1
|
Srividya N, Kim H, Simone R, Lange BM. Chemical diversity in angiosperms - monoterpene synthases control complex reactions that provide the precursors for ecologically and commercially important monoterpenoids. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:28-55. [PMID: 38565299 DOI: 10.1111/tpj.16743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
Monoterpene synthases (MTSs) catalyze the first committed step in the biosynthesis of monoterpenoids, a class of specialized metabolites with particularly high chemical diversity in angiosperms. In addition to accomplishing a rate enhancement, these enzymes manage the formation and turnover of highly reactive carbocation intermediates formed from a prenyl diphosphate substrate. At each step along the reaction path, a cationic intermediate can be subject to cyclization, migration of a proton, hydride, or alkyl group, or quenching to terminate the sequence. However, enzymatic control of ligand folding, stabilization of specific intermediates, and defined quenching chemistry can maintain the specificity for forming a signature product. This review article will discuss our current understanding of how angiosperm MTSs control the reaction environment. Such knowledge allows inferences about the origin and regulation of chemical diversity, which is pertinent for appreciating the role of monoterpenoids in plant ecology but also for aiding commercial efforts that harness the accumulation of these specialized metabolites for the food, cosmetic, and pharmaceutical industries.
Collapse
Affiliation(s)
- Narayanan Srividya
- Institute of Biological Chemistry and M. J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA, 99164-7411, USA
| | - Hoshin Kim
- Physical and Computational Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Raugei Simone
- Physical and Computational Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Bernd Markus Lange
- Institute of Biological Chemistry and M. J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA, 99164-7411, USA
| |
Collapse
|
2
|
Whitehead J, Leferink NGH, Johannissen LO, Hay S, Scrutton NS. Decoding Catalysis by Terpene Synthases. ACS Catal 2023; 13:12774-12802. [PMID: 37822860 PMCID: PMC10563020 DOI: 10.1021/acscatal.3c03047] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/31/2023] [Indexed: 10/13/2023]
Abstract
The review by Christianson, published in 2017 on the twentieth anniversary of the emergence of the field, summarizes the foundational discoveries and key advances in terpene synthase/cyclase (TS) biocatalysis (Christianson, D. W. Chem Rev2017, 117 (17), 11570-11648. DOI: 10.1021/acs.chemrev.7b00287). Here, we review the TS literature published since then, bringing the field up to date and looking forward to what could be the near future of TS rational design. Many revealing discoveries have been made in recent years, building on the knowledge and fundamental principles uncovered during those initial two decades of study. We use these to explore TS reaction chemistry and see how a combined experimental and computational approach helps to decipher the complexities of TS catalysis. Revealed are a suite of catalytic motifs which control product outcome in TSs, some obvious, some more subtle. We examine each in detail, using the most recent papers and insights to illustrate how exactly this fascinating class of enzymes takes a single acyclic substrate and turns it into the many thousands of complex terpenoids found in Nature. We then explore some of the recent strategies for TS engineering, including machine learning and other data-driven approaches. From this, rational and predictive engineering of TSs, "designer terpene synthases", will begin to emerge as a realistic goal.
Collapse
Affiliation(s)
- Joshua
N. Whitehead
- Manchester
Institute of Biotechnology, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Nicole G. H. Leferink
- Future
Biomanufacturing Research Hub (FBRH), Manchester Institute of Biotechnology,
Department of Chemistry, The University
of Manchester, Manchester, M1 7DN, United
Kingdom
| | - Linus O. Johannissen
- Manchester
Institute of Biotechnology, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Sam Hay
- Manchester
Institute of Biotechnology, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Nigel S. Scrutton
- Manchester
Institute of Biotechnology, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
- Future
Biomanufacturing Research Hub (FBRH), Manchester Institute of Biotechnology,
Department of Chemistry, The University
of Manchester, Manchester, M1 7DN, United
Kingdom
| |
Collapse
|
3
|
Vining KJ, Pandelova I, Lange I, Parrish AN, Lefors A, Kronmiller B, Liachko I, Kronenberg Z, Srividya N, Lange BM. Chromosome-level genome assembly of Mentha longifolia L. reveals gene organization underlying disease resistance and essential oil traits. G3 GENES|GENOMES|GENETICS 2022; 12:6584825. [PMID: 35551385 PMCID: PMC9339296 DOI: 10.1093/g3journal/jkac112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 04/21/2022] [Indexed: 11/13/2022]
Abstract
Abstract
Mentha longifolia (L.) Huds., a wild, diploid mint species, has been developed as a model for mint genetic and genomic research to aid breeding efforts that target Verticillium wilt disease resistance and essential oil monoterpene composition. Here, we present a near-complete, chromosome-scale mint genome assembly for M. longifolia USDA accession CMEN 585. This new assembly is an update of a previously published genome draft, with dramatic improvements. A total of 42,107 protein-coding genes were annotated and placed on 12 chromosomal scaffolds. One hundred fifty-three genes contained conserved sequence domains consistent with nucleotide binding site-leucine-rich-repeat plant disease resistance genes. Homologs of genes implicated in Verticillium wilt resistance in other plant species were also identified. Multiple paralogs of genes putatively involved in p-menthane monoterpenoid biosynthesis were identified and several cases of gene clustering documented. Heterologous expression of candidate genes, purification of recombinant target proteins, and subsequent enzyme assays allowed us to identify the genes underlying the pathway that leads to the most abundant monoterpenoid volatiles. The bioinformatic and functional analyses presented here are laying the groundwork for using marker-assisted selection in improving disease resistance and essential oil traits in mints.
Collapse
Affiliation(s)
- Kelly J Vining
- Department of Horticulture, Oregon State University , Corvallis, OR 97331, USA
| | - Iovanna Pandelova
- Department of Horticulture, Oregon State University , Corvallis, OR 97331, USA
| | - Iris Lange
- M.J. Murdock Metabolomics Laboratory, Institute of Biological Chemistry, Washington State University , Pullman, WA 99164-6340, USA
| | - Amber N Parrish
- M.J. Murdock Metabolomics Laboratory, Institute of Biological Chemistry, Washington State University , Pullman, WA 99164-6340, USA
| | - Andrew Lefors
- M.J. Murdock Metabolomics Laboratory, Institute of Biological Chemistry, Washington State University , Pullman, WA 99164-6340, USA
| | - Brent Kronmiller
- Center for Quantitative Life Sciences, Oregon State University , Corvallis, OR 97331, USA
| | | | | | - Narayanan Srividya
- M.J. Murdock Metabolomics Laboratory, Institute of Biological Chemistry, Washington State University , Pullman, WA 99164-6340, USA
| | - B Markus Lange
- M.J. Murdock Metabolomics Laboratory, Institute of Biological Chemistry, Washington State University , Pullman, WA 99164-6340, USA
| |
Collapse
|
4
|
Kim H, Srividya N, Lange I, Huchala EW, Ginovska B, Lange BM, Raugei S. Determinants of Selectivity for the Formation of Monocyclic and Bicyclic Products in Monoterpene Synthases. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hoshin Kim
- Physical and Computational Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Narayanan Srividya
- Institute of Biological Chemistry and M. J. Murdock Metabolomics Laboratory, Washington State University, Pullman, Washington 99164-7411, United States
| | - Iris Lange
- Institute of Biological Chemistry and M. J. Murdock Metabolomics Laboratory, Washington State University, Pullman, Washington 99164-7411, United States
| | - Eden W. Huchala
- Physical and Computational Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| | - Bojana Ginovska
- Physical and Computational Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - B. Markus Lange
- Institute of Biological Chemistry and M. J. Murdock Metabolomics Laboratory, Washington State University, Pullman, Washington 99164-7411, United States
| | - Simone Raugei
- Physical and Computational Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Institute of Biological Chemistry and M. J. Murdock Metabolomics Laboratory, Washington State University, Pullman, Washington 99164-7411, United States
| |
Collapse
|
5
|
Liu S, Zhang M, Ren Y, Jin G, Tao Y, Lyu L, Zhao ZK, Yang X. Engineering Rhodosporidium toruloides for limonene production. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:243. [PMID: 34937561 PMCID: PMC8697501 DOI: 10.1186/s13068-021-02094-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/15/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND Limonene is a widely used monoterpene in the production of food, pharmaceuticals, biofuels, etc. The objective of this work was to engineer Rhodosporidium toruloides as a cell factory for the production of limonene. RESULTS By overexpressing the limonene synthase (LS), neryl pyrophosphate synthase (NPPS)/geranyl pyrophosphate synthase and the native hydroxy-methyl-glutaryl-CoA reductase (HMGR), we established a baseline for limonene production based on the mevalonate route in Rhodosporidium toruloides. To further enhance the limonene titer, the acetoacetyl-CoA thiolase/HMGR (EfMvaE) and mevalonate synthase (EfMvaS) from Enterococcus faecalis, the mevalonate kinase from Methanosarcina mazei (MmMK) and the chimeric enzyme NPPS-LS were introduced in the carotenogenesis-deficient strain. The resulting strains produced a maximum limonene titer of 393.5 mg/L. CONCLUSION In this study, we successfully engineered the carotenogenesis yeast R. toruloides to produce limonene. This is the first report on engineering R. toruloides toward limonene production based on NPP and the fusion protein SltNPPS-CltLS. The results demonstrated that R. toruloides is viable for limonene production, which would provide insights into microbial production of valuable monoterpenes.
Collapse
Affiliation(s)
- Sasa Liu
- College of Enology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Mengyao Zhang
- College of Enology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yuyao Ren
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
| | - Guojie Jin
- College of Enology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yongsheng Tao
- College of Enology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Liting Lyu
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
| | - Zongbao K Zhao
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
| | - Xiaobing Yang
- College of Enology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
6
|
Huang ZY, Ye RY, Yu HL, Li AT, Xu JH. Mining methods and typical structural mechanisms of terpene cyclases. BIORESOUR BIOPROCESS 2021; 8:66. [PMID: 38650244 PMCID: PMC10992375 DOI: 10.1186/s40643-021-00421-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/24/2021] [Indexed: 12/13/2022] Open
Abstract
Terpenoids, formed by cyclization and/or permutation of isoprenes, are the most diverse and abundant class of natural products with a broad range of significant functions. One family of the critical enzymes involved in terpenoid biosynthesis is terpene cyclases (TCs), also known as terpene synthases (TSs), which are responsible for forming the ring structure as a backbone of functionally diverse terpenoids. With the recent advances in biotechnology, the researches on terpene cyclases have gradually shifted from the genomic mining of novel enzyme resources to the analysis of their structures and mechanisms. In this review, we summarize both the new methods for genomic mining and the structural mechanisms of some typical terpene cyclases, which are helpful for the discovery, engineering and application of more and new TCs.
Collapse
Affiliation(s)
- Zheng-Yu Huang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China
| | - Ru-Yi Ye
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China
| | - Ai-Tao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
7
|
Lei D, Qiu Z, Qiao J, Zhao GR. Plasticity engineering of plant monoterpene synthases and application for microbial production of monoterpenoids. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:147. [PMID: 34193244 PMCID: PMC8247113 DOI: 10.1186/s13068-021-01998-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 06/18/2021] [Indexed: 05/17/2023]
Abstract
Plant monoterpenoids with structural diversities have extensive applications in food, cosmetics, pharmaceuticals, and biofuels. Due to the strong dependence on the geographical locations and seasonal annual growth of plants, agricultural production for monoterpenoids is less effective. Chemical synthesis is also uneconomic because of its high cost and pollution. Recently, emerging synthetic biology enables engineered microbes to possess great potential for the production of plant monoterpenoids. Both acyclic and cyclic monoterpenoids have been synthesized from fermentative sugars through heterologously reconstructing monoterpenoid biosynthetic pathways in microbes. Acting as catalytic templates, plant monoterpene synthases (MTPSs) take elaborate control of the monoterpenoids production. Most plant MTPSs have broad substrate or product properties, and show functional plasticity. Thus, the substrate selectivity, product outcomes, or enzymatic activities can be achieved by the active site mutations and domain swapping of plant MTPSs. This makes plasticity engineering a promising way to engineer MTPSs for efficient production of natural and non-natural monoterpenoids in microbial cell factories. Here, this review summarizes the key advances in plasticity engineering of plant MTPSs, including the fundamental aspects of functional plasticity, the utilization of natural and non-natural substrates, and the outcomes from product isomers to complexity-divergent monoterpenoids. Furthermore, the applications of plasticity engineering for improving monoterpenoids production in microbes are addressed.
Collapse
Affiliation(s)
- Dengwei Lei
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China
| | - Zetian Qiu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China
| | - Jianjun Qiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China
| | - Guang-Rong Zhao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China.
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China.
| |
Collapse
|
8
|
Microbial production of limonene and its derivatives: Achievements and perspectives. Biotechnol Adv 2020; 44:107628. [DOI: 10.1016/j.biotechadv.2020.107628] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022]
|
9
|
Smit SJ, Vivier MA, Young PR. Comparative (Within Species) Genomics of the Vitis vinifera L. Terpene Synthase Family to Explore the Impact of Genotypic Variation Using Phased Diploid Genomes. Front Genet 2020; 11:421. [PMID: 32431727 PMCID: PMC7216305 DOI: 10.3389/fgene.2020.00421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/03/2020] [Indexed: 01/20/2023] Open
Abstract
The Vitis vinifera L. terpene synthase (VviTPS) family was comprehensively annotated on the phased diploid genomes of three closely related cultivars: Cabernet Sauvignon, Carménère and Chardonnay. VviTPS gene regions were grouped to chromosomes, with the haplotig assemblies used to identify allelic variants. Functional predictions of the VviTPS subfamilies were performed using enzyme active site phylogenies resulting in the putative identification of the initial substrate and cyclization mechanism of VviTPS enzymes. Subsequent groupings into conserved catalytic mechanisms was coupled with an analysis of cultivar-specific gene duplications, resulting in the identification of conserved and unique VviTPS clusters. These findings are presented as a collection of interactive networks where any VviTPS of interest can be queried through BLAST, allowing for a rapid identification of VviTPS-subfamily, enzyme mechanism and degree of connectivity (i.e., extent of duplication). The comparative genomic analyses presented expands our understanding of the VviTPS family and provides numerous new gene models from three diploid genomes.
Collapse
Affiliation(s)
| | | | - Philip Richard Young
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
10
|
Wu J, Cheng S, Cao J, Qiao J, Zhao GR. Systematic Optimization of Limonene Production in Engineered Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7087-7097. [PMID: 31199132 DOI: 10.1021/acs.jafc.9b01427] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Limonene, a cyclic monoterpene, is widely used in food and cosmetics industries as well as in agriculture. In the work described herein, employing a systematic optimization strategy, we constructed an efficient platform for producing limonene via the heterologous mevalonate pathway in Escherichia coli. By site-directed mutation of EfMvaS and tuning the initial translation of EfMvaE and EfMvaSA110G through ribosome binding site engineering, the upstream module for overproducing mevalonate was obtained. Expression of MmMK with ScPMK, ScPMD, and ScIDI under FAB80 promoter resulted in an efficient midstream module to produce 181.73 mg/L of limonene. Subsequently, coexpression of SlNPPS and MsLS in the downstream module led to a great improvement of limonene production to 694.61 mg/L. Finally, metabolically engineered strain ELIM78 produced 1.29 g/L of limonene in 84 h by fed-batch fermentation in a shake-flask. This is the first report on limonene biosynthesis in E. coli using neryl pyrophosphate synthase, which has promising potential for producing other monoterpenes.
Collapse
Affiliation(s)
- Jihua Wu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology , Tianjin University , Yaguan Road 135 , Jinnan District, Tianjin 300350 , China
| | - Si Cheng
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology , Tianjin University , Yaguan Road 135 , Jinnan District, Tianjin 300350 , China
| | - Jiayu Cao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology , Tianjin University , Yaguan Road 135 , Jinnan District, Tianjin 300350 , China
| | - Jianjun Qiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology , Tianjin University , Yaguan Road 135 , Jinnan District, Tianjin 300350 , China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin) , Tianjin University , Yaguan Road 135 , Jinnan District, Tianjin 300350 , China
| | - Guang-Rong Zhao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology , Tianjin University , Yaguan Road 135 , Jinnan District, Tianjin 300350 , China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin) , Tianjin University , Yaguan Road 135 , Jinnan District, Tianjin 300350 , China
| |
Collapse
|
11
|
Leferink NGH, Ranaghan KE, Karuppiah V, Currin A, van der Kamp MW, Mulholland AJ, Scrutton NS. Experiment and Simulation Reveal How Mutations in Functional Plasticity Regions Guide Plant Monoterpene Synthase Product Outcome. ACS Catal 2019; 8:3780-3791. [PMID: 31157124 PMCID: PMC6542672 DOI: 10.1021/acscatal.8b00692] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Monoterpenes (C10 isoprenoids) are a structurally diverse group of natural compounds that are attractive to industry as flavours and fragrances. Monoterpenes are produced from a single linear substrate, geranyl diphosphate, by a group of enzymes called the monoterpene cyclases/synthases (mTC/Ss) that catalyse high-energy cyclisation reactions involving unstable carbocation intermediates. Efforts towards producing monoterpenes via biocatalysis or metabolic engineering often result in the formation of multiple products due to the nature of the highly branched reaction mechanism of mTC/Ss. Rational engineering of mTC/Ss is hampered by the lack of correlation between the active site sequence and cyclisation type. We used available mutagenesis data to show that amino acids involved in product outcome are clustered and spatially conserved within the mTC/S family. Consensus sequences for three such plasticity regions were introduced in different mTC/S with increasingly complex cyclisation cascades, including the model enzyme limonene synthase (LimS). In all three mTC/S studied, mutations in the first two regions mostly give rise to products that result from premature quenching of the linalyl or α-terpinyl cations, suggesting that both plasticity regions are involved in the formation and stabilisation of cations early in the reaction cascade. A LimS variant with mutations in the second region (S454G, C457V, M458I), produced mainly more complex bicyclic products. QM/MM MD simulations reveal that the second cyclisation is not due to compression of the C2-C7 distance in the α-terpinyl cation, but is the result of an increased distance between C8 of the α-terpinyl cation and two putative bases (W324, H579) located on the other side of the active site, preventing early termination by deprotonation. Such insights into the impact of mutations can only be obtained using integrated experimental and computational approaches, and will aid the design of altered mTC/S activities towards clean monoterpenoid products.
Collapse
Affiliation(s)
- Nicole G. H. Leferink
- Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, School of Chemistry, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Kara E. Ranaghan
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Vijaykumar Karuppiah
- Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, School of Chemistry, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Andrew Currin
- Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, School of Chemistry, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Marc W. van der Kamp
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, U.K
| | - Adrian J. Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Nigel S. Scrutton
- Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, School of Chemistry, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| |
Collapse
|
12
|
Ma XL, Li J, Zheng J, Gu XP, Ferreira D, Zjawiony JK, Zhao MB, Guo XY, Tu PF, Jiang Y. LC-MS-Guided Isolation of Insulin-Secretion-Promoting Monoterpenoid Carbazole Alkaloids from Murraya microphylla. JOURNAL OF NATURAL PRODUCTS 2018; 81:2371-2380. [PMID: 30381950 DOI: 10.1021/acs.jnatprod.8b00338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Fifteen new structurally unique monoterpenoid carbazole alkaloids, including two pairs of epimers (1/2 and 3/4), three pairs of enantiomers (6a/6b, 7a/7b, and 8a/8b), and five optically pure analogues (5, 9-12), were obtained from a 95% aqueous EtOH extract of Murraya microphylla by a combination of bioassay- and LC-MS-guided fractionation procedures. Their structures were established based on NMR and HRESIMS data interpretation. The absolute configuration of compound 1 was determined via X-ray crystallographic data analysis and for all compounds by comparison of experimental and calculated ECD data. Compounds 1-5 were assigned as five new thujane-carbazole alkaloids, and compounds 6-12 as 10 new menthene-carbazole alkaloids linked through an ether or carbon-carbon bond. Compounds 1-12 promoted insulin secretion in the HIT-T15 cell line, 1.9-3.1-fold higher than the gliclazide control at 100 μM.
Collapse
Affiliation(s)
- Xiao-Li Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , People's Republic of China
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica , Beijing University of Chinese Medicine , Beijing 100029 , People's Republic of China
| | - Jiao Zheng
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica , Beijing University of Chinese Medicine , Beijing 100029 , People's Republic of China
| | - Xiao-Pan Gu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica , Beijing University of Chinese Medicine , Beijing 100029 , People's Republic of China
| | - Daneel Ferreira
- Department of BioMolecular Sciences, Division of Pharmacognosy, and Research Institute of Pharmaceutical Sciences, School of Pharmacy , University of Mississippi , University , Mississippi 38677-1848 , United States
| | - Jordan K Zjawiony
- Department of BioMolecular Sciences, Division of Pharmacognosy, and Research Institute of Pharmaceutical Sciences, School of Pharmacy , University of Mississippi , University , Mississippi 38677-1848 , United States
| | - Ming-Bo Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , People's Republic of China
| | - Xiao-Yu Guo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , People's Republic of China
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , People's Republic of China
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , People's Republic of China
| |
Collapse
|