1
|
Jabbarzadeh Kaboli P, Roozitalab G, Farghadani R, Eskandarian Z, Zerrouqi A. c-MET and the immunological landscape of cancer: novel therapeutic strategies for enhanced anti-tumor immunity. Front Immunol 2024; 15:1498391. [PMID: 39664377 PMCID: PMC11632105 DOI: 10.3389/fimmu.2024.1498391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 11/04/2024] [Indexed: 12/13/2024] Open
Abstract
Cellular mesenchymal-epithelial transition factor (c-MET), also known as hepatocyte growth factor receptor (HGFR), is a crucial receptor tyrosine kinase implicated in various solid tumors, including lung, breast, and liver cancers. The concomitant expression of c-MET and PD-L1 in tumors, such as hepatocellular carcinoma, highlights their prognostic significance and connection to therapeutic resistance. Cancer-associated fibroblasts and mesenchymal stromal cells produce hepatocyte growth factor (HGF), activating c-MET signaling in tumor cells and myeloid-derived suppressor cells (MDSC). This activation leads to metabolic reprogramming and increased activity of enzymes like glutaminase (GLS), indoleamine 2,3-dioxygenase (IDO), and arginase 1 (ARG1), depleting essential amino acids in the tumor microenvironment that are vital for effector immune cell function. This review highlights the interplay between tumor cells and myeloid-derived suppressor cells (MDSCs) that create an immunosuppressive environment while providing targets for c-MET-focused immunotherapy. It emphasizes the clinical implications of c-MET inhibition on the behavior of immune cells such as neutrophils, macrophages, T cells, and NK cells. It explores the potential of c-MET antagonism combined with immunotherapeutic strategies to enhance cancer treatment paradigms. This review also discusses the innovative cancer immunotherapies targeting c-MET, including chimeric antigen receptor (CAR) therapies, monoclonal antibodies, and antibody-drug conjugates, while encouraging the development of a comprehensive strategy that simultaneously tackles immune evasion and enhances anti-tumor efficacy further to improve the clinical prognoses for patients with c-MET-positive malignancies. Despite the challenges and variability in efficacy across different cancer subtypes, continued research into the molecular mechanisms and the development of innovative therapeutic strategies will be crucial.
Collapse
Affiliation(s)
| | - Ghazaal Roozitalab
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Reyhaneh Farghadani
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Zoya Eskandarian
- Research Institute Children’s Cancer Center, and Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Abdessamad Zerrouqi
- Department of Biochemistry, Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
2
|
Wang M, Sun J, Yan X, Yang W, Wang W, Li Y, Wang L, Song L. CgSHIP2 negatively regulates the mRNA expressions of CgIL-17s in response to Vibrio splendidus stimulation in Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109612. [PMID: 38705548 DOI: 10.1016/j.fsi.2024.109612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/07/2024]
Abstract
SH2 domain containing inositol polyphosphate5-phosphatase-2 (SHIP2) is a member of the 5-phosphatase family, acting as a vital negative regulator of immune response in vertebrates. In the present study, a SHIP2 homologue (designed as CgSHIP2) was identified from Pacific oyster, Crassostrea gigas. There was a SH2 domain, an IPPc domain and a SAM domain in CgSHIP2. The mRNA transcripts of CgSHIP2 were widely expressed in all the tested tissues with the highest expression in haemolymph. The mRNA expressions of CgSHIP2 in haemocytes increased significantly at 6, 12, 48 and 72 h after Vibrio splendidus stimulation. The positive green signals of CgSHIP2 protein were mainly located in cytoplasm of haemocytes. After the expression of CgSHIP2 was inhibited by RNA interference, the mRNA transcripts of interleukin 17s (CgIL-17-1, CgIL-17-2, CgIL-17-3 and CgIL-17-6) in the haemocytes increased significantly at 24 h after V. splendidus stimulation, which were 8.15-fold (p < 0.001), 3.44-fold (p < 0.05), 2.15-fold (p < 0.01) and 4.63-fold (p < 0.05) compared with that in NC-RNAi group, respectively. Obvious branchial swelling and cilium shedding in gills were observed in CgSHIP2-RNAi group at 24 h after V. splendidus stimulation. The results suggested that CgSHIP2 played an important role in controlling inflammatory response induced by bacteria in oysters.
Collapse
Affiliation(s)
- Mengjia Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Xiaoxue Yan
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Wenwen Yang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Wei Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yinan Li
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
3
|
Jabbarzadeh Kaboli P, Chen HF, Babaeizad A, Roustai Geraylow K, Yamaguchi H, Hung MC. Unlocking c-MET: A comprehensive journey into targeted therapies for breast cancer. Cancer Lett 2024; 588:216780. [PMID: 38462033 DOI: 10.1016/j.canlet.2024.216780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/18/2024] [Accepted: 02/29/2024] [Indexed: 03/12/2024]
Abstract
Breast cancer is the most common malignancy among women, posing a formidable health challenge worldwide. In this complex landscape, the c-MET (cellular-mesenchymal epithelial transition factor) receptor tyrosine kinase (RTK), also recognized as the hepatocyte growth factor (HGF) receptor (HGFR), emerges as a prominent protagonist, displaying overexpression in nearly 50% of breast cancer cases. Activation of c-MET by its ligand, HGF, secreted by neighboring mesenchymal cells, contributes to a cascade of tumorigenic processes, including cell proliferation, metastasis, angiogenesis, and immunosuppression. While c-MET inhibitors such as crizotinib, capmatinib, tepotinib and cabozantinib have garnered FDA approval for non-small cell lung cancer (NSCLC), their potential within breast cancer therapy is still undetermined. This comprehensive review embarks on a journey through structural biology, multifaceted functions, and intricate signaling pathways orchestrated by c-MET across cancer types. Furthermore, we highlight the pivotal role of c-MET-targeted therapies in breast cancer, offering a clinical perspective on this promising avenue of intervention. In this pursuit, we strive to unravel the potential of c-MET as a beacon of hope in the fight against breast cancer, unveiling new horizons for therapeutic innovation.
Collapse
Affiliation(s)
- Parham Jabbarzadeh Kaboli
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung, 406, Taiwan
| | - Hsiao-Fan Chen
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung, 406, Taiwan
| | - Ali Babaeizad
- Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Hirohito Yamaguchi
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung, 406, Taiwan
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung, 406, Taiwan; Department of Biotechnology, Asia University, Taichung, 413, Taiwan.
| |
Collapse
|
4
|
Structural Insights into the Binding Propensity of Human SHIP2 SH2 to Oncogenic CagA Isoforms from Helicobacter pylori. Int J Mol Sci 2022; 23:ijms231911299. [PMID: 36232599 PMCID: PMC9569640 DOI: 10.3390/ijms231911299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022] Open
Abstract
SHIP2 is a multi-domain inositol 5-phosphatase binding to a variety of phosphotyrosine (pY)-containing proteins through its SH2 domain, so as to regulate various cell signaling pathways by modulating the phosphatidylinositol level in the plasma membrane. Unfavorably, Helicobacter pylori can hijack SHIP2 through the CagA protein to induce gastric cell carcinogenesis. To date, the interaction between SHIP2 and CagA was not analyzed from a structural point of view. Here, the binding of SHIP2-SH2 with Tyr-phosphorylated peptides from four EPIYA motifs (A/B/C/D) in CagA was studied using NMR spectroscopy. The results showed that EPIYA-C and -D bind to a similar interface of SHIP2-SH2, including a pY-binding pocket and a hydrophobic pocket, to achieve high affinity, while EPIYA-A and -B bind to a smaller interface of SHIP2-SH2 with weak affinity. By summarizing the interface and affinity of SHIP2-SH2 for CagA EPIYA-A/B/C/D, c-MET and FcgR2B ITIM, it was proposed that, potentially, SHIP2-SH2 has a selective preference for L > I > V for the aliphatic residues at the pY+3 position in its ligand. This study reveals the rule of the ligand sequence bound by SHIP2-SH2 and the mechanism by which CagA protein hijacks SHIP2, which will help design a peptide inhibitor against SHIP2-SH2.
Collapse
|
5
|
Wang Z, Zhou H, Yue X, Zhu J, Yang Y, Liu M. An auxiliary binding interface of SHIP2-SH2 for Y292-phosphorylated FcγRIIB reveals diverse recognition mechanisms for tyrosine-phosphorylated receptors involved in different cell signaling pathways. Anal Bioanal Chem 2021; 414:497-506. [PMID: 34021368 DOI: 10.1007/s00216-021-03373-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/16/2021] [Accepted: 04/23/2021] [Indexed: 12/27/2022]
Abstract
SH2 domain-containing inositol 5-phosphatase 2 (SHIP2) plays an essential role in regulating phosphatidylinositol level in human cell, and is recruited to many phosphotyrosine (pY)-dependent signal transduction pathways by the SH2 domain. In immunity signaling, immunoreceptor FcγRIIB binds to SHIP2-SH2 via its Y292-phosphorylated immunoreceptor tyrosine-based inhibitory motif (ITIM) and transmits inhibitory signal, which regulates B cell and neuronal cell activity and is associated with immune diseases and Alzheimer's disease. To date, the interaction between SHIP2 and FcγRIIB has not been analyzed from a structural point of view. Here, the binding of SHIP2-SH2 with Y292-phosphorylated FcγRIIB-ITIM was analyzed using NMR spectroscopy. The results demonstrated that SHIP2-SH2 mainly utilizes two regions including a pY-binding pocket and a specificity pocket formed by βD, βE, and EF-loop, to bind with FcγRIIB-ITIM in high affinity. In addition to the two regions, the BG-loop of SHIP2-SH2 functions as an auxiliary interface enhancing affinity. By comparing the binding of SHIP2-SH2 with ligands from FcγRIIB and c-MET, a hepatocyte growth factor receptor associated with tumorigenesis, significant differences in interface and affinity were found, suggesting that SHIP2-SH2 applies diverse patterns for binding to different ligand proteins. Moreover, S49, S51, and R70 of SHIP2 were identified to mediate the binding of both FcγRIIB and c-MET, while R28 and Q107 were found to only participate in the binding of c-MET and FcγRIIB respectively. Taken together, this study reveals the diverse mechanisms of SHIP2-SH2 for recognizing different ligands, and provides important clues for selectively manipulating various signaling pathways and specific drug design.
Collapse
Affiliation(s)
- Zi Wang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, Hubei, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Heng Zhou
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, Hubei, China.,Department of Chemistry, College of Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xiali Yue
- Department of Chemistry, College of Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Jiang Zhu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, Hubei, China
| | - Yunhuang Yang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, Hubei, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, Hubei, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Zhou H, Yue X, Wang Z, Li S, Zhu J, Yang Y, Liu M. Expression, purification and characterization of the RhoA-binding domain of human SHIP2 in E.coli. Protein Expr Purif 2021; 180:105821. [PMID: 33421554 DOI: 10.1016/j.pep.2021.105821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/02/2020] [Accepted: 01/03/2021] [Indexed: 11/26/2022]
Abstract
Human SH2-containing inositol 5-phosphatase 2 (SHIP2) is a multi-domain protein playing essential roles in various physiological and pathological processes. In cell polarization and migration, SHIP2 serves as a RhoA effector for manipulating the level of phosphatidylinositol 3,4,5-trisphosphate. The domain between SH2 and a potential PH-R domain of SHIP2 was suggested to bind with GTP-bound form of RhoA. However, the structure of this RhoA-binding domain (RBD) of SHIP2 and the mechanism for its binding with RhoA remain unknown. In this study, SHIP2118-298 and SHIP2176-298, two truncated proteins harboring the RBD were designed, expressed, and purified successfully in E. coli. Unexpectedly, both SHIP2118-298 and SHIP2176-298 were determined to exist as homo-dimers in solution by multi-angle light scattering. Circular dichroism spectra indicated that both proteins predominantly consisted of α-helix structure. Moreover, in pull-down experiments, both proteins could bind with GTP-bound RhoA and RhoAQ63L, a mutant mimicing the state of GTP-bound RhoA. Importantly, in silico analysis showed that the shorter truncation, SHIP2176-298, contained all ordered residues between the SH2 and the PH-R domain, and matched the RhoA effector motif 1 of PKN1 well in sequence alignment, suggesting that SHIP2176-298 is sufficient for further studies on the structure and RhoA binding of SHIP2. This work shortens and confirms the main region of SHIP2 interacting with RhoA, provides the method for sample preparation, and presents preliminary information for SHIP2-RBD structure, which will facilitate the comprehensive understanding of the structure and function of SHIP2.
Collapse
Affiliation(s)
- Heng Zhou
- Department of Chemistry, College of Science, Huazhong Agricultural University, Wuhan, 430070, China; State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, China
| | - Xiali Yue
- Department of Chemistry, College of Science, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Zi Wang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuangli Li
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, China
| | - Jiang Zhu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, China.
| | - Yunhuang Yang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
7
|
Gao X, Chen H, Huang X, Li H, Liu Z, Bo X. ARQ-197 enhances the antitumor effect of sorafenib in hepatocellular carcinoma cells via decelerating its intracellular clearance. Onco Targets Ther 2019; 12:1629-1640. [PMID: 30881018 PMCID: PMC6396672 DOI: 10.2147/ott.s196713] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the heaviest malignant burdens in China. Molecular targeting agent, sorafenib, is the main therapeutic option for antitumor therapy of advanced HCC, but it is currently too expensive for the public and its therapeutic effect does not satisfy initial expectation. Therefore, it is important to develop more effective molecular targeted therapeutic strategies for advanced HCC. Materials and methods The antitumor effects of sorafenib or ARQ-197, an antagonist of c-MET (tyrosine-protein kinase Met or hepatocyte growth factor receptor), were examined by MTT or in murine tumor model. The effect of ARQ-197 on epithelial-mesenchymal transition (EMT) or multidrug resistance (MDR) was examined by quantitative real-time PCR for the expression of related genes. The clearance of sorafenib in HCC cells was detected by liquid chromatography-mass spectrometry/mass spectrometry. Results ARQ-197 treatment enhanced the sensitivity of HCC cells to sorafenib. Mechanistic studies indicated that ARQ-197 inhibited the expression of EMT- and MDR-related genes. Moreover, ARQ-197 treatment decelerated the clearance of sorafenib in cultured HCC cells and subcutaneous HCC tumors in nude mice. Conclusion In the present work, our data suggested that ARQ-197 decelerated the clearance of sorafenib in HCC cells and enhanced the antitumor effect of sorafenib.
Collapse
Affiliation(s)
- Xudong Gao
- Beijing Institute of Radiation Medicine, Beijing 100850, People's Republic of China, .,The 5th Medical Center of PLA General Hospital, Beijing 100039, People's Republic of China
| | - Hebing Chen
- Beijing Institute of Radiation Medicine, Beijing 100850, People's Republic of China,
| | - Xin Huang
- Beijing Institute of Radiation Medicine, Beijing 100850, People's Republic of China,
| | - Hao Li
- Beijing Institute of Radiation Medicine, Beijing 100850, People's Republic of China,
| | - Zhen Liu
- Beijing Institute of Radiation Medicine, Beijing 100850, People's Republic of China,
| | - Xiaochen Bo
- Beijing Institute of Radiation Medicine, Beijing 100850, People's Republic of China,
| |
Collapse
|