1
|
Kam MK, Park JY, Yun GH, Sohn HY, Park JH, Choi J, Koh YH, Jo C. Rottlerin Enhances the Autophagic Degradation of Phosphorylated Tau in Neuronal Cells. Mol Neurobiol 2024; 61:9633-9645. [PMID: 38671330 DOI: 10.1007/s12035-024-04182-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
Intra-neuronal accumulation of hyper-phosphorylated tau as neurofibrillary tangles (NFT) is a hallmark of Alzheimer's disease (AD). To prevent the aggregation of phosphorylated tau in neurons, decreasing the phosphorylated tau protein levels is important. Here, we examined the biological effects of rottlerin, a phytochemical compound extracted from the Kamala tree, Mallotus philippinensis, on phosphorylated tau levels. Notably, rottlerin decreased the levels of intracellular phosphorylated and total tau. A marked increase in the LC3-II, a hallmark of autophagy, was observed in these cells, indicating that rottlerin strongly induced autophagy. Interestingly, rottlerin induced the phosphorylation of Raptor at S792 through the activation of adenosine-monophosphate activated-protein kinase (AMPK), which likely inhibits the mammalian target of rapamycin complex 1 (mTORC1), thus resulting in the activation of transcription factor EB (TFEB), a master regulator of autophagy. In addition, nuclear factor erythroid 2-related factor 2 (Nrf2) activity increased in the presence of rottlerin. The decrease of phosphorylated tau levels in the presence of rottlerin was ameliorated by the knockdown of TFEB and partially attenuated by the knockout of the Nrf2 gene. Taken together, rottlerin likely enhances the degradation of phosphorylated tau through autophagy activated by TFEB and Nrf2. Thus, our results suggest that a natural compound rottlerin could be used as a preventive and therapeutic drug for AD.
Collapse
Affiliation(s)
- Min Kyoung Kam
- Division of Brain Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, 187 Osongsaengmyeong2-Ro, Osong-Eup, Cheongju-Si, 363-951, Chungcheongbuk-Do, Korea
| | - Jee-Yun Park
- Division of Brain Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, 187 Osongsaengmyeong2-Ro, Osong-Eup, Cheongju-Si, 363-951, Chungcheongbuk-Do, Korea
| | - Gwang Ho Yun
- Division of Brain Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, 187 Osongsaengmyeong2-Ro, Osong-Eup, Cheongju-Si, 363-951, Chungcheongbuk-Do, Korea
| | - Hee-Young Sohn
- Division of Brain Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, 187 Osongsaengmyeong2-Ro, Osong-Eup, Cheongju-Si, 363-951, Chungcheongbuk-Do, Korea
| | - Jung Hyun Park
- Division of Brain Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, 187 Osongsaengmyeong2-Ro, Osong-Eup, Cheongju-Si, 363-951, Chungcheongbuk-Do, Korea
| | - Jiyoung Choi
- Division of Brain Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, 187 Osongsaengmyeong2-Ro, Osong-Eup, Cheongju-Si, 363-951, Chungcheongbuk-Do, Korea
| | - Young Ho Koh
- Division of Brain Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, 187 Osongsaengmyeong2-Ro, Osong-Eup, Cheongju-Si, 363-951, Chungcheongbuk-Do, Korea
| | - Chulman Jo
- Division of Brain Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, 187 Osongsaengmyeong2-Ro, Osong-Eup, Cheongju-Si, 363-951, Chungcheongbuk-Do, Korea.
| |
Collapse
|
2
|
Kovale L, Singh MK, Kim J, Ha J. Role of Autophagy and AMPK in Cancer Stem Cells: Therapeutic Opportunities and Obstacles in Cancer. Int J Mol Sci 2024; 25:8647. [PMID: 39201332 PMCID: PMC11354724 DOI: 10.3390/ijms25168647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Cancer stem cells represent a resilient subset within the tumor microenvironment capable of differentiation, regeneration, and resistance to chemotherapeutic agents, often using dormancy as a shield. Their unique properties, including drug resistance and metastatic potential, pose challenges for effective targeting. These cells exploit certain metabolic processes for their maintenance and survival. One of these processes is autophagy, which generally helps in energy homeostasis but when hijacked by CSCs can help maintain their stemness. Thus, it is often referred as an Achilles heel in CSCs, as certain cancers tend to depend on autophagy for survival. Autophagy, while crucial for maintaining stemness in cancer stem cells (CSCs), can also serve as a vulnerability in certain contexts, making it a complex target for therapy. Regulators of autophagy like AMPK (5' adenosine monophosphate-activated protein kinase) also play a crucial role in maintaining CSCs stemness by helping CSCs in metabolic reprogramming in harsh environments. The purpose of this review is to elucidate the interplay between autophagy and AMPK in CSCs, highlighting the challenges in targeting autophagy and discussing therapeutic strategies to overcome these limitations. This review focuses on previous research on autophagy and its regulators in cancer biology, particularly in CSCs, addresses the remaining unanswered questions, and potential targets for therapy are also brought to attention.
Collapse
Affiliation(s)
- Lochana Kovale
- Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (L.K.); (M.K.S.)
| | - Manish Kumar Singh
- Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (L.K.); (M.K.S.)
| | - Joungmok Kim
- Department of Oral Biochemistry and Molecular Biology, College of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (L.K.); (M.K.S.)
| |
Collapse
|
3
|
Manhas D, Bhatt S, Rai G, Kumar V, Bharti S, Dhiman S, Jain SK, Sharma DK, Ojha PK, Gandhi SG, Goswami A, Nandi U. Rottlerin renders a selective and highly potent CYP2C8 inhibition to impede EET formation for implication in cancer therapy. Chem Biol Interact 2023; 380:110524. [PMID: 37146929 DOI: 10.1016/j.cbi.2023.110524] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/14/2023] [Accepted: 05/03/2023] [Indexed: 05/07/2023]
Abstract
CYP2C8 is a crucial CYP isoform responsible for the metabolism of xenobiotics and endogenous molecules. CYP2C8 converts arachidonic acid to epoxyeicosatrienoic acids (EETs) that cause cancer progression. Rottlerin possess significant anticancer actions. However, information on its CYP inhibitory action is lacking in the literature and therefore, we aimed to explore the same using in silico, in vitro, and in vivo approaches. Rottlerin showed highly potent and selective CYP2C8 inhibition (IC50 < 0.1 μM) compared to negligible inhibition (IC50 > 10 μM) for seven other experimental CYPs in human liver microsomes (HLM) (in vitro) using USFDA recommended index reactions. Mechanistic studies reveal that rottlerin could reversibly (mixed-type) block CYP2C8. Molecular docking (in silico) results indicate a strong interaction could occur between rottlerin and the active site of human CYP2C8. Rottlerin boosted the plasma exposure of repaglinide and paclitaxel (CYP2C8 substrates) by delaying their metabolism using the rat model (in vivo). Multiple-dose treatment of rottlerin with CYP2C8 substrates lowered the CYP2C8 protein expression and up-regulated & down-regulated the mRNA for CYP2C12 and CYP2C11 (rat homologs), respectively, in rat liver tissue. Rottlerin substantially hindered the EET formation in HLM. Overall results of rottlerin on CYP2C8 inhibition and EET formation insinuate further exploration for targeted cancer therapy.
Collapse
Affiliation(s)
- Diksha Manhas
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shipra Bhatt
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Garima Rai
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Vinay Kumar
- Drug Theoretics and Chemoinformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Sahil Bharti
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sumit Dhiman
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Shreyans K Jain
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Deepak K Sharma
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Probir Kumar Ojha
- Drug Theoretics and Chemoinformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Sumit G Gandhi
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anindya Goswami
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Utpal Nandi
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
4
|
Paccetti-Alves I, Batista MSP, Pimpão C, Victor BL, Soveral G. Unraveling the Aquaporin-3 Inhibitory Effect of Rottlerin by Experimental and Computational Approaches. Int J Mol Sci 2023; 24:ijms24066004. [PMID: 36983077 PMCID: PMC10057066 DOI: 10.3390/ijms24066004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
The natural polyphenolic compound Rottlerin (RoT) showed anticancer properties in a variety of human cancers through the inhibition of several target molecules implicated in tumorigenesis, revealing its potential as an anticancer agent. Aquaporins (AQPs) are found overexpressed in different types of cancers and have recently emerged as promising pharmacological targets. Increasing evidence suggests that the water/glycerol channel aquaporin-3 (AQP3) plays a key role in cancer and metastasis. Here, we report the ability of RoT to inhibit human AQP3 activity with an IC50 in the micromolar range (22.8 ± 5.82 µM for water and 6.7 ± 2.97 µM for glycerol permeability inhibition). Moreover, we have used molecular docking and molecular dynamics simulations to understand the structural determinants of RoT that explain its ability to inhibit AQP3. Our results show that RoT blocks AQP3-glycerol permeation by establishing strong and stable interactions at the extracellular region of AQP3 pores interacting with residues essential for glycerol permeation. Altogether, our multidisciplinary approach unveiled RoT as an anticancer drug against tumors where AQP3 is highly expressed providing new information to aquaporin research that may boost future drug design.
Collapse
Affiliation(s)
- Inês Paccetti-Alves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Marta S P Batista
- Biosystems and Integrative Sciences Institute, Faculty of Sciences, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Catarina Pimpão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Bruno L Victor
- Biosystems and Integrative Sciences Institute, Faculty of Sciences, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| |
Collapse
|
5
|
Rottlerin Stimulates Exosome/Microvesicle Release via the Increase of Ceramide Levels Mediated by Ampk in an In Vitro Model of Intracellular Lipid Accumulation. Biomedicines 2022; 10:biomedicines10061316. [PMID: 35740338 PMCID: PMC9219951 DOI: 10.3390/biomedicines10061316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/23/2022] [Accepted: 06/01/2022] [Indexed: 11/29/2022] Open
Abstract
Exosomes/microvesicles originate from multivesicular bodies that allow the secretion of endolysosome components out of the cell. In the present work, we investigated the effects of rottlerin, a polyphenol, on exosome/microvesicle secretion in a model of intracellular lipid trafficking impairment, and elucidated the mechanism of action. In a model of lipid trafficking impairment in C6 glia cells, rottlerin increased ceramide levels, while decreasing hexosylceramide content. This was accompanied by increased exosome/microvesicle secretion, thereby reducing the concentration of lipids in the endolysosomal compartment. The reduction of hexosylceramide levels by rottlerin was attributed to the increase of β-glucosidase (glucosylceramidase) activity, and the effects of rottlerin were abrogated by β-glucosidase inhibitors such as isofagomine D-tartrate and AMP-deoxynojirimycin. Moreover, treatment with ML-266, a potent activator of the β-glucosidase enzyme, recapitulated the effects of rottlerin on the sphingolipid profile and exosome/microvesicle secretion. Finally, inhibition of AMPK (AMP-activated protein kinase) using compound C prevented both exosome/microvesicle secretion and the elimination of endolysosome lipids, which were promoted by rottlerin. The results showed that the decrease in intracellular lipid deposition induced by rottlerin was mediated by β-glucosidase activation and exosome/microvesicle release via the AMPK pathway. Rottlerin consumption could represent an additional health benefit in lysosomal deposition diseases.
Collapse
|
6
|
Wu D, Pan J, Zhang D. Inhibition of PKC-δ reduce rhabdomyolysis-induced acute kidney injury. J Cell Mol Med 2022; 26:3243-3253. [PMID: 35502493 PMCID: PMC9170808 DOI: 10.1111/jcmm.17331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Despite extensive research, the mechanisms underlying rhabdomyolysis-induced acute kidney injury (AKI) remain largely elusive. In this study, we established both cell and murine models of rhabdomyolysis-induced AKI by using myoglobin and glycerin, respectively, and provided evidence that protein kinase Cδ (PKC-δ) was activated in both models and subsequently promoted cell apoptosis. Moreover, we found that this detrimental effect of PKC-δ activation can be reversed by its pharmaceutical inhibitor rottlerin. Furthermore, we detected and confirmed the existence of PKC-δ-mediated myoglobin-induced cell apoptosis and the expression of TNF-α and IL1-β via regulation of the p38MAPK and ERK1/2 signalling pathways. In summary, our research revealed the role of PKC-δ in renal cell apoptosis and suggests that PKC-δ is a viable therapeutic target for rhabdomyolysis-induced AKI.
Collapse
Affiliation(s)
- Dengke Wu
- Department of Emergency Medicine, Second Xiangya Hospital of Central South University, Changsha, China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Changsha, China
| | - Jian Pan
- Department of Emergency Medicine, Second Xiangya Hospital of Central South University, Changsha, China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Changsha, China
| | - Dongshan Zhang
- Department of Emergency Medicine, Second Xiangya Hospital of Central South University, Changsha, China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Changsha, China
| |
Collapse
|
7
|
Cieslikowski WA, Haber T, Krajnak S, Anic K, Hasenburg A, Mager R, Thüroff JW, Brenner W. Co-administration of tyrosine kinase inhibitors with rottlerin in metastatic prostate cancer cells. EXCLI JOURNAL 2021; 20:1585-1596. [PMID: 34924906 PMCID: PMC8678056 DOI: 10.17179/excli2021-3980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 11/16/2021] [Indexed: 11/12/2022]
Abstract
After prostatectomy due to prostate carcinoma, patients often develop metastases. Although prostate cancer is susceptible to hormonal manipulation, many patients become castration-resistant. Therefore, new therapies are the focus of investigations. We analyzed the effect of the tyrosine kinase inhibitors (TKIs), sorafenib and sunitinib, in combination with rottlerin, a PKCδ inhibitor, on metastatic mechanisms in prostate carcinoma cells. LNCaP and PC-3 prostate carcinoma cells were treated with sorafenib or sunitinib alone at various concentrations (1-20 µM) or in combination with rottlerin (10 µM) for 24 h. Then, cell toxicity (MTT test) and cell proliferation (BrdU incorporation assay) were quantified. The study demonstrated a dose-dependent inhibitory effect of sorafenib and sunitinib on PC-3 and LNCaP cell activity and proliferation. Both agents showed significantly stronger cytotoxic effects in LNCaP cells. At the highest concentrations, sorafenib and sunitinib inhibited the viability of LNCaP cells up to 2 % and 31 %, respectively, and the viability of PC-3 cell line up to 20 % and 43 %, respectively. The proliferation of both cell lines was significantly stronger inhibited by sorafenib than by sunitinib. In LNCaP cells, sorafenib and sunitinib at the highest concentrations inhibited cell proliferation up to 46 % and 49 %, respectively, and the proliferation of PC-3 line up to 40 % and 47 %, respectively. Rottlerin reduced the viability and proliferation of PC3 cells to 81 % and 42 %, whereas the viability and proliferation of LNCaP cells were reduced to 25 % and 57 %, respectively. Sorafenib and sunitinib at low concentrations partly neutralized the inhibitory effect of rottlerin on cell viability and proliferation. On the other hand, in PC-3 cells, rottlerin reduced the inhibitory effects of sorafenib and sunitinib at the highest concentrations on cell viability from 20 % to 30 % and from 43 % to 61 %, respectively. An additive effect on cell activity was observed after treating LNCaP cells with both sunitinib at high concentrations and rottlerin. This combination increased the cytotoxic effect from 31 % to 13 % at the highest sunitinib concentration. Our results showed that monotherapy with sorafenib was the most efficient in both PCa cell lines. A marginally additive effect of rottlerin was only observed in LNCaP cells treated with sunitinib at a high concentration. Sorafenib and sunitinib reduced cell migration in PC-3 cells to 10 % and 32 % of untreated cells, respectively. Co-treatment with sorafenib/sunitinib and rottlerin did not result in a significantly stronger anti-migratory effect than the treatment with each TKI alone. Given the strong cytotoxic effect of TKIs, especially sorafenib, on LNCaP cells, the results of the migration assay in this line were severely biased and not considered in the analysis. Unlike in other malignancies, combination therapy with TKI and rottlerin seems not beneficial in prostate cancer. More promising seems to be monotherapy with rottlerin, but further studies are needed to confirm this observation.
Collapse
Affiliation(s)
- Wojciech A. Cieslikowski
- Department of Urology and Pediatric Urology, Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131 Mainz, Germany,Department of Urology, Poznan University of Medical Sciences, 61-701 Poznan, Poland,*To whom correspondence should be addressed: Wojciech A. Cieslikowski, Department of Urology, Poznan University of Medical Sciences, 61-701 Poznan, Poland, E-mail:
| | - Tobias Haber
- Department of Urology and Pediatric Urology, Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Slavomir Krajnak
- Clinic for Obstetrics and Women's Health, Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Katharina Anic
- Clinic for Obstetrics and Women's Health, Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Annette Hasenburg
- Clinic for Obstetrics and Women's Health, Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131 Mainz, Germany
| | - René Mager
- Department of Urology and Pediatric Urology, Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Joachim W. Thüroff
- Department of Urology and Pediatric Urology, Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Walburgis Brenner
- Department of Urology and Pediatric Urology, Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131 Mainz, Germany,Clinic for Obstetrics and Women's Health, Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131 Mainz, Germany
| |
Collapse
|
8
|
Al-Bari MAA, Ito Y, Ahmed S, Radwan N, Ahmed HS, Eid N. Targeting Autophagy with Natural Products as a Potential Therapeutic Approach for Cancer. Int J Mol Sci 2021; 22:9807. [PMID: 34575981 PMCID: PMC8467030 DOI: 10.3390/ijms22189807] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023] Open
Abstract
Macro-autophagy (autophagy) is a highly conserved eukaryotic intracellular process of self-digestion caused by lysosomes on demand, which is upregulated as a survival strategy upon exposure to various stressors, such as metabolic insults, cytotoxic drugs, and alcohol abuse. Paradoxically, autophagy dysfunction also contributes to cancer and aging. It is well known that regulating autophagy by targeting specific regulatory molecules in its machinery can modulate multiple disease processes. Therefore, autophagy represents a significant pharmacological target for drug development and therapeutic interventions in various diseases, including cancers. According to the framework of autophagy, the suppression or induction of autophagy can exert therapeutic properties through the promotion of cell death or cell survival, which are the two main events targeted by cancer therapies. Remarkably, natural products have attracted attention in the anticancer drug discovery field, because they are biologically friendly and have potential therapeutic effects. In this review, we summarize the up-to-date knowledge regarding natural products that can modulate autophagy in various cancers. These findings will provide a new position to exploit more natural compounds as potential novel anticancer drugs and will lead to a better understanding of molecular pathways by targeting the various autophagy stages of upcoming cancer therapeutics.
Collapse
Affiliation(s)
| | - Yuko Ito
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, 2–7 Daigaku-machi, Takatsuki 569-8686, Osaka, Japan;
| | - Samrein Ahmed
- Department of Biosciences and Chemistry, College of Health and Wellbeing and Life Sciences, Sheffield Hallam University, City Campus, Howard Street, Sheffield S1 1WB, UK;
| | - Nada Radwan
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates;
| | - Hend S. Ahmed
- Department of Hematology and Blood Transfusion, Faculty of Medical Laboratory Science, Omdurman Ahlia University, Khartoum 786, Sudan;
| | - Nabil Eid
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates;
| |
Collapse
|
9
|
Sun H, Miao Y, Chen Z, Wang Z, Hu C, Chen L. Hemidesmus indicus (l)-derived 2-hydroxy-4-methoxy benzoic acid attenuates dna damage and autophagy in sk-mel28 cells via p-erk pathway. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_489_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
10
|
Qomaladewi NP, Kim MY, Cho JY. Rottlerin Reduces cAMP/CREB-Mediated Melanogenesis via Regulation of Autophagy. Int J Mol Sci 2019; 20:E2081. [PMID: 31035588 PMCID: PMC6540014 DOI: 10.3390/ijms20092081] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/23/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023] Open
Abstract
Melanogenesis is the sequential process of melanin production by melanocytes in order to protect the skin from harmful stimuli. Melanogenesis is disrupted by radiation exposure, which results in the differentiation of melanocytes into melanoma. Recently, some methods have been developed to maintain the instability of melanogenesis in melanoma by activating cellular autophagy. However, there is still a lack of knowledge about how autophagy is involved in the regulation of melanogenesis in melanoma cells. Here, we used rottlerin as an autophagy inducer to investigate the role of the cyclic adenosine monophosphate (cAMP)/cAMP response element binding (CREB) signaling pathway in melanogenesis. We found that rottlerin can inhibit melanin production by targeting cAMP, which is initially activated by alpha-melanocyte stimulating hormone (α-MSH). Our findings suggest that rottlerin has a pivotal role as an autophagy inducer in the regulation of melanogenesis by targeting the cAMP/CREB signaling pathway.
Collapse
Affiliation(s)
| | - Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Korea.
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea.
| |
Collapse
|
11
|
Zheng N, Wang L, Hou Y, Zhou X, He Y, Wang Z. Rottlerin inhibits cell growth and invasion via down-regulation of EZH2 in prostate cancer. Cell Cycle 2018; 17:2460-2473. [PMID: 30394832 DOI: 10.1080/15384101.2018.1542897] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Rottlerin as a natural agent, which is isolated from Mallotus philippinensis, has been identified to play a critical role in tumor inhibition. However, the molecular mechanism of rottlerin-mediated anti-tumor activity is still ambiguous. It has been reported that EZH2 exhibits oncogenic functions in a variety of human cancers. Therefore, inhibition of EZH2 could be a promising strategy for the treatment of human cancers. In this study, we aim to explore whether rottlerin could inhibit tumorigenesis via suppression of EZH2 in prostate cancer cells. Multiple approaches such as FACS, Transwell invasion assay, RT-PCR, Western blotting, and transfection were performed to determine our aim. We found that rottlerin treatment led to inhibition of cell growth, migration and invasion, but induction of apoptosis in prostate cancer cells. Importantly, we defined that rottlerin decreased the expression of EZH2 and H3K27me3 in prostate cancer cells. Moreover, overexpression of EZH2 abrogated the rottlerin-induced inhibition of cell growth, migration, and invasion in prostate cancer cells. Consistently, down-regulation of EZH2 enhanced rottlerin-triggered anti-tumor function. Collectively, our work demonstrated that rottlerin exerted its tumor suppressive function via inhibition of EZH2 expression in prostate cancer cells. Our findings indicated that rottlerin might be a potential therapeutic compound for treating patients with prostate cancer.
Collapse
Affiliation(s)
- Nana Zheng
- a The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Soochow University , Suzhou , China
| | - Lixia Wang
- a The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Soochow University , Suzhou , China
| | - Yingying Hou
- a The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Soochow University , Suzhou , China
| | - Xiuxia Zhou
- a The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Soochow University , Suzhou , China
| | - Youhua He
- b Department of Urology , The Second Affiliated Hospital of Wenzhou Medical University , Wenzhou, Zhejiang , China
| | - Zhiwei Wang
- a The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Soochow University , Suzhou , China.,b Department of Urology , The Second Affiliated Hospital of Wenzhou Medical University , Wenzhou, Zhejiang , China.,c Department of Biochemistry and Molecular Biology , School of Laboratory Medicine, Bengbu Medical College , Anhui , China
| |
Collapse
|