1
|
de Melo MRS, Ribeiro AB, Fernandes G, Squarisi IS, de Melo Junqueira M, Batista AA, da Silva MM, Tavares DC. Ruthenium(II) complex with 2-mercaptothiazoline ligand induces selective cytotoxicity involving DNA damage and apoptosis in melanoma cells. J Biol Inorg Chem 2024; 29:159-168. [PMID: 38182820 DOI: 10.1007/s00775-023-02036-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/26/2023] [Indexed: 01/07/2024]
Abstract
Melanoma is the most aggressive and lethal type of skin cancer due to its characteristics such as high metastatic potential and low response rate to existing treatment modalities. In this way, new drug prototypes are being studied to solve the problem of treating patients with melanoma. Among these, ruthenium-based metallopharmaceuticals may be promising alternatives due to their antitumor characteristics and low systemic toxicity. In this context, the present study evaluated the antineoplastic effect of the ruthenium complex [Ru(mtz)(dppe)2]PF6-2-mercaptothiazoline-di-1,2-bis(diphenylphosphine) ethaneruthenium(II), namely RuMTZ, on human melanoma (A-375) and murine (B16-F10) cells, considering different approaches. Through XTT colorimetric and clonogenic efficiency assays, the complex revealed the selective cytotoxic activity, with the lowest IC50 (0.4 µM) observed for A375 cells. RuMTZ also induced changes in cell morphology, increased cell population in the sub-G0 phase and inhibiting cell migration. The levels of γH2AX and cleaved caspase 3 proteins were increased in both cell lines treated with RuMTZ. These findings indicated that the cytotoxic activity of RuMTZ on melanoma cells is related, at least in part, to the induction of DNA damage and apoptosis. Therefore, RuMTZ exhibited promising antineoplastic activity against melanoma cells.
Collapse
Affiliation(s)
| | | | - Gabriela Fernandes
- Laboratory of Mutagenesis, University of Franca, Franca, São Paulo, 14404-600, Brazil
| | - Iara Silva Squarisi
- Laboratory of Mutagenesis, University of Franca, Franca, São Paulo, 14404-600, Brazil
| | | | - Alzir Azevedo Batista
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil
| | - Monize Martins da Silva
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil
| | | |
Collapse
|
2
|
Grawe GF, Oliveira KM, Leite CM, de Oliveira TD, Costa AR, Moraes CA, Honorato J, Cominetti MR, Castellano EE, Correa RS, Machado SP, Batista AA. Cytotoxic activity of Ru(II)/DPEPhos/N,S-mercapto complexes (DPEPhos -[(2-diphenylphosphino)phenyl]ether). J Inorg Biochem 2023; 244:112204. [PMID: 37004320 DOI: 10.1016/j.jinorgbio.2023.112204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/15/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
We report here on three new ruthenium(II) complexes, [Ru(DPEPhos)(mtz)(bipy)]PF6 (Ru1), [Ru(DPEPhos)(mmi)(bipy)]PF6 (Ru2) and [Ru(DPEPhos)(dmp)(bipy)]PF6 (Ru3). DPEPhos = bis-[(2-diphenylphosphino)phenyl]ether, mtz = 2-mercapto-2-thiazoline, mmi = 2-mercapto-1-methylimidazole, dmp = 4,6-diamino-2-mercaptopyrimidine and bipy = 2,2'-bipyridine. The compounds were characterized by several spectroscopic techniques, and the molecular structure of Ru1 complex was determined by single-crystal X-ray diffraction. The cytotoxicity of Ru1 - Ru3 complexes were tested against the A549 (human lung) and the MDA-MB-231 (human breast) cancer cell lines and against MRC-5 (non-tumor lung) and MCF-10A (non-tumor breast) cell lines through the MTT assay. All three complexes are cytotoxic against the cell lines studied, with IC50 values lower than those found for the cisplatin. Among them, the Ru2 complex has shown the best selectivity against MDA-MB-231 cancer cell lines, with an IC50 value 12 times lower than that on MCF-10A. The complex Ru2 was capable to induce changes in MDA-MB-231 cells morphology, with loss of cellular adhesion, inhibited colony formation and induce an accumulation of cells at the sub-G1 phase, with an increase in S-phase and decrease of cells at G2 phase. Viscosity, electrochemical and Hoechst 33258 displacement experiments for Ru1 - Ru3 complexes with calf thymus DNA (CT-DNA) showed an electrostatic and groove binding mode of interaction. Additionally, the complexes interact with the protein Human Serum Albumin (HSA) by static mechanism. The negative values for ΔH and ΔS indicate that van der Waals forces and hydrogen bonding may occurs between the complexes and HSA. Therefore, this class of complexes are promising anticancer candidates and may be selected to further detailed studies.
Collapse
|
3
|
da Silva MM, Ribeiro GH, de Camargo MS, Ferreira AG, Ribeiro L, Barbosa MIF, Deflon VM, Castelli S, Desideri A, Corrêa RS, Ribeiro AB, Nicolella HD, Ozelin SD, Tavares DC, Batista AA. Ruthenium(II) Diphosphine Complexes with Mercapto Ligands That Inhibit Topoisomerase IB and Suppress Tumor Growth In Vivo. Inorg Chem 2021; 60:14174-14189. [PMID: 34477373 DOI: 10.1021/acs.inorgchem.1c01539] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Ruthenium(II) complexes (Ru1-Ru5), with the general formula [Ru(N-S)(dppe)2]PF6, bearing two 1,2-bis(diphenylphosphino)ethane (dppe) ligands and a series of mercapto ligands (N-S), have been developed. The combination of these ligands in the complexes endowed hydrophobic species with high cytotoxic activity against five cancer cell lines. For the A549 (lung) and MDA-MB-231 (breast) cancer cell lines, the IC50 values of the complexes were 288- to 14-fold lower when compared to cisplatin. Furthermore, the complexes were selective for the A549 and MDA-MB-231 cancer cell lines compared to the MRC-5 nontumor cell line. The multitarget character of the complexes was investigated by using calf thymus DNA (CT DNA), human serum albumin, and human topoisomerase IB (hTopIB). The complexes potently inhibited hTopIB. In particular, complex [Ru(dmp)(dppe)2]PF6 (Ru3), bearing the 4,6-diamino-2-mercaptopyrimidine (dmp) ligand, effectively inhibited hTopIB by acting on both the cleavage and religation steps of the catalytic cycle of this enzyme. Molecular docking showed that the Ru1-Ru5 complexes have binding affinity by active sites on the hTopI and hTopI-DNA, mainly via π-alkyl and alkyl hydrophobic interactions, as well as through hydrogen bonds. Complex Ru3 displayed significant antitumor activity against murine melanoma in mouse xenograph models, but this complex did not damage DNA, as revealed by Ames and micronucleus tests.
Collapse
Affiliation(s)
- Monize M da Silva
- Departamento de Química, Universidade Federal de São Carlos, CP 676, CEP 13565-905 São Carlos, São Paulo, Brazil
| | - Gabriel H Ribeiro
- Departamento de Química, Universidade Federal de São Carlos, CP 676, CEP 13565-905 São Carlos, São Paulo, Brazil
| | - Mariana S de Camargo
- Departamento de Química, Universidade Federal de São Carlos, CP 676, CEP 13565-905 São Carlos, São Paulo, Brazil
| | - Antônio G Ferreira
- Departamento de Química, Universidade Federal de São Carlos, CP 676, CEP 13565-905 São Carlos, São Paulo, Brazil
| | - Leandro Ribeiro
- Departamento de Química, Universidade Federal de São Carlos, CP 676, CEP 13565-905 São Carlos, São Paulo, Brazil
| | - Marília I F Barbosa
- Departamento de Química, Universidade Federal de São Carlos, CP 676, CEP 13565-905 São Carlos, São Paulo, Brazil
| | - Victor M Deflon
- Instituto de Química de São Carlos, Universidade de São Paulo, CEP 13565-905 São Carlos, São Paulo, Brazil
| | - Silvia Castelli
- Dipartimento di Biologia, Università Tor Vergata di Roma, 00133 Rome, Italy
| | | | - Rodrigo S Corrêa
- Departamento de Química, Universidade Federal de Ouro Preto, CEP 35400-000 Ouro Preto, Minas Gerais, Brazil
| | - Arthur B Ribeiro
- Universidade de Franca, CEP 14404-600, Franca, São Paulo, Brazil
| | | | - Saulo D Ozelin
- Universidade de Franca, CEP 14404-600, Franca, São Paulo, Brazil
| | - Denise C Tavares
- Universidade de Franca, CEP 14404-600, Franca, São Paulo, Brazil
| | - Alzir A Batista
- Departamento de Química, Universidade Federal de São Carlos, CP 676, CEP 13565-905 São Carlos, São Paulo, Brazil
| |
Collapse
|
4
|
Travassos IO, Mello-Andrade F, Caldeira RP, Pires WC, da Silva PFF, Correa RS, Teixeira T, Martins-Oliveira A, Batista AA, de Silveira-Lacerda EP. Ruthenium (II)/allopurinol complex inhibits breast cancer progression via multiple targets. J Biol Inorg Chem 2021; 26:385-401. [PMID: 33837856 DOI: 10.1007/s00775-021-01862-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/08/2021] [Indexed: 12/27/2022]
Abstract
Metal complexes based on ruthenium have established excellent activity with less toxicity and great selectivity for tumor cells. This study aims to assess the anticancer potential of ruthenium(II)/allopurinol complexes called [RuCl2(allo)2(PPh3)2] (1) and [RuCl2(allo)2(dppb)] (2), where allo means allopurinol, PPh3 is triphenylphosphine and dppb, 1,4-bis(diphenylphosphino)butane. The complexes were synthesized and characterized by elemental analysis, IR, UV-Vis and NMR spectroscopies, cyclic voltammetry, molar conductance measurements, as well as the X-ray crystallographic analysis of complex 2. The antitumor effects of compounds were determined by cytotoxic activity and cellular and molecular responses to cell death mechanisms. Complex 2 showed good antitumor profile prospects because in addition to its cytotoxicity, it causes cell cycle arrest, induction of DNA damage, morphological and biochemical alterations in the cells. Moreover, complex 2 induces cell death by p53-mediated apoptosis, caspase activation, increased Beclin-1 levels and decreased ROS levels. Therefore, complex 2 can be considered a suitable compound in antitumor treatment due to its cytotoxic mechanism.
Collapse
Affiliation(s)
- Ingrid O Travassos
- Laboratório de Genética Molecular E Citogenética Humana, sala 213, Departamento de Genética, Instituto de Ciências Biológicas I, Campus Samambaia, Universidade Federal de Goiás, Avenida Esperança, s/n, Cx Postal: 131, Goiânia, Goiás, CEP 74690-900, Brazil
| | - Francyelli Mello-Andrade
- Laboratório de Genética Molecular E Citogenética Humana, sala 213, Departamento de Genética, Instituto de Ciências Biológicas I, Campus Samambaia, Universidade Federal de Goiás, Avenida Esperança, s/n, Cx Postal: 131, Goiânia, Goiás, CEP 74690-900, Brazil.,Department of Chemistry, Federal Institute of Education, Science and Technology of Goiás, Goiânia, Goiás, 74055-110, Brazil
| | - Raíssa P Caldeira
- Laboratório de Genética Molecular E Citogenética Humana, sala 213, Departamento de Genética, Instituto de Ciências Biológicas I, Campus Samambaia, Universidade Federal de Goiás, Avenida Esperança, s/n, Cx Postal: 131, Goiânia, Goiás, CEP 74690-900, Brazil
| | - Wanessa C Pires
- Laboratório de Genética Molecular E Citogenética Humana, sala 213, Departamento de Genética, Instituto de Ciências Biológicas I, Campus Samambaia, Universidade Federal de Goiás, Avenida Esperança, s/n, Cx Postal: 131, Goiânia, Goiás, CEP 74690-900, Brazil
| | - Paula F F da Silva
- Laboratório de Genética Molecular E Citogenética Humana, sala 213, Departamento de Genética, Instituto de Ciências Biológicas I, Campus Samambaia, Universidade Federal de Goiás, Avenida Esperança, s/n, Cx Postal: 131, Goiânia, Goiás, CEP 74690-900, Brazil
| | - Rodrigo S Correa
- Department of Chemistry, Federal University of Ouro Preto-UFOP, Ouro Preto, MG, 35400-000, Brazil
| | - Tamara Teixeira
- Department of Chemistry, Federal University of Ouro Preto-UFOP, Ouro Preto, MG, 35400-000, Brazil
| | | | - Alzir A Batista
- Department of Chemistry, Federal University of Sao Carlos-UFSCar, Sao Carlos, SP, 13565-905, Brazil
| | - Elisângela P de Silveira-Lacerda
- Laboratório de Genética Molecular E Citogenética Humana, sala 213, Departamento de Genética, Instituto de Ciências Biológicas I, Campus Samambaia, Universidade Federal de Goiás, Avenida Esperança, s/n, Cx Postal: 131, Goiânia, Goiás, CEP 74690-900, Brazil.
| |
Collapse
|
5
|
Faria RS, Silva HD, Mello-Andrade F, Pires WC, de Castro Pereira F, de Lima AP, de Fátima Oliveira Santos S, Teixeira TM, da Silva PFF, Naves PLF, Batista AA, da Silva Oliveira RJ, Reis RM, de Paula Silveira-Lacerda E. Ruthenium(II)/Benzonitrile Complex Induces Cytotoxic Effect in Sarcoma-180 Cells by Caspase-Mediated and Tp53/p21-Mediated Apoptosis, with Moderate Brine Shrimp Toxicity. Biol Trace Elem Res 2020; 198:669-680. [PMID: 32266641 DOI: 10.1007/s12011-020-02098-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/26/2020] [Indexed: 12/12/2022]
Abstract
Ruthenium(II)/benzonitrile complexes have demonstrated promising anticancer properties. Considering that there are no specific therapies for treating sarcoma, we decided to evaluate the cytotoxic, genotoxic, and lethal effects of cis-[RuCl(BzCN)(phen)(dppb)]PF6 (BzCN = benzonitrile; phen = 1,10-phenanthroline; dppb = 1,4-bis-(diphenylphosphino)butane), as well as the mechanism of cell death induction that occurs against murine sarcoma-180 tumor. Thus, MTT assay was applied to assess the ruthenium cytotoxicity, showing that the compound is a more potent inhibitor for the sarcoma-180 tumor cell viability than normal cells (lymphocytes). The comet assay indicated low genotoxic for normal cells. cis-[RuCl(BzCN)(phen)(dppb)]PF6 also showed moderate lethality in Artemia salina. The complex induced cell cycle arrest in the G0/G1 phase in sarcoma-180 cells. In addition, the complex caused S180 cells to die by apoptosis by an increase in Annexin-V-positive cells and morphological changes typical of apoptotic cells. Additionally, cis-[RuCl(BzCN)(phen)(dppb)]PF6 increased the gene expression of Bax, Casp3, and Tp53 in S180 cells. By using a western blot, we observed an increased protein level of TNF-R2, Bax, and p21. In conclusion, cis-[RuCl(BzCN)(phen)(dppb)]PF6 is active and selective for sarcoma-180 cells, leading to cell cycle arrest at the G0/G1 and cell death through a caspases-mediated and Tp53/p21-mediated pathway.
Collapse
Affiliation(s)
- Raquel Santos Faria
- Department of Genetics, Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, Campus Samambaia (Campus II), Cx. Postal 131, Goiania, GO, 74690-900, Brazil
| | - Hugo Delleon Silva
- Department of Genetics, Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, Campus Samambaia (Campus II), Cx. Postal 131, Goiania, GO, 74690-900, Brazil
- Uni-Anhanguera University Center of Goias, Goiania, Goiás, 74423-115, Brazil
| | - Francyelli Mello-Andrade
- Department of Genetics, Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, Campus Samambaia (Campus II), Cx. Postal 131, Goiania, GO, 74690-900, Brazil
- Department of Chemistry, Federal Institute of Education, Science and Technology of Goiás, Goiania, Goiás, 74055-110, Brazil
| | - Wanessa Carvalho Pires
- Department of Genetics, Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, Campus Samambaia (Campus II), Cx. Postal 131, Goiania, GO, 74690-900, Brazil
| | - Flávia de Castro Pereira
- Department of Genetics, Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, Campus Samambaia (Campus II), Cx. Postal 131, Goiania, GO, 74690-900, Brazil
| | - Aliny Pereira de Lima
- Department of Genetics, Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, Campus Samambaia (Campus II), Cx. Postal 131, Goiania, GO, 74690-900, Brazil
- Faculty of Brazil Institute (FIBRA), Anapolis, Goiás, 75133-050, Brazil
| | - Sônia de Fátima Oliveira Santos
- Department of Genetics, Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, Campus Samambaia (Campus II), Cx. Postal 131, Goiania, GO, 74690-900, Brazil
| | - Thallita Monteiro Teixeira
- Department of Genetics, Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, Campus Samambaia (Campus II), Cx. Postal 131, Goiania, GO, 74690-900, Brazil
| | - Paula Francinete Faustino da Silva
- Department of Genetics, Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, Campus Samambaia (Campus II), Cx. Postal 131, Goiania, GO, 74690-900, Brazil
| | | | - Alzir Azevedo Batista
- Department of Chemistry, Federal University of São Carlos, Sao Carlos, São Paulo, 13565-905, Brazil
| | | | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, 14784-400, Brazil
| | - Elisângela de Paula Silveira-Lacerda
- Department of Genetics, Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, Campus Samambaia (Campus II), Cx. Postal 131, Goiania, GO, 74690-900, Brazil.
| |
Collapse
|
6
|
Ribeiro GH, Guedes APM, de Oliveira TD, de Correia CRSTB, Colina-Vegas L, Lima MA, Nóbrega JA, Cominetti MR, Rocha FV, Ferreira AG, Castellano EE, Teixeira FR, Batista AA. Ruthenium(II) Phosphine/Mercapto Complexes: Their in Vitro Cytotoxicity Evaluation and Actions as Inhibitors of Topoisomerase and Proteasome Acting as Possible Triggers of Cell Death Induction. Inorg Chem 2020; 59:15004-15018. [PMID: 32997499 DOI: 10.1021/acs.inorgchem.0c01835] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this paper, a series of new ruthenium complexes of the general formula [Ru(NS)(dpphpy)(dppb)]PF6 (Ru1-Ru3), where dpphpy = diphenyl-2-pyridylphosphine, NS ligands = 2-thiazoline-2-thiol (tzdt, Ru1), 2-mercaptopyrimidine (pySm, Ru2), and 4,6-diamino-2-mercaptopyrimidine (damp, Ru3), and dppb = 1,4-bis(diphenylphosphino)butane, were synthesized and characterized by elemental analysis, spectroscopic techniques (IR, UV/visible, and 1D and 2D NMR), and X-ray diffraction. In the characterization, the correlation between the phosphorus atoms and their respective aromatic hydrogen atoms of the compounds in the assignment stands outs, by 1H-31P HMBC experiments. The compounds show anticancer activities against A549 (lung) and MDA-MB-231 (breast) cancer cell lines, higher than the clinical drug cisplatin. All of the complexes are more cytotoxic against the cancer cell lines than against the MRC-5 (lung) and MCF-10A (breast) nontumorigenic human cell lines. For A549 tumor cells, cell cycle analysis upon treatment with Ru2 showed that it inhibits the mitotic phase because arrest was observed in the Sub-G1 phase. Additionally, the compound induces cell death by an apoptotic pathway in a dose-dependent manner, according to annexin V-PE assay. The multitargeted character of the compounds was investigated, and the biomolecules were DNA, topoisomerase IB, and proteasome, as well as the fundamental biomolecule in the pharmacokinetics of drugs, human serum albumin. The experimental results indicate that the complexes do not target DNA in the cells. At low concentrations, the compounds showed the ability to partially inhibit the catalytic activity of topoisomerase IB in the process of relaxation of the DNA plasmid. Among the complexes assayed in cultured cells, complex Ru3 was able to diminish the proteasomal chymotrypsin-like activity to a greater extent.
Collapse
Affiliation(s)
- Gabriel H Ribeiro
- Departamento de Química, Universidade Federal de São Carlos, CEP 13565-905 São Carlos, São Paulo, Brazil
| | - Adriana P M Guedes
- Departamento de Química, Universidade Federal de São Carlos, CEP 13565-905 São Carlos, São Paulo, Brazil
| | - Tamires D de Oliveira
- Departamento de Química, Universidade Federal de São Carlos, CEP 13565-905 São Carlos, São Paulo, Brazil
| | - Camila R S T B de Correia
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, CEP 13565-905 São Carlos, São Paulo, Brazil
| | - Legna Colina-Vegas
- Departamento de Química, Universidade Federal de São Carlos, CEP 13565-905 São Carlos, São Paulo, Brazil.,Instituto de Química, Universidade Federal do Rio Grande do Sul, CP 15003, 91501-970 Porto Alegre, Rio Grande do Sul, Brazil
| | - Mauro A Lima
- Departamento de Química, Universidade Federal de São Carlos, CEP 13565-905 São Carlos, São Paulo, Brazil
| | - Joaquim A Nóbrega
- Departamento de Química, Universidade Federal de São Carlos, CEP 13565-905 São Carlos, São Paulo, Brazil
| | - Márcia R Cominetti
- Departamento de Gerontologia, Universidade Federal de São Carlos, CEP 13565-905 São Carlos, São Paulo Brazil
| | - Fillipe V Rocha
- Departamento de Química, Universidade Federal de São Carlos, CEP 13565-905 São Carlos, São Paulo, Brazil
| | - Antônio G Ferreira
- Departamento de Química, Universidade Federal de São Carlos, CEP 13565-905 São Carlos, São Paulo, Brazil
| | - Eduardo E Castellano
- Instituto de Física de São Carlos, Universidade de São Paulo, CEP 13560-970 São Carlos, São Paulo, Brazil
| | - Felipe R Teixeira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, CEP 13565-905 São Carlos, São Paulo, Brazil
| | - Alzir A Batista
- Departamento de Química, Universidade Federal de São Carlos, CEP 13565-905 São Carlos, São Paulo, Brazil
| |
Collapse
|
7
|
Song L, Xie L, Xu L, Jing Q, Liu C, Xi X, Wang W, Zhao Y, Zhao X, Wang H. Syntheses, spectra, photoinduced nitric oxide release and interactions with biomacromolecules of three nitrosylruthenium complexes. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Zhang SQ, Gao LH, Zhao H, Wang KZ. Recent Progress in Polynuclear Ruthenium Complex-Based DNA Binders/Structural Probes and Anticancer Agents. Curr Med Chem 2020; 27:3735-3752. [DOI: 10.2174/0929867326666181203143422] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/22/2018] [Accepted: 11/26/2018] [Indexed: 01/27/2023]
Abstract
Ruthenium complexes have stood out by several mononuclear complexes which have entered
into clinical trials, such as imidazolium [trans-RuCl4(1H-imidazole)(DMSO-S)] (NAMI-A) and
([Ru(II)(4,4'-dimethyl-2,2'-bipyridine)2-(2(2'-,2'':5'',2'''-terthiophene)-imidazo[4,5-f] [1,10]phenanthroline)]
2+) (TLD-1433), opening a new avenue for developing promising ruthenium-based anticancer
drugs alternative to Cisplatin. Polynuclear ruthenium complexes were reported to exhibit synergistic
and/or complementary effects: the enhanced DNA structural recognition and DNA binding as well as
in vitro anticancer activities. This review overviews some representative polynuclear ruthenium
complexes acting as DNA structural probes, DNA binders and in vitro anticancer agents, which were
developed during last decades. These complexes are reviewed according to two main categories of
homo-polynuclear and hetero-polynuclear complexes, each of which is further clarified into the metal
centers linked by rigid and flexible bridging ligands. The perspective, challenges and future efforts
for investigations into these exciting complexes are pointed out or suggested.
Collapse
Affiliation(s)
- Si-Qi Zhang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Li-Hua Gao
- School of Science, Beijing Technology and Business University, Key Laboratory of Cosmetic (Beijing Technology and Business University), China National Light Industry, Beijing 100048, China
| | - Hua Zhao
- School of Science, Beijing Technology and Business University, Key Laboratory of Cosmetic (Beijing Technology and Business University), China National Light Industry, Beijing 100048, China
| | - Ke-Zhi Wang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
9
|
Guedes APM, Mello-Andrade F, Pires WC, de Sousa MAM, da Silva PFF, de Camargo MS, Gemeiner H, Amauri MA, Gomes Cardoso C, de Melo Reis PR, Silveira-Lacerda EDP, Batista AA. Heterobimetallic Ru(ii)/Fe(ii) complexes as potent anticancer agents against breast cancer cells, inducing apoptosis through multiple targets. Metallomics 2020; 12:547-561. [PMID: 32108850 DOI: 10.1039/c9mt00272c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Antimetastatic activity, high selectivity and cytotoxicity for human tumor cell lines make ruthenium(ii) complexes attractive for the development of new chemotherapeutic agents for cancer treatment. In this study, cytotoxic activities and the possible mechanism of cell death induced by three ruthenium complexes were evaluated, [Ru(MIm)(bipy)(dppf)]PF6 (1), [RuCl(Im)(bipy)(dppf)]PF6 (2) and [Ru(tzdt)(bipy)(dppf)]PF6 (3). The results showed high cytotoxicity and selectivity indexes for the human triple-negative breast tumor cell line (MDA-MB-231) with IC50 value and selectivity index for complex 1 (IC50 = 0.33 ± 0.03 μM, SI = 4.48), complex 2 (IC50 = 0.80 ± 0.06 μM, SI = 2.31) and complex 3 (IC50 = 0.48 ± 0.02 μM, SI = 3.87). The mechanism of cell death induced in MDA-MB-231 cells, after treatment with complexes 1-3, indicated apoptosis of the cells as a consequence of the increase in the percentage of cells in the Sub-G1 phase in the cell cycle analysis, characteristic morphological changes and the presence of apoptotic cells labeled with Annexin-V. Multiple targets of action were identified for complexes 1 and 3 with an induction of DNA damage in cells treated with complexes 1 and 3, mitochondrial depolarization with a reduction in mitochondrial membrane potential, an increase in reactive oxygen species levels and increased expression levels of caspase 3 and p53. In addition, antimetastatic activities for complexes 1 and 3 were observed by inhibition of cell migration by the wound healing assay and Boyden chamber assay, as well as inhibition of angiogenesis caused by MDA-MB-231 tumor cells in the CAM model.
Collapse
|
10
|
Yu Q, Chen Y, Yang H, Zhang HL, Agama K, Pommier Y, An LK. The antitumor activity of CYB-L10, a human topoisomerase IB catalytic inhibitor. J Enzyme Inhib Med Chem 2019; 34:818-822. [PMID: 30907213 PMCID: PMC6442119 DOI: 10.1080/14756366.2018.1516651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/20/2018] [Accepted: 08/22/2018] [Indexed: 01/13/2023] Open
Abstract
DNA topoisomerase IB (TOP1) is a validated target for discovery and development of antitumor agents. Four TOP1 poisons are clinically used for tumor treatment now. In spite of their effectiveness in solid tumors, these camptothecin (CPT) poisons suffer from many shortcomings. Therefore, many investigations have focused on the discoveries of non-CPT poisons and catalytic inhibitors. Herein, we systematically study the antitumor activity of CYB-L10, a novel indolizinoquinolinedione TOP1 catalytic inhibitor discovered in our laboratory. The results indicated that CYB-L10 mainly acts on TOP1 in cancer cells and is not a substrate of the P-glycoprotein. In addition, CYB-L10 can induce apoptosis of HCT116 cells, shows high cytotoxicity against 60 human clinical cancer cell lines (NCI60) with the mean-graph midpoint for growth inhibition of all cancer cell lines of 0.050 µM concentration and obvious antitumor efficiency in vivo in the HCT116 xenograft model.
Collapse
Affiliation(s)
- Qian Yu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yu Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hui Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hong-Li Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Keli Agama
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Lin-Kun An
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
11
|
da Cunha GA, de Souza RFF, de Farias RL, Moreira MB, Silva DES, Zanetti RD, Garcia DM, Spindola DG, Michelin LFG, Bincoletto C, de Souza AA, Antunes AA, Judice WADS, Leitao RCF, Deflon VM, Mauro AE, Netto AVG. Cyclopalladated compounds containing 2,6-lutidine: Synthesis, spectral and biological studies. J Inorg Biochem 2019; 203:110944. [PMID: 31794895 DOI: 10.1016/j.jinorgbio.2019.110944] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023]
Abstract
Bridge splitting reactions between [Pd(C2,N-dmba)(μ-X)]2 (dmba = N,N-dimethylbenzylamine; X = Cl, I, N3, NCO) and 2,6-lutidine (lut) in the 1:2 molar ratio at room temperature afforded cyclopalladated compounds of general formulae [Pd(C2,N-dmba)(X)(lut)] {X = Cl- (1), I-(2), NNN-(3), NCO-(4)}, which were characterized by elemental analyses and infrared (IR), 1H NMR spectroscopy. The molecular structures of all synthesized palladacycles have been solved by single-crystal X-ray crystallography. The cytotoxicity of the cyclopalladated compounds has been evaluated against a panel of murine {mammary carcinoma (4T1) and melanoma (B16F10-Nex2)} and human {melanoma (A2058, SK-MEL-110 and SK-MEL-5) tumor cell lines. All complexes were about 10 to 100-fold more active than cisplatin, depending on the tested tumor cell line. For comparison purposes, the cytotoxic effects of 1-4 towards human lung fibroblasts (MRC-5) have also been tested. The late apoptosis-inducing properties of 1-4 compounds in SK-MEL-5 cells were verified 24 h incubation using annexin V-Fluorescein isothiocyanate (FITC)/propidium iodide (PI). The binding properties of the model compound 1 on human serum albumin (HSA) and calf thymus DNA (ct-DNA) have been studied using circular dichroism and fluorescence spectroscopy. Docking simulations have been carried out to gain more information about the interaction of the palladacycle and HSA. The ability of compounds 1-4 to inhibit the activity of cathepsin B and L has also been investigated in this work.
Collapse
Affiliation(s)
- Gislaine A da Cunha
- UNESP - Univ Estadual Paulista, Institute of Chemistry, 14800-060 Araraquara, SP, Brazil
| | - Ronan F F de Souza
- UNESP - Univ Estadual Paulista, Institute of Chemistry, 14800-060 Araraquara, SP, Brazil
| | - Renan L de Farias
- UNESP - Univ Estadual Paulista, Institute of Chemistry, 14800-060 Araraquara, SP, Brazil
| | - Mariete B Moreira
- UNESP - Univ Estadual Paulista, Institute of Chemistry, 14800-060 Araraquara, SP, Brazil
| | - Débora E S Silva
- UNESP - Univ Estadual Paulista, Institute of Chemistry, 14800-060 Araraquara, SP, Brazil
| | - Renan D Zanetti
- UNESP - Univ Estadual Paulista, Institute of Chemistry, 14800-060 Araraquara, SP, Brazil
| | - Daniel M Garcia
- São Paulo Federal University (UNIFESP), Department of Pharmacology, São Paulo Medicinal School, 04044-020 São Paulo, SP, Brazil
| | - Daniel G Spindola
- São Paulo Federal University (UNIFESP), Department of Pharmacology, São Paulo Medicinal School, 04044-020 São Paulo, SP, Brazil
| | - Luis F G Michelin
- São Paulo Federal University (UNIFESP), Department of Pharmacology, São Paulo Medicinal School, 04044-020 São Paulo, SP, Brazil
| | - Claudia Bincoletto
- São Paulo Federal University (UNIFESP), Department of Pharmacology, São Paulo Medicinal School, 04044-020 São Paulo, SP, Brazil
| | - Aline A de Souza
- Centro Interdisciplinar de Investigação Bioquímica -CIIB, Universidade de Mogi das Cruzes, Av. Cândido Xavier de Almeida Souza, 200-CEP: 08701-970, CP: 411, Mogi das Cruzes, SP, Brazil
| | - Alyne A Antunes
- Centro Interdisciplinar de Investigação Bioquímica -CIIB, Universidade de Mogi das Cruzes, Av. Cândido Xavier de Almeida Souza, 200-CEP: 08701-970, CP: 411, Mogi das Cruzes, SP, Brazil
| | - Wagner A de S Judice
- Centro Interdisciplinar de Investigação Bioquímica -CIIB, Universidade de Mogi das Cruzes, Av. Cândido Xavier de Almeida Souza, 200-CEP: 08701-970, CP: 411, Mogi das Cruzes, SP, Brazil
| | - Renan C F Leitao
- University of São Paulo (USP), São Carlos Institute of Chemistry (IQSC), 13566-590 São Carlos, SP, Brazil
| | - Victor M Deflon
- University of São Paulo (USP), São Carlos Institute of Chemistry (IQSC), 13566-590 São Carlos, SP, Brazil
| | - Antônio E Mauro
- UNESP - Univ Estadual Paulista, Institute of Chemistry, 14800-060 Araraquara, SP, Brazil
| | - Adelino V G Netto
- UNESP - Univ Estadual Paulista, Institute of Chemistry, 14800-060 Araraquara, SP, Brazil.
| |
Collapse
|
12
|
Yang X, Liu H. Diphenylphosphine-Substituted Ferrocene/Silsesquioxane-Based Hybrid Porous Polymers as Highly Efficient Adsorbents for Water Treatment. ACS APPLIED MATERIALS & INTERFACES 2019; 11:26474-26482. [PMID: 31259524 DOI: 10.1021/acsami.9b07874] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The study describes the synthesis of two porous hybrid polymers (abbreviated as DPPF-HPP and DPPOF-HPP) from the Friedel-Crafts reaction of octavinylsilsesquioxane with 1,1'-bis(diphenylphosphine)ferrocene (DPPF) and 1,1'-bis(diphenylphosphine oxide)ferrocene (DPPOF), respectively. DPPF-HPP and DPPOF-HPP possess surface areas of about 890 and 780 m2 g-1, respectively, as well as similar pore structures of the coexisting micropores and mesopores. They are excellent materials for high adsorption of different dyes with adsorption capacities of 2280 mg g-1 for Congo Red and 1440 mg g-1 for Crystal Violet. DPPF-HPP also shows a strong affinity to adsorb Hg2+ ions (300 mg g-1). These materials show no sign of degradation under repeated cycles and thus offer potential for wastewater treatment.
Collapse
Affiliation(s)
- Xiaoru Yang
- Key Laboratory of Special Functional Aggregated Materials Ministry of Education, School of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , P. R. China
| | - Hongzhi Liu
- Key Laboratory of Special Functional Aggregated Materials Ministry of Education, School of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , P. R. China
| |
Collapse
|
13
|
Ribeiro GH, Colina-Vegas L, Clavijo JC, Ellena J, Cominetti MR, Batista AA. Ru(II)/N-N/PPh3 complexes as potential anticancer agents against MDA-MB-231 cancer cells (N-N = diimine or diamine). J Inorg Biochem 2019; 193:70-83. [DOI: 10.1016/j.jinorgbio.2019.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 01/10/2019] [Accepted: 01/12/2019] [Indexed: 01/27/2023]
|
14
|
Dario BS, Fernandes Neto F, Portes MC, Boni Fazzi R, Rodrigues da Silva D, Peterson EJ, Farrell NP, Castelli S, Desideri A, Petersen PAD, Petrilli HM, Da Costa Ferreira AM. DNA binding, cytotoxic effects and probable targets of an oxindolimine–vanadyl complex as an antitumor agent. NEW J CHEM 2019. [DOI: 10.1039/c9nj02480h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The vanadyl–oxindolimine complex as an antitumor agent.
Collapse
Affiliation(s)
- Bruno Soares Dario
- Instituto de Química
- Universidade de São Paulo
- Av. Prof. Lineu Prestes
- 748 – São Paulo 05508-000
- Brazil
| | - Francisco Fernandes Neto
- Instituto de Química
- Universidade de São Paulo
- Av. Prof. Lineu Prestes
- 748 – São Paulo 05508-000
- Brazil
| | - Marcelo Cecconi Portes
- Instituto de Química
- Universidade de São Paulo
- Av. Prof. Lineu Prestes
- 748 – São Paulo 05508-000
- Brazil
| | - Rodrigo Boni Fazzi
- Instituto de Química
- Universidade de São Paulo
- Av. Prof. Lineu Prestes
- 748 – São Paulo 05508-000
- Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Bravo C, Robalo MP, Marques F, Fernandes AR, Sequeira DA, M. Piedade MF, Garcia MH, de Brito MJV, Morais TS. First heterobimetallic Cu(i)–dppf complexes designed for anticancer applications: synthesis, structural characterization and cytotoxicity. NEW J CHEM 2019. [DOI: 10.1039/c9nj02068c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
First heterobimetallic Cu(i)–dppf complexes with bidentate heteroaromatic ligands designed for anticancer applications.
Collapse
Affiliation(s)
- Catarina Bravo
- Centro de Química Estrutural
- Faculdade de Ciências
- Universidade de Lisboa
- Portugal
- Departamento de Química e Bioquímica
| | - M. Paula Robalo
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- Portugal
- Área Departamental de Engenharia Química
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares
- Departamento de Engenharia e Ciências Nucleares
- Instituto Superior Técnico
- Universidade de Lisboa
- Portugal
| | - Alexandra R. Fernandes
- UCBIO
- Departamento de Ciências da Vida
- Faculdade de Ciências e Tecnologia
- Universidade Nova de Lisboa
- Portugal
| | - Diogo A. Sequeira
- Centro de Química Estrutural
- Faculdade de Ciências
- Universidade de Lisboa
- Portugal
- UCBIO
| | - M. Fátima M. Piedade
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade de Lisboa
- Portugal
- Centro de Química Estrutural
| | - M. Helena Garcia
- Centro de Química Estrutural
- Faculdade de Ciências
- Universidade de Lisboa
- Portugal
- Departamento de Química e Bioquímica
| | - Maria J. Villa de Brito
- Centro de Química Estrutural
- Faculdade de Ciências
- Universidade de Lisboa
- Portugal
- Departamento de Química e Bioquímica
| | - Tânia S. Morais
- Centro de Química Estrutural
- Faculdade de Ciências
- Universidade de Lisboa
- Portugal
- Departamento de Química e Bioquímica
| |
Collapse
|
16
|
Dávila–Rodríguez M, Barolli JP, de Oliveira KM, Colina–Vegas L, da Silva Miranda F, Castellano EE, Von Poelhsitz G, Batista AA. Carbonyl–heterobimetallic Ru(II)/Fe(II)–complexes containing polypyridyl ligands: Synthesis, characterization, cellular viability assays and interactions with biomolecules. Arch Biochem Biophys 2018; 660:156-167. [DOI: 10.1016/j.abb.2018.10.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/25/2018] [Accepted: 10/30/2018] [Indexed: 12/18/2022]
|
17
|
Yang X, Liu H. Ferrocene-Functionalized Silsesquioxane-Based Porous Polymer for Efficient Removal of Dyes and Heavy Metal Ions. Chemistry 2018; 24:13504-13511. [DOI: 10.1002/chem.201801765] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/12/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaoru Yang
- Key Laboratory of Special Functional Aggregated Materials, Ministry of Education; School of Chemistry and Chemical Engineering; Shandong University; Jinan P.R. China
| | - Hongzhi Liu
- Key Laboratory of Special Functional Aggregated Materials, Ministry of Education; School of Chemistry and Chemical Engineering; Shandong University; Jinan P.R. China
| |
Collapse
|
18
|
Castelli S, Gonçalves MB, Katkar P, Stuchi GC, Couto RAA, Petrilli HM, da Costa Ferreira AM. Comparative studies of oxindolimine-metal complexes as inhibitors of human DNA topoisomerase IB. J Inorg Biochem 2018; 186:85-94. [PMID: 29860208 DOI: 10.1016/j.jinorgbio.2018.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/18/2018] [Accepted: 05/20/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Silvia Castelli
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica, Rome 00133, Italy
| | - Marcos Brown Gonçalves
- Departamento de Física, Universidade Tecnológica Federal do Paraná, 80230-901 Curitiba, PR, Brazil
| | - Prafulla Katkar
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica, Rome 00133, Italy
| | - Gabriela Cristina Stuchi
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil
| | - Ricardo Alexandre Alves Couto
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil
| | - Helena Maria Petrilli
- Departamento de Física dos Materiais e Mecânica, Instituto de Física, Universidade de São Paulo, 05508-090 São Paulo, SP, Brazil
| | - Ana Maria da Costa Ferreira
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil.
| |
Collapse
|