Finally, we discuss the current Python interface, which enables easy execution of protocols for rapid and accurate high-resolution structure determination.
Collapse
Affiliation(s)
- Santrupti Nerli
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, United States; Department of Computer Science, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Nikolaos G Sgourakis
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, United States.
| |
Collapse
|
26
|
Nerli S, McShan AC, Sgourakis NG. Chemical shift-based methods in NMR structure determination. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 106-107:1-25. [PMID: 31047599 PMCID: PMC6788782 DOI: 10.1016/j.pnmrs.2018.03.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/09/2018] [Accepted: 03/09/2018] [Indexed: 05/08/2023]
Abstract
Chemical shifts are highly sensitive probes harnessed by NMR spectroscopists and structural biologists as conformational parameters to characterize a range of biological molecules. Traditionally, assignment of chemical shifts has been a labor-intensive process requiring numerous samples and a suite of multidimensional experiments. Over the past two decades, the development of complementary computational approaches has bolstered the analysis, interpretation and utilization of chemical shifts for elucidation of high resolution protein and nucleic acid structures. Here, we review the development and application of chemical shift-based methods for structure determination with a focus on ab initio fragment assembly, comparative modeling, oligomeric systems, and automated assignment methods. Throughout our discussion, we point out practical uses, as well as advantages and caveats, of using chemical shifts in structure modeling. We additionally highlight (i) hybrid methods that employ chemical shifts with other types of NMR restraints (residual dipolar couplings, paramagnetic relaxation enhancements and pseudocontact shifts) that allow for improved accuracy and resolution of generated 3D structures, (ii) the utilization of chemical shifts to model the structures of sparsely populated excited states, and (iii) modeling of sidechain conformations. Finally, we briefly discuss the advantages of contemporary methods that employ sparse NMR data recorded using site-specific isotope labeling schemes for chemical shift-driven structure determination of larger molecules. With this review, we aim to emphasize the accessibility and versatility of chemical shifts for structure determination of challenging biological systems, and to point out emerging areas of development that lead us towards the next generation of tools.
Collapse
Affiliation(s)
- Santrupti Nerli
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, United States; Department of Computer Science, University of California Santa Cruz, Santa Cruz, CA 95064, United States
| | - Andrew C McShan
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, United States
| | - Nikolaos G Sgourakis
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, United States.
| |
Collapse
|
27
|
Abayev M, Rodrigues JPGLM, Srivastava G, Arshava B, Jaremko Ł, Jaremko M, Naider F, Levitt M, Anglister J. The solution structure of monomeric CCL5 in complex with a doubly sulfated N-terminal segment of CCR5. FEBS J 2018; 285:1988-2003. [PMID: 29619777 PMCID: PMC6433596 DOI: 10.1111/febs.14460] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/12/2018] [Accepted: 03/31/2018] [Indexed: 12/30/2022]
Abstract
The inflammatory chemokine CCL5, which binds the chemokine receptor CCR5 in a two-step mechanism so as to activate signaling pathways in hematopoetic cells, plays an important role in immune surveillance, inflammation, and development as well as in several immune system pathologies. The recently published crystal structure of CCR5 bound to a high-affinity variant of CCL5 lacks the N-terminal segment of the receptor that is post-translationally sulfated and is known to be important for high-affinity binding. Here, we report the NMR solution structure of monomeric CCL5 bound to a synthetic doubly sulfated peptide corresponding to the missing first 27 residues of CCR5. Our structures show that two sulfated tyrosine residues, sY10 and sY14, as well as the unsulfated Y15 form a network of strong interactions with a groove on a surface of CCL5 that is formed from evolutionarily conserved basic and hydrophobic amino acids. We then use our NMR structures, in combination with available crystal data, to create an atomic model of full-length wild-type CCR5:CCL5. Our findings reveal the structural determinants involved in the recognition of CCL5 by the CCR5 N terminus. These findings, together with existing structural data, provide a complete structural framework with which to understand the specificity of receptor:chemokine interactions. DATABASE Structural data are available in the PDB under the accession number 6FGP.
Collapse
Affiliation(s)
- Meital Abayev
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Gautam Srivastava
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Boris Arshava
- Department of Chemistry and Macromolecular Assembly Institute, College of Staten Island of the City University of New York, Staten Island, NY, USA
- The Ph.D. Programs in Biochemistry and Chemistry, The Graduate Center of the City University of New York, NY, USA
| | - Łukasz Jaremko
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Gottingen, Germany
| | - Mariusz Jaremko
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Gottingen, Germany
| | - Fred Naider
- Department of Chemistry and Macromolecular Assembly Institute, College of Staten Island of the City University of New York, Staten Island, NY, USA
- The Ph.D. Programs in Biochemistry and Chemistry, The Graduate Center of the City University of New York, NY, USA
| | - Michael Levitt
- Department of Structural Biology, Stanford University School of Medicine, CA, USA
| | - Jacob Anglister
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
28
|
NMR in structure-based drug design. Essays Biochem 2017; 61:485-493. [PMID: 29118095 DOI: 10.1042/ebc20170037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/21/2017] [Accepted: 09/25/2017] [Indexed: 12/13/2022]
Abstract
NMR spectroscopy is a powerful technique that can provide valuable structural information for drug discovery endeavors. Here, we discuss the strengths (and limitations) of NMR applications to structure-based drug discovery, highlighting the different levels of resolution and throughput obtainable. Additionally, the emerging field of paramagnetic NMR in drug discovery and recent developments in approaches to speed up and automate protein-observed NMR data collection and analysis are discussed.
Collapse
|
29
|
Hinck AP, Neira JL. An introduction to the special issue on biomolecular NMR. Arch Biochem Biophys 2017; 628:1-2. [PMID: 28666741 DOI: 10.1016/j.abb.2017.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Andrew P Hinck
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Jose L Neira
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández de Elche, Elche, Alicante 03202, Spain.
| |
Collapse
|