1
|
Yang GJ, Liu YJ, Chen RY, Shi JJ, Li CY, Wang R, Yu J, Lu JF, Zhang LL, Yu B, Chen J. PRMT7 in cancer: Structure, effects, and therapeutic potentials. Eur J Med Chem 2025; 283:117103. [PMID: 39615371 DOI: 10.1016/j.ejmech.2024.117103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/15/2024] [Accepted: 11/22/2024] [Indexed: 01/03/2025]
Abstract
Protein arginine methyltransferase 7 (PRMT7), a type III methyltransferase responsible solely for arginine mono-methylation, plays a critical role in numerous physiological and pathological processes. Recent studies have highlighted its aberrant expression or mutation in various cancers, implicating it in tumorigenesis, cancer progression, and drug resistance. Consequently, PRMT7 has emerged as a promising target for cancer diagnosis and therapeutic intervention. In this review, we present an overview of the molecular structure of PRMT7, discuss its roles and mechanisms in different cancer types, and analyze the binding modes and structure-activity relationships of reported PRMT7 inhibitors. Furthermore, we identify the challenges encountered in functional exploration and drug development targeting PRMT7, propose potential solutions to these challenges, and outline future directions for the development of PRMT7 inhibitors to inform future drug discovery efforts.
Collapse
Affiliation(s)
- Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 315211, Ningbo, Zhejiang, China.
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Ru-Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Jin-Jin Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Ran Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Jing Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Le-Le Zhang
- School of Basic Medical Sciences, Chengdu University, 610106, Chengdu, China.
| | - Bin Yu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China; Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450000, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 315211, Ningbo, Zhejiang, China.
| |
Collapse
|
2
|
Yu D, Zeng L, Wang Y, Cheng B, Li D. Protein arginine methyltransferase 7 modulators in disease therapy: Current progress and emerged opportunity. Bioorg Chem 2024; 154:108094. [PMID: 39733511 DOI: 10.1016/j.bioorg.2024.108094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/03/2024] [Accepted: 12/22/2024] [Indexed: 12/31/2024]
Abstract
Protein arginine methyltransferase 7 (PRMT7) is an essential epigenetic and post-translational regulator in eukaryotic organisms. Dysregulation of PRMT7 is intimately related to multiple types of human diseases, particularly cancer. In addition, PRMT7 exerts multiple effects on cellular processes such as growth, migration, invasion, apoptosis, and drug resistance in various cancers, making it as a promising target for anti-tumor therapeutics. In this review, we initially provide an overview of the structure and biological functions of PRMT7, along with its association with diseases. Subsequently, we summarized the PRMT inhibitors in clinical trials and the co-crystal structural of PRMT7 inhibitors. Moreover, we also focus on recent progress in the design and development of modulators targeting PRMT7, including isoform-selective and non-selective PRMT7 inhibitors, and the dual-target inhibitors based on PRMT7, from the perspectives of rational design, pharmacodynamics, pharmacokinetics, and the clinical status of these modulators. Finally, we also provided the challenges and prospective directions for PRMT7 targeting drug discovery in cancer therapy.
Collapse
Affiliation(s)
- Dongmin Yu
- Department of Breast Disease Comprehensive Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Limei Zeng
- College of Basic Medicine, Gannan Medical University, Ganzhou 314000, China
| | - Yuqi Wang
- College of Pharmacy, Gannan Medical University, Ganzhou 314000, China
| | - Binbin Cheng
- School of Medicine, Hubei Polytechnic University, Huangshi 435003, China.
| | - Deping Li
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
3
|
Lu W, Yang S. METTL3/IGF2BP1 promotes the development of triple-negative breast cancer by mediating m6A methylation modification of PRMT7. Tissue Cell 2024; 93:102690. [PMID: 39709713 DOI: 10.1016/j.tice.2024.102690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 12/24/2024]
Abstract
BACKGROUND PRMT7 is upregulated in breast cancer and promotes tumor metastasis. Here we aimed to explore the function and mechanism of PRMT7 in triple-negative breast cancer (TNBC). METHODS The expression of PRMT7, METTL3 and IGF2BP1 was detected by immunohistochemistry (IHC), qRT-PCR and western blot. Cell viability and proliferation were measured using MTT and EdU assay. Flow cytometry and TUNEL assays were used to evaluate apoptosis. Invasion and migration were assessed by transwell and wound healing assays, respectively. Glucose consumption and lactate production were measured to assess glycolysis. In addition, the interaction between METTL3 and PRMT was verified by methylated RNA immunoprecipitation. The roles of METTL3 and PRMT in vivo were investigated through a xenograft model. RESULTS PRMT7 was upregulated in TNBC tissues and cells, and the knockdown of PRMT7 inhibited cell proliferation, invasion, migration and glycolysis, but induced apoptosis in TNBC cells. METTL3/IGF2BP1 enhanced PRMT7 expression by mediating the m6A methylation modification of PRMT7. Besides, METTL3 knockdown suppressed the progression of TNBC cells and regulated the WNT/β-catenin pathway via PRMT7. Moreover, silencing METTL3 restrained TNBC tumor growth in vivo through regulating PRMT7. CONCLUSION METTL3/IGF2BP1 facilitates the progression of TNBC by mediating m6A methylation modification of PRMT7.
Collapse
Affiliation(s)
- Wanli Lu
- Department of General Surgery, Qinghai University Affiliated Hospital, Xining 810000, China
| | - Shenghu Yang
- Department of General Surgery, Qinghai University Affiliated Hospital, Xining 810000, China.
| |
Collapse
|
4
|
Rehman S, Parent M, Storey KB. Histone Arginine Methylation as a Regulator of Gene Expression in the Dehydrating African Clawed Frog ( Xenopus laevis). Genes (Basel) 2024; 15:1156. [PMID: 39336747 PMCID: PMC11431520 DOI: 10.3390/genes15091156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
The African clawed frog (Xenopus laevis) endures prolonged periods of dehydration while estivating underground during the dry season. Epigenetic modifications play crucial roles in regulating gene expression in response to environmental changes. The elucidation of epigenetic changes relevant to survival could serve as a basis for further studies on organ preservation under extreme stress. The current study examined the relative protein levels of key enzymes involved in the arginine methylation of histones in the liver and kidney tissues of control versus dehydrated (35 ± 1%) X. laevis through immunoblotting. Protein arginine methyltransferases (PRMT) 4, 5, and 6 showed significant protein level decreases of 35 ± 3%, 71 ± 7%, and 25 ± 5%, respectively, in the liver tissues of the dehydrated frogs relative to controls. In contrast, PRMT7 exhibited an increase of 36 ± 4%. Similarly, the methylated histone markers H3R2m2a, H3R8m2a, and H3R8m2s were downregulated by 34 ± 11%, 15 ± 4%, and 42 ± 12%, respectively, in the livers of dehydrated frogs compared to controls. By contrast, the kidneys of dehydrated frogs showed an upregulation of histone markers. H3R2m2a, H3R8m2a, H3R8m2s, and H4R3m2a were significantly increased by 126 ± 12%, 112 ± 7%, 47 ± 13%, and 13 ± 3%, respectively. These changes can play vital roles in the metabolic reorganization of X. laevis during dehydration, and are likely to increase the chances of survival. In turn, the tissue-specific regulation of the histone arginine methylation mechanism suggests the importance of epigenetic regulation in the adaptation of X. laevis for whole-body dehydration.
Collapse
Affiliation(s)
| | | | - Kenneth B. Storey
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (S.R.)
| |
Collapse
|
5
|
Vuong TA, Zhang Y, Kim J, Leem YE, Kang JS. Prmt7 is required for the osteogenic differentiation of mesenchymal stem cells via modulation of BMP signaling. BMB Rep 2024; 57:330-335. [PMID: 38627951 PMCID: PMC11289507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/13/2023] [Accepted: 01/15/2024] [Indexed: 08/03/2024] Open
Abstract
Arginine methylation, which is catalyzed by protein arginine methyltransferases (Prmts), is known to play a key role in various biological processes. However, the function of Prmts in osteogenic differentiation of mesenchymal stem cells (MSCs) has not been clearly understood. In the current study, we attempted to elucidate a positive role of Prmt7 in osteogenic differentiation. Prmt7-depleted C3H/10T1/2 cells or bone marrow mesenchymal stem cells (BMSCs) showed the attenuated expression of osteogenic specific genes and Alizarin red staining compared to the wild-type cells. Furthermore, we found that Prmt7 deficiency reduced the activation of bone morphogenetic protein (BMP) signaling cascade, which is essential for the regulation of cell fate commitment and osteogenesis. Taken together, our data indicate that Prmt7 plays important regulatory roles in osteogenic differentiation. [BMB Reports 2024; 57(7): 330-335].
Collapse
Affiliation(s)
- Tuan Anh Vuong
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Yan Zhang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - June Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Young-Eun Leem
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| |
Collapse
|
6
|
FENECH KIMBERLY, MICALLEF ISAAC, BARON BYRON. 5-Fluorouracil dose escalation generated desensitized colorectal cancer cells with reduced expression of protein methyltransferases and no epithelial-to-mesenchymal transition potential. Oncol Res 2024; 32:1047-1061. [PMID: 38827317 PMCID: PMC11136688 DOI: 10.32604/or.2024.049173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/29/2024] [Indexed: 06/04/2024] Open
Abstract
Background Colorectal cancer (CRC) is one of the most frequently diagnosed cancers. In many cases, the poor prognosis of advanced CRC is associated with resistance to treatment with chemotherapeutic drugs such as 5-Fluorouracil (5-FU). The epithelial-to-mesenchymal transition (EMT) and dysregulation in protein methylation are two mechanisms associated with chemoresistance in many cancers. This study looked into the effect of 5-FU dose escalation on EMT and protein methylation in CRC. Materials and Methods HCT-116, Caco-2, and DLD-1 CRC cell lines were exposed to dose escalation treatment of 5-FU. The motility and invasive potentials of the cells before and after treatment with 5-FU were investigated through wound healing and invasion assays. This was followed by a Western blot which analyzed the protein expressions of the epithelial marker E-cadherin, mesenchymal marker vimentin, and the EMT transcription factor (EMT-TF), the snail family transcriptional repressor 1 (Snail) in the parental and desensitized cells. Western blotting was also conducted to study the protein expressions of the protein methyltransferases (PMTs), Euchromatic histone lysine methyltransferase 2 (EHMT2/G9A), protein arginine methyltransferase (PRMT5), and SET domain containing 7/9 (SETD7/9) along with the global lysine and arginine methylation profiles. Results The dose escalation method generated 5-FU desensitized CRC cells with distinct morphological features and increased tolerance to high doses of 5-FU. The 5-FU desensitized cells experienced a decrease in migration and invasion when compared to the parental cells. This was reflected in the observed reduction in E-cadherin, vimentin, and Snail in the desensitized cell lines. Additionally, the protein expressions of EHMT2/G9A, PRMT5, and SETD7/9 also decreased in the desensitized cells and global protein lysine and arginine methylation became dysregulated with 5-FU treatment. Conclusion This study showed that continuous, dose-escalation treatment of 5-FU in CRC cells generated 5-FU desensitized cancer cells that seemed to be less aggressive than parental cells.
Collapse
Affiliation(s)
- KIMBERLY FENECH
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, MSD 2080, Malta
| | - ISAAC MICALLEF
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, MSD 2080, Malta
- Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - BYRON BARON
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, MSD 2080, Malta
| |
Collapse
|
7
|
Rodrigo-Faus M, Vincelle-Nieto A, Vidal N, Puente J, Saiz-Pardo M, Lopez-Garcia A, Mendiburu-Eliçabe M, Palao N, Baquero C, Linzoain-Agos P, Cuesta AM, Qu HQ, Hakonarson H, Musteanu M, Reyes-Palomares A, Porras A, Bragado P, Gutierrez-Uzquiza A. CRISPR/Cas9 screenings unearth protein arginine methyltransferase 7 as a novel essential gene in prostate cancer metastasis. Cancer Lett 2024; 588:216776. [PMID: 38432581 DOI: 10.1016/j.canlet.2024.216776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Due to the limited effectiveness of current treatments, the survival rate of patients with metastatic castration-resistant prostate cancer (mCRPC) is significantly reduced. Consequently, it is imperative to identify novel therapeutic targets for managing these patients. Since the invasive ability of cells is crucial for establishing and maintaining metastasis, the aim of this study was to identify the essential regulators of invasive abilities of mCRPC cells by conducting two independent high-throughput CRISPR/Cas9 screenings. Furthermore, some of the top hits were validated using siRNA technology, with protein arginine methyltransferase 7 (PRMT7) emerging as the most promising candidate. We demonstrated that its inhibition or depletion via genetic or pharmacological approaches significantly reduces invasive, migratory and proliferative abilities of mCRPC cells in vitro. Moreover, we confirmed that PRMT7 ablation reduces cell dissemination in chicken chorioallantoic membrane and mouse xenograft assays. Molecularly, PRMT7 reprograms the expression of several adhesion molecules by methylating various transcription factors, such as FoxK1, resulting in the loss of adhesion from the primary tumor and increased motility of mCRPC cells. Furthermore, PRMT7 higher expression correlates with tumor aggressivity and poor overall survival in prostate cancer patients. Thus, this study demonstrates that PRMT7 is a potential therapeutic target and potential biomarker for mPCa.
Collapse
Affiliation(s)
- Maria Rodrigo-Faus
- Department of Biochemistry and Molecular Biology, Pharmacy Faculty, Complutense University of Madrid, Madrid, Spain; Health Research Institute of the Clínico San Carlos Hospital (IdISSC), Madrid, Spain
| | - Africa Vincelle-Nieto
- Department of Biochemistry and Molecular Biology, Veterinary Faculty, Complutense Univeristy of Madrid, Madrid, Spain
| | - Natalia Vidal
- Department of Medical Oncology, Health Research Institute of the Clínico San Carlos Hospital (IdISSC), CIBERONC, Madrid, Spain
| | - Javier Puente
- Department of Medical Oncology, Health Research Institute of the Clínico San Carlos Hospital (IdISSC), CIBERONC, Madrid, Spain
| | - Melchor Saiz-Pardo
- Department of Medical Oncology, Health Research Institute of the Clínico San Carlos Hospital (IdISSC), CIBERONC, Madrid, Spain
| | - Alejandra Lopez-Garcia
- Experimental Oncology, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | | | - Nerea Palao
- Department of Biochemistry and Molecular Biology, Pharmacy Faculty, Complutense University of Madrid, Madrid, Spain; Health Research Institute of the Clínico San Carlos Hospital (IdISSC), Madrid, Spain
| | - Cristina Baquero
- Department of Biochemistry and Molecular Biology, Pharmacy Faculty, Complutense University of Madrid, Madrid, Spain; Health Research Institute of the Clínico San Carlos Hospital (IdISSC), Madrid, Spain
| | - Paula Linzoain-Agos
- Department of Biochemistry and Molecular Biology, Pharmacy Faculty, Complutense University of Madrid, Madrid, Spain; Health Research Institute of the Clínico San Carlos Hospital (IdISSC), Madrid, Spain
| | - Angel M Cuesta
- Department of Biochemistry and Molecular Biology, Pharmacy Faculty, Complutense University of Madrid, Madrid, Spain; Health Research Institute of the Clínico San Carlos Hospital (IdISSC), Madrid, Spain
| | - Hui-Qi Qu
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Hakon Hakonarson
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Monica Musteanu
- Department of Biochemistry and Molecular Biology, Pharmacy Faculty, Complutense University of Madrid, Madrid, Spain; Experimental Oncology, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain; Cancer and Obesity Group, Health Research Institute of the Clínico San Carlos Hospital (IdISSC), Madrid, Spain
| | - Armando Reyes-Palomares
- Department of Biochemistry and Molecular Biology, Veterinary Faculty, Complutense Univeristy of Madrid, Madrid, Spain
| | - Almudena Porras
- Department of Biochemistry and Molecular Biology, Pharmacy Faculty, Complutense University of Madrid, Madrid, Spain; Health Research Institute of the Clínico San Carlos Hospital (IdISSC), Madrid, Spain
| | - Paloma Bragado
- Department of Biochemistry and Molecular Biology, Pharmacy Faculty, Complutense University of Madrid, Madrid, Spain; Health Research Institute of the Clínico San Carlos Hospital (IdISSC), Madrid, Spain
| | - Alvaro Gutierrez-Uzquiza
- Department of Biochemistry and Molecular Biology, Pharmacy Faculty, Complutense University of Madrid, Madrid, Spain; Health Research Institute of the Clínico San Carlos Hospital (IdISSC), Madrid, Spain.
| |
Collapse
|
8
|
Hobble HV, Schaner Tooley CE. Intrafamily heterooligomerization as an emerging mechanism of methyltransferase regulation. Epigenetics Chromatin 2024; 17:5. [PMID: 38429855 PMCID: PMC10908127 DOI: 10.1186/s13072-024-00530-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/10/2024] [Indexed: 03/03/2024] Open
Abstract
Protein and nucleic acid methylation are important biochemical modifications. In addition to their well-established roles in gene regulation, they also regulate cell signaling, metabolism, and translation. Despite this high biological relevance, little is known about the general regulation of methyltransferase function. Methyltransferases are divided into superfamilies based on structural similarities and further classified into smaller families based on sequence/domain/target similarity. While members within superfamilies differ in substrate specificity, their structurally similar active sites indicate a potential for shared modes of regulation. Growing evidence from one superfamily suggests a common regulatory mode may be through heterooligomerization with other family members. Here, we describe examples of methyltransferase regulation through intrafamily heterooligomerization and discuss how this can be exploited for therapeutic use.
Collapse
Affiliation(s)
- Haley V Hobble
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Christine E Schaner Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA.
| |
Collapse
|
9
|
Ahn BY, Zhang Y, Wei S, Jeong Y, Park DH, Lee SJ, Leem YE, Kang JS. Prmt7 regulates the JAK/STAT/Socs3 signaling pathway in postmenopausal cardiomyopathy. Exp Mol Med 2024; 56:711-720. [PMID: 38486105 PMCID: PMC10985114 DOI: 10.1038/s12276-024-01193-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/07/2023] [Accepted: 01/02/2024] [Indexed: 04/04/2024] Open
Abstract
Protein arginine methyltransferases (PRMTs) modulate diverse cellular processes, including stress responses. The present study explored the role of Prmt7 in protecting against menopause-associated cardiomyopathy. Mice with cardiac-specific Prmt7 ablation (cKO) exhibited sex-specific cardiomyopathy. Male cKO mice exhibited impaired cardiac function, myocardial hypertrophy, and interstitial fibrosis associated with increased oxidative stress. Interestingly, female cKO mice predominantly exhibited comparable phenotypes only after menopause or ovariectomy (OVX). Prmt7 inhibition in cardiomyocytes exacerbated doxorubicin (DOX)-induced oxidative stress and DNA double-strand breaks, along with apoptosis-related protein expression. Treatment with 17β-estradiol (E2) attenuated the DOX-induced decrease in Prmt7 expression in cardiomyocytes, and Prmt7 depletion abrogated the protective effect of E2 against DOX-induced cardiotoxicity. Transcriptome analysis of ovariectomized wild-type (WT) or cKO hearts and mechanical analysis of Prmt7-deficient cardiomyocytes demonstrated that Prmt7 is required for the control of the JAK/STAT signaling pathway by regulating the expression of suppressor of cytokine signaling 3 (Socs3), which is a negative feedback inhibitor of the JAK/STAT signaling pathway. These data indicate that Prmt7 has a sex-specific cardioprotective effect by regulating the JAK/STAT signaling pathway and, ultimately, may be a potential therapeutic tool for heart failure treatment depending on sex.
Collapse
Affiliation(s)
- Byeong-Yun Ahn
- Department of Molecular Cell Biology, Sungkyunkwan University, School of Medicine, Suwon, Republic of Korea
| | - Yan Zhang
- Department of Molecular Cell Biology, Sungkyunkwan University, School of Medicine, Suwon, Republic of Korea
| | - Shibo Wei
- Department of Molecular Cell Biology, Sungkyunkwan University, School of Medicine, Suwon, Republic of Korea
| | - Yideul Jeong
- Research Institute of Aging-Related Diseases, AniMusCure, Inc, Suwon, Republic of Korea
| | - Dong-Hyun Park
- Department of Molecular Cell Biology, Sungkyunkwan University, School of Medicine, Suwon, Republic of Korea
| | - Sang-Jin Lee
- Research Institute of Aging-Related Diseases, AniMusCure, Inc, Suwon, Republic of Korea
| | - Young-Eun Leem
- Department of Molecular Cell Biology, Sungkyunkwan University, School of Medicine, Suwon, Republic of Korea.
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Sungkyunkwan University, School of Medicine, Suwon, Republic of Korea.
| |
Collapse
|
10
|
Nigam A, Hurley MFD, Li F, Konkoľová E, Klíma M, Trylčová J, Pollice R, Çinaroğlu SS, Levin-Konigsberg R, Handjaya J, Schapira M, Chau I, Perveen S, Ng HL, Ümit Kaniskan H, Han Y, Singh S, Gorgulla C, Kundaje A, Jin J, Voelz VA, Weber J, Nencka R, Boura E, Vedadi M, Aspuru-Guzik A. Drug Discovery in Low Data Regimes: Leveraging a Computational Pipeline for the Discovery of Novel SARS-CoV-2 Nsp14-MTase Inhibitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.03.560722. [PMID: 37873443 PMCID: PMC10592886 DOI: 10.1101/2023.10.03.560722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has led to significant global morbidity and mortality. A crucial viral protein, the non-structural protein 14 (nsp14), catalyzes the methylation of viral RNA and plays a critical role in viral genome replication and transcription. Due to the low mutation rate in the nsp region among various SARS-CoV-2 variants, nsp14 has emerged as a promising therapeutic target. However, discovering potential inhibitors remains a challenge. In this work, we introduce a computational pipeline for the rapid and efficient identification of potential nsp14 inhibitors by leveraging virtual screening and the NCI open compound collection, which contains 250,000 freely available molecules for researchers worldwide. The introduced pipeline provides a cost-effective and efficient approach for early-stage drug discovery by allowing researchers to evaluate promising molecules without incurring synthesis expenses. Our pipeline successfully identified seven promising candidates after experimentally validating only 40 compounds. Notably, we discovered NSC620333, a compound that exhibits a strong binding affinity to nsp14 with a dissociation constant of 427 ± 84 nM. In addition, we gained new insights into the structure and function of this protein through molecular dynamics simulations. We identified new conformational states of the protein and determined that residues Phe367, Tyr368, and Gln354 within the binding pocket serve as stabilizing residues for novel ligand interactions. We also found that metal coordination complexes are crucial for the overall function of the binding pocket. Lastly, we present the solved crystal structure of the nsp14-MTase complexed with SS148 (PDB:8BWU), a potent inhibitor of methyltransferase activity at the nanomolar level (IC50 value of 70 ± 6 nM). Our computational pipeline accurately predicted the binding pose of SS148, demonstrating its effectiveness and potential in accelerating drug discovery efforts against SARS-CoV-2 and other emerging viruses.
Collapse
Affiliation(s)
- AkshatKumar Nigam
- Department of Computer Science, Stanford University
- Department of Genetics, Stanford University
| | | | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Eva Konkoľová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Klíma
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Trylčová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Robert Pollice
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario M5S 3H6, Canada
- Department of Computer Science, University of Toronto, 40 St. George St, Toronto, Ontario M5S 2E4, Canada
- Current affiliation: Stratingh Institute for Chemistry, University of Groningen, The Netherlands
| | - Süleyman Selim Çinaroğlu
- Structural Bioinformatics and Computational Biochemistry, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | | | - Jasemine Handjaya
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario M5S 3H6, Canada
- Department of Computer Science, University of Toronto, 40 St. George St, Toronto, Ontario M5S 2E4, Canada
| | - Matthieu Schapira
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Irene Chau
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Sumera Perveen
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Ho-Leung Ng
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - H. Ümit Kaniskan
- Department of Pharmacological Sciences and Oncological Sciences, Mount Sinai Center for Therapeutics Discovery, Tisch Cancer Institute, Ichan School of Medicine at Mount Sinai, New York, NY, USA
| | - Yulin Han
- Department of Pharmacological Sciences and Oncological Sciences, Mount Sinai Center for Therapeutics Discovery, Tisch Cancer Institute, Ichan School of Medicine at Mount Sinai, New York, NY, USA
| | - Sukrit Singh
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center
| | - Christoph Gorgulla
- St. Jude Children’s Research Hospital, Department of Structural Biology, Memphis, TN, USA
- Department of Physics, Faculty of Arts and Sciences, Harvard University, Cambridge, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, USA
| | - Anshul Kundaje
- Department of Computer Science, Stanford University
- Department of Genetics, Stanford University
| | - Jian Jin
- Department of Pharmacological Sciences and Oncological Sciences, Mount Sinai Center for Therapeutics Discovery, Tisch Cancer Institute, Ichan School of Medicine at Mount Sinai, New York, NY, USA
| | - Vincent A. Voelz
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Radim Nencka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Alán Aspuru-Guzik
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario M5S 3H6, Canada
- Department of Computer Science, University of Toronto, 40 St. George St, Toronto, Ontario M5S 2E4, Canada
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Canada
- Department of Materials Science & Engineering, University of Toronto, Canada
- Vector Institute for Artificial Intelligence, Toronto, Canada
- Canadian Institute for Advanced Research (CIFAR), Toronto, ON, Canada
- Acceleration Consortium, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
11
|
Holtz AG, Lowe TL, Aoki Y, Kubota Y, Hoffman RM, Clarke SG. Asymmetric and symmetric protein arginine methylation in methionine-addicted human cancer cells. PLoS One 2023; 18:e0296291. [PMID: 38134182 PMCID: PMC10745221 DOI: 10.1371/journal.pone.0296291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The methionine addiction of cancer cells is known as the Hoffman effect. While non-cancer cells in culture can utilize homocysteine in place of methionine for cellular growth, most cancer cells require exogenous methionine for proliferation. It has been suggested that a biochemical basis of this effect is the increased utilization of methionine for S-adenosylmethionine, the major methyl donor for a variety of cellular methyltransferases. Recent studies have pointed to the role of S-adenosylmethionine-dependent protein arginine methyltransferases (PRMTs) in cell proliferation and cancer. To further understand the biochemical basis of the methionine addiction of cancer cells, we compared protein arginine methylation in two previously described isogenic cell lines, a methionine-addicted 143B human osteosarcoma cell line and its less methionine-dependent revertant. Previous work showed that the revertant cells were significantly less malignant than the parental cells. In the present study, we utilized antibodies to detect the asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) products of PRMTs in polypeptides from cellular extracts and purified histone preparations of these cell lines fractionated by SDS-PAGE. Importantly, we observed little to no differences in the banding patterns of ADMA- and SDMA-containing species between the osteosarcoma parental and revertant cell lines. Furthermore, enzymatic activity assays using S-adenosyl-ʟ-[methyl-3H] methionine, recombinantly purified PRMT enzymes, cell lysates, and specific PRMT inhibitors revealed no major differences in radiolabeled polypeptides on SDS-PAGE gels. Taken together, these results suggest that changes in protein arginine methylation may not be major contributors to the Hoffman effect and that other consequences of methionine addiction may be more important in the metastasis and malignancy of osteosarcoma and potentially other cancers.
Collapse
Affiliation(s)
- Ashley G Holtz
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Troy L Lowe
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Yusuke Aoki
- AntiCancer, Inc, San Diego, CA, United States of America
- Department of Surgery, University of California, San Diego, La Jolla, CA, United States of America
- Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Yutaro Kubota
- AntiCancer, Inc, San Diego, CA, United States of America
- Department of Surgery, University of California, San Diego, La Jolla, CA, United States of America
| | - Robert M Hoffman
- AntiCancer, Inc, San Diego, CA, United States of America
- Department of Surgery, University of California, San Diego, La Jolla, CA, United States of America
| | - Steven G Clarke
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States of America
| |
Collapse
|
12
|
Feoli A, Iannelli G, Cipriano A, Milite C, Shen L, Wang Z, Hadjikyriacou A, Lowe TL, Safaeipour C, Viviano M, Sarno G, Morretta E, Monti MC, Yang Y, Clarke SG, Cosconati S, Castellano S, Sbardella G. Identification of a Protein Arginine Methyltransferase 7 (PRMT7)/Protein Arginine Methyltransferase 9 (PRMT9) Inhibitor. J Med Chem 2023; 66:13665-13683. [PMID: 37560786 PMCID: PMC10578352 DOI: 10.1021/acs.jmedchem.3c01030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Indexed: 08/11/2023]
Abstract
Less studied than the other protein arginine methyltransferase isoforms, PRMT7 and PRMT9 have recently been identified as important therapeutic targets. Yet, most of their biological roles and functions are still to be defined, as well as the structural requirements that could drive the identification of selective modulators of their activity. We recently described the structural requirements that led to the identification of potent and selective PRMT4 inhibitors spanning both the substrate and the cosubstrate pockets. The reanalysis of the data suggested a PRMT7 preferential binding for shorter derivatives and prompted us to extend these structural studies to PRMT9. Here, we report the identification of the first potent PRMT7/9 inhibitor and its binding mode to the two PRMT enzymes. Label-free quantification mass spectrometry confirmed significant inhibition of PRMT activity in cells. We also report the setup of an effective AlphaLISA assay to screen small molecule inhibitors of PRMT9.
Collapse
Affiliation(s)
- Alessandra Feoli
- Department
of Pharmacy, Epigenetic Med Chem Lab, University
of Salerno, via Giovanni
Paolo II 132, Fisciano ,I-84084 SA Italy
| | - Giulia Iannelli
- Department
of Pharmacy, Epigenetic Med Chem Lab, University
of Salerno, via Giovanni
Paolo II 132, Fisciano ,I-84084 SA Italy
- PhD
Program in Drug Discovery and Development, University of Salerno, via Giovanni Paolo II 132, Fisciano ,I-84084 SA Italy
| | - Alessandra Cipriano
- Department
of Pharmacy, Epigenetic Med Chem Lab, University
of Salerno, via Giovanni
Paolo II 132, Fisciano ,I-84084 SA Italy
| | - Ciro Milite
- Department
of Pharmacy, Epigenetic Med Chem Lab, University
of Salerno, via Giovanni
Paolo II 132, Fisciano ,I-84084 SA Italy
| | - Lei Shen
- Department
of Cancer Genetics and Epigenetics, Beckman
Research Institute, City of Hope National Cancer Center, Duarte, California 91010, United States
| | - Zhihao Wang
- Department
of Cancer Genetics and Epigenetics, Beckman
Research Institute, City of Hope National Cancer Center, Duarte, California 91010, United States
| | - Andrea Hadjikyriacou
- Department
of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, California 90095, United States
| | - Troy L. Lowe
- Department
of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, California 90095, United States
| | - Cyrus Safaeipour
- Department
of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, California 90095, United States
| | - Monica Viviano
- Department
of Pharmacy, Epigenetic Med Chem Lab, University
of Salerno, via Giovanni
Paolo II 132, Fisciano ,I-84084 SA Italy
| | - Giuliana Sarno
- Department
of Pharmacy, Epigenetic Med Chem Lab, University
of Salerno, via Giovanni
Paolo II 132, Fisciano ,I-84084 SA Italy
- PhD
Program in Drug Discovery and Development, University of Salerno, via Giovanni Paolo II 132, Fisciano ,I-84084 SA Italy
| | - Elva Morretta
- Department
of Pharmacy, ProteoMass Lab, University
of Salerno, via Giovanni
Paolo II 132, Fisciano ,I-84084 SA Italy
| | - Maria Chiara Monti
- Department
of Pharmacy, ProteoMass Lab, University
of Salerno, via Giovanni
Paolo II 132, Fisciano ,I-84084 SA Italy
| | - Yanzhong Yang
- Department
of Cancer Genetics and Epigenetics, Beckman
Research Institute, City of Hope National Cancer Center, Duarte, California 91010, United States
| | - Steven G. Clarke
- Department
of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, California 90095, United States
| | - Sandro Cosconati
- DiSTABiF, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Sabrina Castellano
- Department
of Pharmacy, Epigenetic Med Chem Lab, University
of Salerno, via Giovanni
Paolo II 132, Fisciano ,I-84084 SA Italy
| | - Gianluca Sbardella
- Department
of Pharmacy, Epigenetic Med Chem Lab, University
of Salerno, via Giovanni
Paolo II 132, Fisciano ,I-84084 SA Italy
| |
Collapse
|
13
|
Wang X, Xu W, Zhu C, Cheng Y, Qi J. PRMT7 Inhibits the Proliferation and Migration of Gastric Cancer Cells by Suppressing the PI3K/AKT Pathway via PTEN. J Cancer 2023; 14:2833-2844. [PMID: 37781082 PMCID: PMC10539571 DOI: 10.7150/jca.88102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/16/2023] [Indexed: 10/03/2023] Open
Abstract
Protein arginine methyltransferase 7 (PRMT7) plays a crucial role in tumor occurrence and development; however, its expression pattern, biological function, and specific mechanism in gastric cancer (GC) remain poorly defined. The present study aimed to investigate the role of PRMT7 during GC carcinogenesis and its underlying mechanism. We found that PRMT7 is expressed at low levels in GC tissues, and this low expression is associated with tumor size, differentiation degree, lymph node metastasis, and TNM stage. Functionally, PRMT7 inhibits GC cell proliferation and migration. Mechanistically, PRMT7 induces PTEN expression and suppresses the downstream PI3K/AKT signaling cascade. Finally, we confirmed that PRMT7 interacts with PTEN protein and promotes PTEN arginine methylation. Taken together, our findings suggest that PRMT7 can inhibit PI3K/AKT signaling pathway activation by regulating PTEN, thereby inhibiting GC cell proliferation and migration. PRMT7 may be a promising therapeutic target for the prevention of GC.
Collapse
Affiliation(s)
| | | | | | - Yu Cheng
- Department of Pathology, Chengde Medical University, Chengde, Hebei 067000, People's Republic of China
| | - Jiemin Qi
- Department of Pathology, Chengde Medical University, Chengde, Hebei 067000, People's Republic of China
| |
Collapse
|
14
|
Zinellu A, Mangoni AA. Arginine, Transsulfuration, and Folic Acid Pathway Metabolomics in Chronic Obstructive Pulmonary Disease: A Systematic Review and Meta-Analysis. Cells 2023; 12:2180. [PMID: 37681911 PMCID: PMC10486395 DOI: 10.3390/cells12172180] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/13/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
There is an increasing interest in biomarkers of nitric oxide dysregulation and oxidative stress to guide management and identify new therapeutic targets in patients with chronic obstructive pulmonary disease (COPD). We conducted a systematic review and meta-analysis of the association between circulating metabolites within the arginine (arginine, citrulline, ornithine, asymmetric, ADMA, and symmetric, SDMA dimethylarginine), transsulfuration (methionine, homocysteine, and cysteine) and folic acid (folic acid, vitamin B6, and vitamin B12) metabolic pathways and COPD. We searched electronic databases from inception to 30 June 2023 and assessed the risk of bias and the certainty of evidence. In 21 eligible studies, compared to healthy controls, patients with stable COPD had significantly lower methionine (standardized mean difference, SMD = -0.50, 95% CI -0.95 to -0.05, p = 0.029) and folic acid (SMD = -0.37, 95% CI -0.65 to -0.09, p = 0.009), and higher homocysteine (SMD = 0.78, 95% CI 0.48 to 1.07, p < 0.001) and cysteine concentrations (SMD = 0.34, 95% CI 0.02 to 0.66, p = 0.038). Additionally, COPD was associated with significantly higher ADMA (SMD = 1.27, 95% CI 0.08 to 2.46, p = 0.037), SDMA (SMD = 3.94, 95% CI 0.79 to 7.08, p = 0.014), and ornithine concentrations (SMD = 0.67, 95% CI 0.13 to 1.22, p = 0.015). In subgroup analysis, the SMD of homocysteine was significantly associated with the biological matrix assessed and the forced expiratory volume in the first second to forced vital capacity ratio, but not with age, study location, or analytical method used. Our study suggests that the presence of significant alterations in metabolites within the arginine, transsulfuration, and folic acid pathways can be useful for assessing nitric oxide dysregulation and oxidative stress and identifying novel treatment targets in COPD. (PROSPERO registration number: CRD42023448036.).
Collapse
Affiliation(s)
- Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy;
| | - Arduino A. Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Bedford Park, SA 5042, Australia
| |
Collapse
|
15
|
Ma M, Liu F, Miles HN, Kim EJ, Fields L, Xu W, Li L. Proteome-wide Profiling of Asymmetric Dimethylated Arginine in Human Breast Tumors. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1692-1700. [PMID: 37463068 PMCID: PMC10726702 DOI: 10.1021/jasms.3c00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Arginine methylation catalyzed by protein arginine methyltransferases (PRMTs) is a prevalent post-translational modification (PTM) that regulates diverse cellular processes. Aberrant expression of type I PRMTs that catalyze asymmetric arginine dimethylation (ADMA) is often found in cancer, though little is known about the ADMA status of substrate proteins in tumors. Using LC-MS/MS along with pan-specific ADMA antibodies, we performed global mapping of ADMA in five patient-derived xenograft (PDX) tumors representing different subtypes of human breast cancer. In total, 403 methylated sites from 213 proteins were identified, including 322 novel sites when compared to the PhosphositesPlus database. Moreover, using peptide arrays in vitro, approximately 70% of the putative substrates were validated to be methylated by PRMT1, PRMT4, and PRMT6. Notably, when compared with our previously identified ADMA sites from breast cancer cell lines, only 75 ADMA sites overlapped between cell lines and PDX tumors. Collectively, this study provides a useful resource for both PRMT and breast cancer communities for further exploitation of the functions of PRMT dysregulation during breast cancer progression.
Collapse
Affiliation(s)
- Min Ma
- School of Pharmacy, University of Wisconsin–Madison, Madison, Wisconsin, United States
| | - Fabao Liu
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, 53705, United States
- Advanced Medical Research Institute, Shandong University, Shandong, 250012, PR China
| | - Hannah N. Miles
- School of Pharmacy, University of Wisconsin–Madison, Madison, Wisconsin, United States
| | - Eui-Jun Kim
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, 53705, United States
| | - Lauren Fields
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, 53706, United States
| | - Wei Xu
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, 53705, United States
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin–Madison, Madison, Wisconsin, United States
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, 53706, United States
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
| |
Collapse
|
16
|
Dominici C, Villarreal OD, Dort J, Heckel E, Wang YC, Ragoussis I, Joyal JS, Dumont N, Richard S. Inhibition of type I PRMTs reforms muscle stem cell identity enhancing their therapeutic capacity. eLife 2023; 12:RP84570. [PMID: 37285284 PMCID: PMC10328524 DOI: 10.7554/elife.84570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023] Open
Abstract
In skeletal muscle, muscle stem cells (MuSC) are the main cells responsible for regeneration upon injury. In diseased skeletal muscle, it would be therapeutically advantageous to replace defective MuSCs, or rejuvenate them with drugs to enhance their self-renewal and ensure long-term regenerative potential. One limitation of the replacement approach has been the inability to efficiently expand MuSCs ex vivo, while maintaining their stemness and engraftment abilities. Herein, we show that inhibition of type I protein arginine methyltransferases (PRMTs) with MS023 increases the proliferative capacity of ex vivo cultured MuSCs. Single cell RNA sequencing (scRNAseq) of ex vivo cultured MuSCs revealed the emergence of subpopulations in MS023-treated cells which are defined by elevated Pax7 expression and markers of MuSC quiescence, both features of enhanced self-renewal. Furthermore, the scRNAseq identified MS023-specific subpopulations to be metabolically altered with upregulated glycolysis and oxidative phosphorylation (OxPhos). Transplantation of MuSCs treated with MS023 had a better ability to repopulate the MuSC niche and contributed efficiently to muscle regeneration following injury. Interestingly, the preclinical mouse model of Duchenne muscular dystrophy had increased grip strength with MS023 treatment. Our findings show that inhibition of type I PRMTs increased the proliferation capabilities of MuSCs with altered cellular metabolism, while maintaining their stem-like properties such as self-renewal and engraftment potential.
Collapse
Affiliation(s)
- Claudia Dominici
- Segal Cancer Center, Lady Davis Institute for Medical Research, McGill UniversityMontrealCanada
- Departments of Human Genetics, McGill UniversityMontrealCanada
| | - Oscar D Villarreal
- Segal Cancer Center, Lady Davis Institute for Medical Research, McGill UniversityMontrealCanada
| | - Junio Dort
- CHU Sainte-Justine Research Center, Université de MontréalMontréalCanada
| | - Emilie Heckel
- CHU Sainte-Justine Research Center, Université de MontréalMontréalCanada
| | | | | | | | - Nicolas Dumont
- CHU Sainte-Justine Research Center, Université de MontréalMontréalCanada
| | - Stéphane Richard
- Segal Cancer Center, Lady Davis Institute for Medical Research, McGill UniversityMontrealCanada
- Departments of Human Genetics, McGill UniversityMontrealCanada
- Gerald Bronfman, Department of Oncology, McGill UniversityMontréalCanada
- Departments of Medicine, McGill UniversityMontrealCanada
- Departments of Biochemistry, McGill UniversityMontréalCanada
| |
Collapse
|
17
|
Acosta CH, Clemons GA, Citadin CT, Carr WC, Udo MSB, Tesic V, Sanicola HW, Freelin AH, Toms JB, Jordan JD, Guthikonda B, Wu CYC, Lee RHC, Lin HW. A role for protein arginine methyltransferase 7 in repetitive and mild traumatic brain injury. Neurochem Int 2023; 166:105524. [PMID: 37030326 PMCID: PMC10988608 DOI: 10.1016/j.neuint.2023.105524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 04/08/2023]
Abstract
Mild traumatic brain injury affects the largest proportion of individuals in the United States and world-wide. Pre-clinical studies of repetitive and mild traumatic brain injury (rmTBI) have been limited in their ability to recapitulate human pathology (i.e. diffuse rotational injury). We used the closed-head impact model of engineered rotation acceleration (CHIMERA) to simulate rotational injury observed in patients and to study the pathological outcomes post-rmTBI using C57BL/6J mice. Enhanced cytokine production was observed in both the cortex and hippocampus to suggest neuroinflammation. Furthermore, microglia were assessed via enhanced iba1 protein levels and morphological changes using immunofluorescence. In addition, LC/MS analyses revealed excess glutamate production, as well as diffuse axonal injury via Bielschowsky's silver stain kit. Moreover, the heterogeneous nature of rmTBI has made it challenging to identify drug therapies that address rmTBI, therefore we sought to identify novel targets in the concurrent rmTBI pathology. The pathophysiological findings correlated with a time-dependent decrease in protein arginine methyltransferase 7 (PRMT7) protein expression and activity post-rmTBI along with dysregulation of PRMT upstream mediators s-adenosylmethionine and methionine adenosyltransferase 2 (MAT2) in vivo. In addition, inhibition of the upstream mediator MAT2A using the HT22 hippocampal neuronal cell line suggest a mechanistic role for PRMT7 via MAT2A in vitro. Collectively, we have identified PRMT7 as a novel target in rmTBI pathology in vivo and a mechanistic link between PRMT7 and upstream mediator MAT2A in vitro.
Collapse
Affiliation(s)
- Christina H Acosta
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Garrett A Clemons
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Cristiane T Citadin
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - William C Carr
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | | | - Vesna Tesic
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Henry W Sanicola
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, USA; Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Anne H Freelin
- Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Jamie B Toms
- Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - J Dedrick Jordan
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Bharat Guthikonda
- Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Celeste Yin-Chieh Wu
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Reggie Hui-Chao Lee
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Hung Wen Lin
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA; Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
| |
Collapse
|
18
|
Bondoc TJ, Lowe TL, Clarke SG. The exquisite specificity of human protein arginine methyltransferase 7 (PRMT7) toward Arg-X-Arg sites. PLoS One 2023; 18:e0285812. [PMID: 37216364 DOI: 10.1371/journal.pone.0285812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/01/2023] [Indexed: 05/24/2023] Open
Abstract
Mammalian protein arginine methyltransferase 7 (PRMT7) has been shown to target substrates with motifs containing two arginine residues separated by one other residue (RXR motifs). In particular, the repression domain of human histone H2B (29-RKRSR-33) has been a key substrate in determining PRMT7 activity. We show that incubating human PRMT7 and [3H]-AdoMet with full-length Xenopus laevis histone H2B, containing the substitutions K30R and R31K (RKRSR to RRKSR), results in greatly reduced methylation activity. Using synthetic peptides, we have now focused on the enzymology behind this specificity. We show for the human and Xenopus peptide sequences 23-37 the difference in activity results from changes in the Vmax rather than the apparent binding affinity of the enzyme for the substrates. We then characterized six additional peptides containing a single arginine or a pair of arginine residues flanked by glycine and lysine residues. We have corroborated previous findings that peptides with an RXR motif have much higher activity than peptides that contain only one Arg residue. We show that these peptides have similar apparent km values but significant differences in their Vmax values. Finally, we have examined the effect of ionic strength on these peptides. We found the inclusion of salt had little effect on the Vmax value but a considerable increase in the apparent km value, suggesting that the inhibitory effect of ionic strength on PRMT7 activity occurs largely by decreasing apparent substrate-enzyme binding affinity. In summary, we find that even subtle substitutions in the RXR recognition motif can dramatically affect PRMT7 catalysis.
Collapse
Affiliation(s)
- Timothy J Bondoc
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Troy L Lowe
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Steven G Clarke
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
19
|
Abe Y, Sano T, Tanaka N. The Role of PRMT5 in Immuno-Oncology. Genes (Basel) 2023; 14:678. [PMID: 36980950 PMCID: PMC10048035 DOI: 10.3390/genes14030678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
Immune checkpoint inhibitor (ICI) therapy has caused a paradigm shift in cancer therapeutic strategy. However, this therapy only benefits a subset of patients. The difference in responses to ICIs is believed to be dependent on cancer type and its tumor microenvironment (TME). The TME is favorable for cancer progression and metastasis and can also help cancer cells to evade immune attacks. To improve the response to ICIs, it is crucial to understand the mechanism of how the TME is maintained. Protein arginine methyltransferase 5 (PRMT5) di-methylates arginine residues in its substrates and has essential roles in the epigenetic regulation of gene expression, signal transduction, and the fidelity of mRNA splicing. Through these functions, PRMT5 can support cancer cell immune evasion. PRMT5 is necessary for regulatory T cell (Treg) functions and promotes cancer stemness and the epithelial-mesenchymal transition. Specific factors in the TME can help recruit Tregs, tumor-associated macrophages, and myeloid-derived suppressor cells into tumors. In addition, PRMT5 suppresses antigen presentation and the production of interferon and chemokines, which are necessary to recruit T cells into tumors. Overall, PRMT5 supports an immunosuppressive TME. Therefore, PRMT5 inhibition would help recover the immune cycle and enable the immune system-mediated elimination of cancer cells.
Collapse
Affiliation(s)
| | | | - Nobuyuki Tanaka
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-Ku, Tokyo 113-8602, Japan
| |
Collapse
|
20
|
Grypari IM, Pappa I, Papastergiou T, Zolota V, Bravou V, Melachrinou M, Megalooikonomou V, Tzelepi V. Elucidating the role of PRMTs in prostate cancer using open access databases and a patient cohort dataset. Histol Histopathol 2023; 38:287-302. [PMID: 36082942 DOI: 10.14670/hh-18-513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Protein arginine methylation is an understudied epigenetic mechanism catalyzed by enzymes known as Protein Methyltransferases of Arginine (PRMTs), while the opposite reaction is performed by Jumonji domain- containing protein 6 (JMJD6). There is increasing evidence that PRMTs are deregulated in prostate cancer (PCa). In this study, the expression of two PRMT members, PRMT2 and PRMT7 as well as JMJD6, a demethylase, was analyzed in PCa. Initially, we retrieved data from The Cancer Genome Atlas (TCGA) project and the Gene Expression Omnibus (GEO) database to explore the differential expression of various PRMT family members in patients with PCa and then applied immunohistochemistry in a patient cohort across the spectrum of PCa, including non-neoplastic prostate tissue and lymph node metastatic foci. The results from the TCGA analysis revealed that PRMT7, PRMT6 and PRMT3 expression increased while PRMT2, PRMT9 and JMJD6 levels decreased in the tumor compared to non-neoplastic prostate. Results from the GEO datasets were similar, albeit not identical with the TCGA results, with PRMT7 and PRMT3 being upregulated and PRMT2 and JMJD6 being downregulated in the tumor compared to non-neoplastic tissue in some of them. In addition, PRMT7 levels decreased with stage and grade progression in the TCGA analysis. In the patient cohort, both PRMTs and JMJD6 were overexpressed in PCa compared to non-neoplastic tissue, and nuclear PRMT2 and JMJD6 were upregulated in lymph node metastasis, too. PRMT7 and JMJD6 expression were upregulated with the progression of stage and JMJD6 was also increased with the elevation of grade. After androgen ablation therapy, nuclear expression of PRMT7 and JMJD6 were elevated compared to untreated tumors. PRMT2, PRMT7 and JMD6 were also correlated with markers of EMT and cell cycle regulators. Finally, our findings indicate that PRMTs and JMJD6 are involved in prostate cancer progression and revealed a potential interplay of PRMTs with EMT mediators, underscoring the need for therapeutic targeting of arginine methylation in prostate cancer.
Collapse
Affiliation(s)
- Ioanna Maria Grypari
- Department of Pathology, School of Medicine, University of Patras, Patras, Greece
| | - Ioanna Pappa
- Multidimensional Data Analysis and Knowledge Management Laboratory, Computer Engineering and Informatics Department, School of Engineering, University of Patras, Patras, Greece
| | - Thomas Papastergiou
- Multidimensional Data Analysis and Knowledge Management Laboratory, Computer Engineering and Informatics Department, School of Engineering, University of Patras, Patras, Greece
| | - Vasiliki Zolota
- Department of Pathology, School of Medicine, University of Patras, Patras, Greece
| | - Vasiliki Bravou
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Patras, Patras, Greece
| | - Maria Melachrinou
- Department of Pathology, School of Medicine, University of Patras, Patras, Greece
| | - Vasileios Megalooikonomou
- Multidimensional Data Analysis and Knowledge Management Laboratory, Computer Engineering and Informatics Department, School of Engineering, University of Patras, Patras, Greece
| | - Vasiliki Tzelepi
- Department of Pathology, School of Medicine, University of Patras, Patras, Greece.
| |
Collapse
|
21
|
Mendoza M, Mendoza M, Lubrino T, Briski S, Osuji I, Cuala J, Ly B, Ocegueda I, Peralta H, Garcia BA, Zurita-Lopez CI. Arginine Methylation of the PGC-1α C-Terminus Is Temperature-Dependent. Biochemistry 2023; 62:22-34. [PMID: 36535003 DOI: 10.1021/acs.biochem.2c00363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We set out to determine whether the C-terminus (amino acids 481-798) of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α, UniProt Q9UBK2), a regulatory metabolic protein involved in mitochondrial biogenesis, and respiration, is an arginine methyltransferase substrate. Arginine methylation by protein arginine methyltransferases (PRMTs) alters protein function and thus contributes to various cellular processes. In addition to confirming methylation of the C-terminus by PRMT1 as described in the literature, we have identified methylation by another member of the PRMT family, PRMT7. We performed in vitro methylation reactions using recombinant mammalian PRMT7 and PRMT1 at 37, 30, 21, 18, and 4 °C. Various fragments of PGC-1α corresponding to the C-terminus were used as substrates, and the methylation reactions were analyzed by fluorography and mass spectrometry to determine the extent of methylation throughout the substrates, the location of the methylated PGC-1α arginine residues, and finally, whether temperature affects the deposition of methyl groups. We also employed two prediction programs, PRmePRed and MePred-RF, to search for putative methyltransferase sites. Methylation reactions show that arginine residues R548 and R753 in PGC-1α are methylated at or below 30 °C by PRMT7, while methylation by PRMT1 was detected at these same residues at 30 °C. Computational approaches yielded additional putative methylarginine sites, indicating that since PGC-1α is an intrinsically disordered protein, additional methylated arginine residues have yet to be experimentally verified. We conclude that temperature affects the extent of arginine methylation, with more methylation by PRMT7 occurring below physiological temperature, uncovering an additional control point for PGC-1α.
Collapse
Affiliation(s)
- Meryl Mendoza
- Department of Chemistry and Biochemistry, California State University, Los Angeles, 5151 State University Drive, Los Angeles, California 90033, United States
| | - Mariel Mendoza
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Tiffany Lubrino
- Schmid College of Science and Technology, Keck Center for Science and Engineering, Chapman University, 450 N. Center Street, Orange, California 92866, United States
| | - Sidney Briski
- Schmid College of Science and Technology, Keck Center for Science and Engineering, Chapman University, 450 N. Center Street, Orange, California 92866, United States
| | - Immaculeta Osuji
- Department of Chemistry and Biochemistry, California State University, Los Angeles, 5151 State University Drive, Los Angeles, California 90033, United States
| | - Janielle Cuala
- Department of Chemistry and Biochemistry, California State University, Los Angeles, 5151 State University Drive, Los Angeles, California 90033, United States
| | - Brendan Ly
- Department of Chemistry and Biochemistry, California State University, Los Angeles, 5151 State University Drive, Los Angeles, California 90033, United States
| | - Ivan Ocegueda
- Department of Chemistry and Biochemistry, California State University, Los Angeles, 5151 State University Drive, Los Angeles, California 90033, United States
| | - Harvey Peralta
- Department of Chemistry and Biochemistry, California State University, Los Angeles, 5151 State University Drive, Los Angeles, California 90033, United States
| | - Benjamin A Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Cecilia I Zurita-Lopez
- Schmid College of Science and Technology, Keck Center for Science and Engineering, Chapman University, 450 N. Center Street, Orange, California 92866, United States
| |
Collapse
|
22
|
Aleo S, Pezzani L, Milani D, Pezzoli L, Marchisio P, Iascone M. SBIDDS Syndrome: A New Spoke of the Epigenetic Machinery Wheel. Mol Syndromol 2023; 13:543-550. [PMID: 36660030 PMCID: PMC9843552 DOI: 10.1159/000524844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 04/30/2022] [Indexed: 01/22/2023] Open
Abstract
Introduction Mendelian disorders of the epigenetic machinery are a growing group of disorders exhibiting several overlapping clinical features that are probably due to common abnormalities at the epigenomic level, which lead to downstream convergence at the transcriptomic level. Case presentation Here, we report a new case of short stature, brachydactyly, intellectual developmental disability, and seizures (SBIDDS) syndrome with a severe ocular phenotype and hypogonadism. Conclusion Similarities and connections with other mendelian disorders of the epigenetic machinery are highlighted, confirming SBIDDS' enrolment as a new spoke of the epigenetic machinery wheel.
Collapse
Affiliation(s)
- Sebastiano Aleo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milano, Italy
| | - Lidia Pezzani
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milano, Italy,Laboratorio di Genetica Medica, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Donatella Milani
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milano, Italy,*Donatella Milani,
| | - Laura Pezzoli
- Laboratorio di Genetica Medica, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Paola Marchisio
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milano, Italy,Università degli Studi di Milano Statale, Milano, Italy
| | - Maria Iascone
- Laboratorio di Genetica Medica, ASST Papa Giovanni XXIII, Bergamo, Italy
| |
Collapse
|
23
|
Qin J, Xu J. Arginine methylation in the epithelial-to-mesenchymal transition. FEBS J 2022; 289:7292-7303. [PMID: 34358413 PMCID: PMC10181118 DOI: 10.1111/febs.16152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/23/2021] [Accepted: 08/04/2021] [Indexed: 01/13/2023]
Abstract
Epithelial cells acquire mesenchymal characteristics during embryonic development, wound healing, fibrosis, and in cancer in a processed termed epithelial-to-mesenchymal transition (EMT). Regulatory networks of EMT are controlled by post-transcriptional, translational, and post-translational mechanisms, in which arginine methylation is critically involved. Here, we review arginine methylation-dependent mechanisms that regulate EMT in the aspects of signaling, transcriptional, and splicing regulation.
Collapse
Affiliation(s)
- Jian Qin
- Central laboratory, Renmin Hospital of Wuhan University, China
| | - Jian Xu
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA.,Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA, USA.,Norris Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
24
|
Corcoran ET, LeBlanc C, Huang YC, Arias Tsang M, Sarkiss A, Hu Y, Pedmale UV, Jacob Y. Systematic histone H4 replacement in Arabidopsis thaliana reveals a role for H4R17 in regulating flowering time. THE PLANT CELL 2022; 34:3611-3631. [PMID: 35879829 PMCID: PMC9516085 DOI: 10.1093/plcell/koac211] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/15/2022] [Indexed: 06/13/2023]
Abstract
Despite the broad array of roles for epigenetic mechanisms on regulating diverse processes in eukaryotes, no experimental system is currently available in plants for the direct assessment of histone function. In this work, we present the development of a genetic strategy in Arabidopsis (Arabidopsis thaliana) whereby modified histone H4 transgenes can completely replace the expression of endogenous histone H4 genes. Accordingly, we established a collection of plants expressing different H4 point mutants targeting residues that may be post-translationally modified in vivo. To demonstrate its utility, we screened this new H4 mutant collection to uncover substitutions in H4 that alter flowering time. We identified different mutations in the H4 tail (H4R17A) and the H4 globular domain (H4R36A, H4R39K, H4R39A, and H4K44A) that strongly accelerate the floral transition. Furthermore, we identified a conserved regulatory relationship between H4R17 and the ISWI chromatin remodeling complex in plants: As with other biological systems, H4R17 regulates nucleosome spacing via ISWI. Overall, this work provides a large set of H4 mutants to the plant epigenetics community that can be used to systematically assess histone H4 function in Arabidopsis and a roadmap to replicate this strategy for studying other histone proteins in plants.
Collapse
Affiliation(s)
- Emma Tung Corcoran
- Faculty of Arts and Sciences, Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Chantal LeBlanc
- Faculty of Arts and Sciences, Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Yi-Chun Huang
- Faculty of Arts and Sciences, Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Mia Arias Tsang
- Faculty of Arts and Sciences, Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Anthony Sarkiss
- Faculty of Arts and Sciences, Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Yuzhao Hu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Ullas V Pedmale
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
25
|
Human Protein Arginine Methyltransferases (PRMTs) Can Be Optimally Active Under Non-Physiological Conditions. J Biol Chem 2022; 298:102290. [PMID: 35868559 PMCID: PMC9418908 DOI: 10.1016/j.jbc.2022.102290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 11/05/2022] Open
Abstract
Protein arginine methylation is involved in many biological processes and can be enhanced in cancer. In mammals, these reactions are catalyzed on multiple substrates by a family of nine protein arginine methyltransferases (PRMTs). However, conditions that may regulate the activity of each enzyme and that may help us understand the physiological role of PRMTs have not been fully established. Previous studies had suggested unexpected effects of temperature and ionic strength on PRMT7 activity. Here we examine in detail the effects of temperature, pH, and ionic strength on recombinant human PRMT1, PRMT5, and PRMT7. We confirmed the unusual temperature dependence of PRMT7, where optimal activity was observed at 15 °C. On the other hand, we found that PRMT1 and PRMT5 are most active near physiological temperatures of 37 °C. However, we showed all three enzymes still have significant activity at 0 °C. Furthermore, we determined that PRMT1 is most active at a pH of about 7.7, while PRMT5 activity is not dependent on pH in the range of 6.5 to 8.5. Significantly, PRMT7 is most active at an alkaline pH of 8.5 but shows little activity at the physiological intracellular pH of about 7.2. We also detected decreased activity at physiological salt conditions for PRMT1, PRMT5, and PRMT7. We demonstrate that the loss of activity is due to the increasing ionic strength. Taken together, these results open the possibility that PRMTs respond in cells undergoing temperature, salt, or pH stress and demonstrate the potential for in vivo regulation of protein arginine methylation.
Collapse
|
26
|
Liu C, Zou W, Nie D, Li S, Duan C, Zhou M, Lai P, Yang S, Ji S, Li Y, Mei M, Bao S, Jin Y, Pan J. Loss of PRMT7 reprograms glycine metabolism to selectively eradicate leukemia stem cells in CML. Cell Metab 2022; 34:818-835.e7. [PMID: 35508169 DOI: 10.1016/j.cmet.2022.04.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 02/14/2022] [Accepted: 04/11/2022] [Indexed: 02/08/2023]
Abstract
Our group has reported previously on the role of various members of the protein arginine methyltransferase (PRMT) family, which are involved in epigenetic regulation, in the progression of leukemia. Here, we explored the role of PRMT7, given its unique function within the PRMT family, in the maintenance of leukemia stem cells (LSCs) in chronic myeloid leukemia (CML). Genetic loss of Prmt7, and the development and testing of a small-molecule specific inhibitor of PRMT7, showed that targeting PRMT7 delayed leukemia development and impaired self-renewal of LSCs in a CML mouse model and in primary CML CD34+ cells from humans without affecting normal hematopoiesis. Mechanistically, loss of PRMT7 resulted in reduced expressions of glycine decarboxylase, leading to the reprograming of glycine metabolism to generate methylglyoxal, which is detrimental to LSCs. These findings link histone arginine methylation with glycine metabolism, while suggesting PRMT7 as a potential therapeutic target for the eradication of LSCs in CML.
Collapse
Affiliation(s)
- Chang Liu
- Jinan University Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Waiyi Zou
- Department of Hematology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Danian Nie
- Department of Hematology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Shuyi Li
- Jinan University Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Chen Duan
- Jinan University Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Min Zhou
- Jinan University Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Peilong Lai
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Shengyong Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Sen Ji
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yangqiu Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Mei Mei
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shilai Bao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanli Jin
- Jinan University Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Jingxuan Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| |
Collapse
|
27
|
Ma W, Sun X, Zhang S, Chen Z, Yu J. Circ_0039960 regulates growth and Warburg effect of breast cancer cells via modulating miR-1178/PRMT7 axis. Mol Cell Probes 2022; 64:101829. [PMID: 35597500 DOI: 10.1016/j.mcp.2022.101829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Breast cancer (BC) is a serious threat to women's life and healthy. Increasing evidence indicated that blocking Warburg effect could attenuate the development of BC. Circular RNAs (circRNAs) has been found to be dysregulated in various carcinomas, including BC. Our study aims to illustrate the role and regulatory mechanism of circ_0039960 in BC development. METHODS RT-qPCR and western blotting were utilized to evaluate the expression of circ_0039960 in tissues recruited from 32 cases of BC patients and also BC cell lines. Circ_0039960 shRNA was transfected into cells to explore its function on cell processes. CCK-8, flow cytometry and ELISA were used to measure cell viability, cell cycle and apoptosis. Warburg effect was detected by using commercial kits. Besides, bioinformatic prediction, RIP and luciferase reporter assays were performed to validate the interactions between circ_0039960, miR-1178 and PRMT7. RESULTS The results showed that circ_0039960 and PRMT7 were both up-regulated, while miR-1178 was down-regulated, in BC tissues and cells. Silencing circ_0039960 effectively inhibited cell viability and Warburg effect of BC cells, also, induced cell cycle arrest and apoptosis. Moreover, we validated that circ_0039960 positively mediated PRMT7 expression via directly targeting to miR-1178. The inhibition of miR-1178 and overexpression of PRMT7 reversed the effect of circ_0039960 knockdown on BC cell growth and Warburg effect. CONCLUSION In general, our research demonstrated that circ_0039960 regulates cell growth and Warburg effect in BC cells via miR-1178/PRMT7 axis. This may provide new evidence for the exploration of BC diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Weichang Ma
- Department of Thyroid and Breast Surgury, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, Shandong province, China
| | - Xiaojun Sun
- Department of Thyroid and Breast Surgury, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, Shandong province, China
| | - Shupeng Zhang
- Intensive Care Unit, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, Shandong province, China
| | - Zhenghua Chen
- Department of Thyroid and Breast Surgury, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, Shandong province, China
| | - Jianing Yu
- Department of Thyroid and Breast Surgury, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, Shandong province, China.
| |
Collapse
|
28
|
Iannelli G, Milite C, Marechal N, Cura V, Bonnefond L, Troffer-Charlier N, Feoli A, Rescigno D, Wang Y, Cipriano A, Viviano M, Bedford MT, Cavarelli J, Castellano S, Sbardella G. Turning Nonselective Inhibitors of Type I Protein Arginine Methyltransferases into Potent and Selective Inhibitors of Protein Arginine Methyltransferase 4 through a Deconstruction-Reconstruction and Fragment-Growing Approach. J Med Chem 2022; 65:11574-11606. [PMID: 35482954 PMCID: PMC9469100 DOI: 10.1021/acs.jmedchem.2c00252] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Protein arginine
methyltransferases (PRMTs) are important therapeutic
targets, playing a crucial role in the regulation of many cellular
processes and being linked to many diseases. Yet, there is still much
to be understood regarding their functions and the biological pathways
in which they are involved, as well as on the structural requirements
that could drive the development of selective modulators of PRMT activity.
Here we report a deconstruction–reconstruction approach that,
starting from a series of type I PRMT inhibitors previously identified
by us, allowed for the identification of potent and selective inhibitors
of PRMT4, which regardless of the low cell permeability show an evident
reduction of arginine methylation levels in MCF7 cells and a marked
reduction of proliferation. We also report crystal structures with
various PRMTs supporting the observed specificity and selectivity.
Collapse
Affiliation(s)
| | | | - Nils Marechal
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258 Illkirch, France.,Université de Strasbourg, 67400 Illkirch, France
| | - Vincent Cura
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258 Illkirch, France.,Université de Strasbourg, 67400 Illkirch, France
| | - Luc Bonnefond
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258 Illkirch, France.,Université de Strasbourg, 67400 Illkirch, France
| | - Nathalie Troffer-Charlier
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258 Illkirch, France.,Université de Strasbourg, 67400 Illkirch, France
| | | | | | - Yalong Wang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | | | | | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Jean Cavarelli
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258 Illkirch, France.,Université de Strasbourg, 67400 Illkirch, France
| | | | | |
Collapse
|
29
|
PRMT7 ablation stimulates anti-tumor immunity and sensitizes melanoma to immune checkpoint blockade. Cell Rep 2022; 38:110582. [PMID: 35354055 PMCID: PMC9838175 DOI: 10.1016/j.celrep.2022.110582] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 01/08/2022] [Accepted: 03/07/2022] [Indexed: 01/17/2023] Open
Abstract
Despite the success of immune checkpoint inhibitor (ICI) therapy for cancer, resistance and relapse are frequent. Combination therapies are expected to enhance response rates and overcome this resistance. Herein, we report that combining PRMT7 inhibition with ICI therapy induces a strong anti-tumor T cell immunity and restrains tumor growth in vivo by increasing immune cell infiltration. PRMT7-deficient B16.F10 melanoma exhibits increased expression of genes in the interferon pathway, antigen presentation, and chemokine signaling. PRMT7 deficiency or inhibition with SGC3027 in B16.F10 melanoma results in reduced DNMT expression, loss of DNA methylation in the regulatory regions of endogenous retroviral elements (ERVs) causing their increased expression. PRMT7-deficient cells increase RIG-I and MDA5 expression with a reduction in the H4R3me2s repressive histone mark at their gene promoters. Our findings identify PRMT7 as a regulatory checkpoint for RIG-I, MDA5, and their ERV-double-stranded RNA (dsRNA) ligands, facilitating immune escape and anti-tumor T cell immunity to restrain tumor growth.
Collapse
|
30
|
Erlendson AA, Freitag M. Not all Is SET for Methylation: Evolution of Eukaryotic Protein Methyltransferases. Methods Mol Biol 2022; 2529:3-40. [PMID: 35733008 DOI: 10.1007/978-1-0716-2481-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Dynamic posttranslational modifications to canonical histones that constitute the nucleosome (H2A, H2B, H3, and H4) control all aspects of enzymatic transactions with DNA. Histone methylation has been studied heavily for the past 20 years, and our mechanistic understanding of the control and function of individual methylation events on specific histone arginine and lysine residues has been greatly improved over the past decade, driven by excellent new tools and methods. Here, we will summarize what is known about the distribution and some of the functions of protein methyltransferases from all major eukaryotic supergroups. The main conclusion is that protein, and specifically histone, methylation is an ancient process. Many taxa in all supergroups have lost some subfamilies of both protein arginine methyltransferases (PRMT) and the heavily studied SET domain lysine methyltransferases (KMT). Over time, novel subfamilies, especially of SET domain proteins, arose. We use the interactions between H3K27 and H3K36 methylation as one example for the complex circuitry of histone modifications that make up the "histone code," and we discuss one recent example (Paramecium Ezl1) for how extant enzymes that may resemble more ancient SET domain KMTs are able to modify two lysine residues that have divergent functions in plants, fungi, and animals. Complexity of SET domain KMT function in the well-studied plant and animal lineages arose not only by gene duplication but also acquisition of novel DNA- and histone-binding domains in certain subfamilies.
Collapse
Affiliation(s)
- Allyson A Erlendson
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
31
|
Yeast Two-Hybrid Screen Identifies PKA-Riα Interacting Proteins during Mouse Spermiogenesis. Genes (Basel) 2021; 12:genes12121941. [PMID: 34946890 PMCID: PMC8700991 DOI: 10.3390/genes12121941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/26/2022] Open
Abstract
cAMP-dependent protein kinase (PKA) signaling plays various roles during mammalian spermatogenesis, ranging from the regulation of gene expression to the modulation of sperm motility. However, the molecular mechanisms that govern the multifaceted functions of PKA during spermatogenesis remain largely unclear. We previously found that PKA regulatory subunit I α (RIα) and catalytic subunit α (Cα) co-sediment with polyribosomal fractions of mouse testis lysate on sucrose gradient and the stimulation of PKA activity facilitates protein synthesis in post-meiotic elongating spermatids, indicating that type I PKA is intricately associated with protein translation machinery and regulates protein synthesis during mouse spermiogenesis. Since PKA activity is often regulated by interacting proteins that form complexes with its regulatory subunits, the identification of PKA-RIα interacting proteins in post-meiotic spermatogenic cells will facilitate our understanding of its regulatory roles in protein synthesis and spermiogenesis. In the present study, we applied a yeast two-hybrid screen to identify PKA-Riα-binding proteins using a cDNA library generated from mouse round and elongating spermatids. Numerous proteins were found to potentially interact with PKA-RIα, including proteostasis modulators, metabolic enzymes, cytoskeletal regulators, and mitochondrial proteins, many of which are specifically expressed in testes. Consistently, the examination of MENA (mouse ENA/VASP homolog) in developing mouse testes suggested that post-meiotic spermatogenic cells express a short isoform of MENA that interacts with PKA-RIα in yeast two-hybrid assay. The identification of PKA-RIα interacting proteins provides us solid basis to further explore how PKA signaling regulates protein synthesis and cellular morphogenesis during mouse spermatogenesis.
Collapse
|
32
|
Xu J, Richard S. Cellular pathways influenced by protein arginine methylation: Implications for cancer. Mol Cell 2021; 81:4357-4368. [PMID: 34619091 PMCID: PMC8571027 DOI: 10.1016/j.molcel.2021.09.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/24/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023]
Abstract
Arginine methylation is an influential post-translational modification occurring on histones, RNA binding proteins, and many other cellular proteins, affecting their function by altering their protein-protein and protein-nucleic acid interactions. Recently, a wealth of information has been gathered, implicating protein arginine methyltransferases (PRMTs), enzymes that deposit arginine methylation, in transcription, pre-mRNA splicing, DNA damage signaling, and immune signaling with major implications for cancer therapy, especially immunotherapy. This review summarizes this recent progress and the current state of PRMT inhibitors, some in clinical trials, as promising drug targets for cancer.
Collapse
Affiliation(s)
- Jian Xu
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA; Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, and Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Stéphane Richard
- Segal Cancer Center, Lady Davis Institute for Medical Research, Gerald Bronfman Department of Oncology, and Departments of Medicine, Human Genetics, and Biochemistry, McGill University, Montréal, QC H3T 1E2, Canada.
| |
Collapse
|
33
|
PRMT7: A Pivotal Arginine Methyltransferase in Stem Cells and Development. Stem Cells Int 2021; 2021:6241600. [PMID: 34712331 PMCID: PMC8548130 DOI: 10.1155/2021/6241600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/30/2021] [Indexed: 12/11/2022] Open
Abstract
Protein arginine methylation is a posttranslational modification catalyzed by protein arginine methyltransferases (PRMTs), which play critical roles in many biological processes. To date, nine PRMT family members, namely, PRMT1, 2, 3, 4, 5, 6, 7, 8, and 9, have been identified in mammals. Among them, PRMT7 is a type III PRMT that can only catalyze the formation of monomethylarginine and plays pivotal roles in several kinds of stem cells. It has been reported that PRMT7 is closely associated with embryonic stem cells, induced pluripotent stem cells, muscle stem cells, and human cancer stem cells. PRMT7 deficiency or mutation led to severe developmental delay in mice and humans, which is possibly due to its crucial functions in stem cells. Here, we surveyed and summarized the studies on PRMT7 in stem cells and development in mice and humans and herein provide a discussion of the underlying molecular mechanisms. Furthermore, we also discuss the roles of PRMT7 in cancer, adipogenesis, male reproduction, cellular stress, and cellular senescence, as well as the future perspectives of PRMT7-related studies. Overall, PRMT7 mediates the proliferation and differentiation of stem cells. Deficiency or mutation of PRMT7 causes developmental delay, including defects in skeletal muscle, bone, adipose tissues, neuron, and male reproduction. A better understanding of the roles of PRMT7 in stem cells and development as well as the underlying mechanisms will provide information for the development of strategies for in-depth research of PRMT7 and stem cells as well as their applications in life sciences and medicine.
Collapse
|
34
|
Marsden AJ, Riley DRJ, Barry A, Khalil JS, Guinn BA, Kemp NT, Rivero F, Beltran-Alvarez P. Inhibition of Arginine Methylation Impairs Platelet Function. ACS Pharmacol Transl Sci 2021; 4:1567-1577. [PMID: 34661075 DOI: 10.1021/acsptsci.1c00135] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Indexed: 11/28/2022]
Abstract
Protein arginine methyltransferases (PRMTs) catalyze the transfer of methyl groups to arginine residues in proteins. PRMT inhibitors are novel, promising drugs against cancer that are currently in clinical trials, which include oral administration of the drugs. However, off-target activities of systemically available PRMT inhibitors have not yet been investigated. In this work, we study the relevance of arginine methylation in platelets and investigate the effect of PRMT inhibitors on platelet function and on the expression of relevant platelet receptors. We show that (1) key platelet proteins are modified by arginine methylation; (2) incubation of human platelets with PRMT inhibitors for 4 h results in impaired capacity of platelets to aggregate in response to thrombin and collagen, with IC50 values in the μM range; and (3) treatment with PRMT inhibitors leads to decreased membrane expression and reduced activation of the critical platelet integrin αIIbβ3. Our contribution opens new avenues for research on arginine methylation in platelets, including the repurposing of arginine methylation inhibitors as novel antiplatelet drugs. We also recommend that current and future clinical trials with PRMT inhibitors consider any adverse effects associated with platelet inhibition of these emerging anticancer drugs.
Collapse
Affiliation(s)
| | - David R J Riley
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Hull HU6 7RX, U.K
| | - Antonia Barry
- Department of Biomedical Sciences, University of Hull, Hull HU6 7RX, U.K
| | - Jawad S Khalil
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Hull HU6 7RX, U.K
| | - Barbara-Ann Guinn
- Department of Biomedical Sciences, University of Hull, Hull HU6 7RX, U.K
| | - Neil T Kemp
- Department of Physics and Mathematics, University of Hull, Hull HU6 7RX, U.K
| | - Francisco Rivero
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Hull HU6 7RX, U.K
| | | |
Collapse
|
35
|
Xiao W, Zhou Q, Wen X, Wang R, Liu R, Wang T, Shi J, Hu Y, Hou J. Small-Molecule Inhibitors Overcome Epigenetic Reprogramming for Cancer Therapy. Front Pharmacol 2021; 12:702360. [PMID: 34603017 PMCID: PMC8484527 DOI: 10.3389/fphar.2021.702360] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer treatment is a significant challenge for the global health system, although various pharmacological and therapeutic discoveries have been made. It has been widely established that cancer is associated with epigenetic modification, which is reversible and becomes an attractive target for drug development. Adding chemical groups to the DNA backbone and modifying histone proteins impart distinct characteristics on chromatin architecture. This process is mediated by various enzymes modifying chromatin structures to achieve the diversity of epigenetic space and the intricacy in gene expression files. After decades of effort, epigenetic modification has represented the hallmarks of different cancer types, and the enzymes involved in this process have provided novel targets for antitumor therapy development. Epigenetic drugs show significant effects on both preclinical and clinical studies in which the target development and research offer a promising direction for cancer therapy. Here, we summarize the different types of epigenetic enzymes which target corresponding protein domains, emphasize DNA methylation, histone modifications, and microRNA-mediated cooperation with epigenetic modification, and highlight recent achievements in developing targets for epigenetic inhibitor therapy. This article reviews current anticancer small-molecule inhibitors targeting epigenetic modified enzymes and displays their performances in different stages of clinical trials. Future studies are further needed to address their off-target effects and cytotoxicity to improve their clinical translation.
Collapse
Affiliation(s)
- Wenjing Xiao
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China.,Department of Pharmacy, The General Hospital of Western Theater Command of PLA, Chengdu, China
| | - Qiaodan Zhou
- Department of Ultrasonic, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xudong Wen
- Department of Gastroenterology and Hepatology, Chengdu First People's Hospital, Chengdu, China
| | - Rui Wang
- Information Department of Medical Security Center, The General Hospital of Western Theater Command of PLA, Chengdu, China
| | - Ruijie Liu
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Tingting Wang
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yonghe Hu
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China.,Department of Pharmacy, The General Hospital of Western Theater Command of PLA, Chengdu, China
| | - Jun Hou
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China.,Department of Pharmacy, The General Hospital of Western Theater Command of PLA, Chengdu, China
| |
Collapse
|
36
|
Liang Z, Wen C, Jiang H, Ma S, Liu X. Protein Arginine Methyltransferase 5 Functions via Interacting Proteins. Front Cell Dev Biol 2021; 9:725301. [PMID: 34513846 PMCID: PMC8432624 DOI: 10.3389/fcell.2021.725301] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/04/2021] [Indexed: 12/25/2022] Open
Abstract
The protein arginine methyltransferases (PRMTs) are involved in such biological processes as transcription regulation, DNA repair, RNA splicing, and signal transduction, etc. In this study, we mainly focused on PRMT5, a member of the type II PRMTs, which functions mainly alongside other interacting proteins. PRMT5 has been shown to be overexpressed in a wide variety of cancers and other diseases, and is involved in the regulation of Epstein-Barr virus infection, viral carcinogenesis, spliceosome, hepatitis B, cell cycles, and various signaling pathways. We analyzed the regulatory roles of PRMT5 and interacting proteins in various biological processes above-mentioned, to elucidate for the first time the interaction between PRMT5 and its interacting proteins. This systemic analysis will enrich the biological theory and contribute to the development of novel therapies.
Collapse
Affiliation(s)
- Zhenzhen Liang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China.,NHC Key Lab of Radiobiology, Jilin University, Changchun, China
| | - Chaowei Wen
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Heya Jiang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Shumei Ma
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Xiaodong Liu
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Watershed Science and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
37
|
Lei Y, Han P, Tian D. Protein arginine methyltransferases and hepatocellular carcinoma: A review. Transl Oncol 2021; 14:101194. [PMID: 34365222 PMCID: PMC8353347 DOI: 10.1016/j.tranon.2021.101194] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 12/27/2022] Open
Abstract
Protein arginine methylation is essential in multiple biological processes. The family of PRMTs is a novel regulator of liver diseases. Deregulation of PRMTs is correlated with HCC prognosis and clinical features. PRMTs play a vital role in HCC malignancy, immune responses and metabolism. PRMTs may represent druggable targets as novel strategies for HCC therapy.
Hepatocellular carcinoma (HCC) is one of the most frequently diagnosed cancers with a high mortality rate worldwide. The complexity of HCC initiation and progression poses a great challenge to the diagnosis and treatment. An increasing number of studies have focused on the emerging roles of protein arginine methylation in cancers, including tumor growth, invasion, metastasis, metabolism, immune responses, chemotherapy sensitivity, etc. The family of protein arginine methyltransferases (PRMTs) is the most important proteins that mediate arginine methylation. The deregulation of PRMTs’ expression and functions in cancers have been gradually unveiled, and many PRMTs inhibitors are in preclinical and clinical investigations now. This review focuses predominantly on the aberrant expression of PRMTs, underlying mechanisms, as well as their potential applications in HCC, and provide novel insights into HCC therapy.
Collapse
Affiliation(s)
- Yu Lei
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Ping Han
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
38
|
Zhu J, Li X, Cai X, Zha H, Zhou Z, Sun X, Rong F, Tang J, Zhu C, Liu X, Fan S, Wang J, Liao Q, Ouyang G, Xiao W. Arginine monomethylation by PRMT7 controls MAVS-mediated antiviral innate immunity. Mol Cell 2021; 81:3171-3186.e8. [PMID: 34171297 DOI: 10.1016/j.molcel.2021.06.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/10/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022]
Abstract
Accurate control of innate immune responses is required to eliminate invading pathogens and simultaneously avoid autoinflammation and autoimmune diseases. Here, we demonstrate that arginine monomethylation precisely regulates the mitochondrial antiviral-signaling protein (MAVS)-mediated antiviral response. Protein arginine methyltransferase 7 (PRMT7) forms aggregates to catalyze MAVS monomethylation at arginine residue 52 (R52), attenuating its binding to TRIM31 and RIG-I, which leads to the suppression of MAVS aggregation and subsequent activation. Upon virus infection, aggregated PRMT7 is disabled in a timely manner due to automethylation at arginine residue 32 (R32), and SMURF1 is recruited to PRMT7 by MAVS to induce proteasomal degradation of PRMT7, resulting in the relief of PRMT7 suppression of MAVS activation. Therefore, we not only reveal that arginine monomethylation by PRMT7 negatively regulates MAVS-mediated antiviral signaling in vitro and in vivo but also uncover a mechanism by which PRMT7 is tightly controlled to ensure the timely activation of antiviral defense.
Collapse
Affiliation(s)
- Junji Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xiong Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xiaolian Cai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Huangyuan Zha
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China
| | - Ziwen Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xueyi Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Fangjing Rong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jinghua Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Chunchun Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xing Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; The Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan 430072, P.R. China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, P.R. China
| | - Sijia Fan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jing Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; The Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan 430072, P.R. China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, P.R. China
| | - Qian Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Gang Ouyang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; The Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan 430072, P.R. China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, P.R. China
| | - Wuhan Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; The Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan 430072, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, P.R. China; Hubei Hongshan Laboratory, Wuhan 430070, P.R. China.
| |
Collapse
|
39
|
Halabelian L, Barsyte-Lovejoy D. Structure and Function of Protein Arginine Methyltransferase PRMT7. Life (Basel) 2021; 11:768. [PMID: 34440512 PMCID: PMC8399567 DOI: 10.3390/life11080768] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 01/06/2023] Open
Abstract
PRMT7 is a member of the protein arginine methyltransferase (PRMT) family, which methylates a diverse set of substrates. Arginine methylation as a posttranslational modification regulates protein-protein and protein-nucleic acid interactions, and as such, has been implicated in various biological functions. PRMT7 is a unique, evolutionarily conserved PRMT family member that catalyzes the mono-methylation of arginine. The structural features, functional aspects, and compounds that inhibit PRMT7 are discussed here. Several studies have identified physiological substrates of PRMT7 and investigated the substrate methylation outcomes which link PRMT7 activity to the stress response and RNA biology. PRMT7-driven substrate methylation further leads to the biological outcomes of gene expression regulation, cell stemness, stress response, and cancer-associated phenotypes such as cell migration. Furthermore, organismal level phenotypes of PRMT7 deficiency have uncovered roles in muscle cell physiology, B cell biology, immunity, and brain function. This rapidly growing information on PRMT7 function indicates the critical nature of context-dependent functions of PRMT7 and necessitates further investigation of the PRMT7 interaction partners and factors that control PRMT7 expression and levels. Thus, PRMT7 is an important cellular regulator of arginine methylation in health and disease.
Collapse
Affiliation(s)
- Levon Halabelian
- Structural Genomics Consortium, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
40
|
Zhang W, Li S, Li K, Li LI, Yin P, Tong G. The role of protein arginine methyltransferase 7 in human developmentally arrested embryos cultured in vitro. Acta Biochim Biophys Sin (Shanghai) 2021; 53:925-932. [PMID: 34041522 DOI: 10.1093/abbs/gmab068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Indexed: 12/12/2022] Open
Abstract
Human embryos of in vitro fertilization (IVF) are often susceptible to developmental arrest, which greatly reduces the efficiency of IVF treatment. In recent years, it has been found that protein arginine methyltransferase 7 (PRMT7) plays an important role in the process of early embryonic development. However, not much is known about the relationship between PRMT7 and developmentally arrested embryos. The role of PRMT7 in developmentally arrested embryos was thus investigated in this study. Discarded human embryos from IVF were collected for experimental materials. Quantitative real-time polymerase chain reaction (qRT-PCR) and confocal analyses were used to identify PRMT7 mRNA and protein levels in early embryos at different developmental stages, as well as changes in the methylation levels of H4R3me2s. Additionally, PRMT7 was knocked down in the developmentally arrested embryos to observe the further development of these embryos. Our results demonstrated that PRMT7 mRNA and protein levels in arrested embryos were significantly increased compared with those in control embryos; meanwhile, the methylation levels of H4R3me2s in arrested embryos were also increased significantly. Knockdown of PRMT7 could rescue partially developmentally arrested embryos, and even individual developmentally arrested embryos could develop into blastocysts. In conclusion, over-expression of PRMT7 disrupts the early embryo development process, leading to early embryos developmental arrest, but these developmentally arrested defects could be partially rescued by knockdown of the PRMT7 protein.
Collapse
Affiliation(s)
- Wuwen Zhang
- Reproductive Medicine Center, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shifeng Li
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kai Li
- Reproductive Medicine Center, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - L i Li
- Reproductive Medicine Center, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ping Yin
- Reproductive Medicine Center, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guoqing Tong
- Reproductive Medicine Center, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
41
|
Hwang JW, Cho Y, Bae GU, Kim SN, Kim YK. Protein arginine methyltransferases: promising targets for cancer therapy. Exp Mol Med 2021; 53:788-808. [PMID: 34006904 PMCID: PMC8178397 DOI: 10.1038/s12276-021-00613-y] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 02/08/2023] Open
Abstract
Protein methylation, a post-translational modification (PTM), is observed in a wide variety of cell types from prokaryotes to eukaryotes. With recent and rapid advancements in epigenetic research, the importance of protein methylation has been highlighted. The methylation of histone proteins that contributes to the epigenetic histone code is not only dynamic but is also finely controlled by histone methyltransferases and demethylases, which are essential for the transcriptional regulation of genes. In addition, many nonhistone proteins are methylated, and these modifications govern a variety of cellular functions, including RNA processing, translation, signal transduction, DNA damage response, and the cell cycle. Recently, the importance of protein arginine methylation, especially in cell cycle regulation and DNA repair processes, has been noted. Since the dysregulation of protein arginine methylation is closely associated with cancer development, protein arginine methyltransferases (PRMTs) have garnered significant interest as novel targets for anticancer drug development. Indeed, several PRMT inhibitors are in phase 1/2 clinical trials. In this review, we discuss the biological functions of PRMTs in cancer and the current development status of PRMT inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Jee Won Hwang
- grid.412670.60000 0001 0729 3748Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul, 04310 Republic of Korea
| | - Yena Cho
- grid.412670.60000 0001 0729 3748Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul, 04310 Republic of Korea
| | - Gyu-Un Bae
- grid.412670.60000 0001 0729 3748Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul, 04310 Republic of Korea
| | - Su-Nam Kim
- grid.35541.360000000121053345Natural Product Research Institute, Korea Institute of Science and Technology, Gangneung, 25451 Republic of Korea
| | - Yong Kee Kim
- grid.412670.60000 0001 0729 3748Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul, 04310 Republic of Korea
| |
Collapse
|
42
|
Eddershaw AR, Stubbs CJ, Edwardes LV, Underwood E, Hamm GR, Davey PRJ, Clarkson PN, Syson K. Characterization of the Kinetic Mechanism of Human Protein Arginine Methyltransferase 5. Biochemistry 2020; 59:4775-4786. [PMID: 33274632 DOI: 10.1021/acs.biochem.0c00554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein arginine methyltransferases (PRMTs) are of great interest for the development of therapeutics due to their involvement in a number of malignancies, such as lung and colon cancer. PRMT5 catalyzes the formation of symmetrical dimethylarginine of a wide variety of substrates and is responsible for the majority of this mark within cells. To gain insight into the mechanism of PRMT5 inhibition, we co-expressed the human PRMT5:MEP50 complex (hPRMT5:MEP50) in insect cells for a detailed mechanistic study. In this report, we carry out steady state, product, and dead-end inhibitor studies that show hPRMT5:MEP50 uses a rapid equilibrium random order mechanism with EAP and EBQ dead-end complexes. We also provide evidence of ternary complex formation in solution using hydrogen/deuterium exchange mass spectrometry. Isotope exchange and intact protein mass spectrometry further rule out ping-pong as a potential enzyme mechanism, and finally, we show that PRMT5 exhibits a pre-steady state burst that corresponds to an initial slow turnover with all four active sites of the hetero-octamer being catalytically active.
Collapse
Affiliation(s)
- Alice R Eddershaw
- Discovery Biology, Discovery Sciences, BioPharmaceuticals, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Christopher J Stubbs
- Discovery Biology, Discovery Sciences, BioPharmaceuticals, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Lucy V Edwardes
- Discovery Biology, Discovery Sciences, BioPharmaceuticals, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Elizabeth Underwood
- Discovery Biology, Discovery Sciences, BioPharmaceuticals, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Gregory R Hamm
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals, R&D AstraZeneca, Cambridge CB4 0WG, U.K
| | - Paul R J Davey
- Chemistry, Oncology, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Paul N Clarkson
- Discovery Biology, Discovery Sciences, BioPharmaceuticals, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Karl Syson
- Discovery Biology, Discovery Sciences, BioPharmaceuticals, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| |
Collapse
|
43
|
Zhang Y, Zhang Q, Li L, Mu D, Hua K, Ci S, Shen L, Zheng L, Shen B, Guo Z. Arginine methylation of APE1 promotes its mitochondrial translocation to protect cells from oxidative damage. Free Radic Biol Med 2020; 158:60-73. [PMID: 32679368 PMCID: PMC8195256 DOI: 10.1016/j.freeradbiomed.2020.06.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 06/09/2020] [Accepted: 06/17/2020] [Indexed: 02/07/2023]
Abstract
Apurinic/apyrimidinic endonuclease 1 (APE1) is an essential multifunctional protein in mammals that plays critical roles in DNA repair and redox signaling within the cell. Impaired APE1 function or dysregulation is associated with disease susceptibility and poor cancer prognosis. Orchestrated regulatory mechanisms are crucial to ensure its function in a specific subcellular location at specific time. Here, we report arginine methylation as a post-translational modification (PTM) that regulates APE1 translocation to mitochondria in HeLa and HEK-293 cells. Protein arginine methyl-transferase 1 (PRMT1) was shown to methylate APE1 in vitro. Site-directed mutagenesis identified R301 as the major methylation site. We confirmed that APE1 is methylated in cells and that the R301K mutation significantly reduces its methylation. Baseline mitochondrial APE1 levels were low under standard culture conditions, but they could be induced by oxidative agents. Methylation-deficient APE1 showed reduced mitochondrial translocation. Methylation affected the interaction of APE1 with Tom20, translocase of the outer mitochondrial membrane. Methylation-deficient APE1 resulted in increased mitochondrial DNA damage and increased cytochrome c release after stimuli. These data suggest that methylation of APE1 promotes its mitochondrial translocation and protects cells from oxidative damage. This work describes a novel PTM regulation model of APE1 subcellular distribution through arginine methylation.
Collapse
Affiliation(s)
- Yilan Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Qi Zhang
- Department of Infectious Disease, Nanjing Liuhe District People's Hospital, Yangzhou University, Nanjing, 211500, China
| | - LuLu Li
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Dan Mu
- Department of Radiology, Affiliated Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, 210008, China
| | - Ke Hua
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Shusheng Ci
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Lei Shen
- Department of Cancer Genetics and Epigenetics, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, 91010, USA
| | - Li Zheng
- Department of Cancer Genetics and Epigenetics, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, 91010, USA
| | - Binghui Shen
- Department of Cancer Genetics and Epigenetics, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, 91010, USA.
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China.
| |
Collapse
|
44
|
Liu Y, Li L, Liu X, Wang Y, Liu L, Peng L, Liu J, Zhang L, Wang G, Li H, Liu DX, Huang B, Lu J, Zhang Y. Arginine methylation of SHANK2 by PRMT7 promotes human breast cancer metastasis through activating endosomal FAK signalling. eLife 2020; 9:57617. [PMID: 32844749 PMCID: PMC7494359 DOI: 10.7554/elife.57617] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/25/2020] [Indexed: 12/17/2022] Open
Abstract
Arginine methyltransferase PRMT7 is associated with human breast cancer metastasis. Endosomal FAK signalling is critical for cancer cell migration. Here we identified the pivotal roles of PRMT7 in promoting endosomal FAK signalling activation during breast cancer metastasis. PRMT7 exerted its functions through binding to scaffold protein SHANK2 and catalyzing di-methylation of SHANK2 at R240. SHANK2 R240 methylation exposed ANK domain by disrupting its SPN-ANK domain blockade, promoting in co-accumulation of dynamin2, talin, FAK, cortactin with SHANK2 on endosomes. In addition, SHANK2 R240 methylation activated endosomal FAK/cortactin signals in vitro and in vivo. Consistently, all the levels of PRMT7, methylated SHANK2, FAK Y397 phosphorylation and cortactin Y421 phosphorylation were correlated with aggressive clinical breast cancer tissues. These findings characterize the PRMT7-dependent SHANK2 methylation as a key player in mediating endosomal FAK signals activation, also point to the value of SHANK2 R240 methylation as a target for breast cancer metastasis.
Collapse
Affiliation(s)
- Yingqi Liu
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Lingling Li
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Xiaoqing Liu
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Yibo Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Lingxia Liu
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Lu Peng
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Jiayuan Liu
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Lian Zhang
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Guannan Wang
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Hongyuan Li
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Dong-Xu Liu
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Baiqu Huang
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Jun Lu
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Yu Zhang
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| |
Collapse
|
45
|
Abe Y, Tanaka N. Fine-Tuning of GLI Activity through Arginine Methylation: Its Mechanisms and Function. Cells 2020; 9:cells9091973. [PMID: 32859041 PMCID: PMC7565022 DOI: 10.3390/cells9091973] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022] Open
Abstract
The glioma-associated oncogene (GLI) family consists of GLI1, GLI2, and GLI3 in mammals. This family has important roles in development and homeostasis. To achieve these roles, the GLI family has widespread outputs. GLI activity is therefore strictly regulated at multiple levels, including via post-translational modifications for context-dependent GLI target gene expression. The protein arginine methyl transferase (PRMT) family is also associated with embryogenesis, homeostasis, and cancer mainly via epigenetic modifications. In the PRMT family, PRMT1, PRMT5, and PRMT7 reportedly regulate GLI1 and GLI2 activity. PRMT1 methylates GLI1 to upregulate its activity and target gene expression. Cytoplasmic PRMT5 methylates GLI1 and promotes GLI1 protein stabilization. Conversely, nucleic PRMT5 interacts with MENIN to suppress growth arrest-specific protein 1 expression, which assists Hedgehog ligand binding to Patched, indirectly resulting in downregulated GLI1 activity. PRMT7-mediated GLI2 methylation upregulates its activity through the dissociation of GLI2 and Suppressor of Fused. Together, PRMT1, PRMT5, and PRMT7 regulate GLI activity at multiple revels. Furthermore, the GLI and PRMT families have strong links with various cancers through cancer stem cell maintenance. Therefore, PRMT-mediated regulation of GLI activity would have important roles in cancer stem cell maintenance.
Collapse
|
46
|
Ferreira TR, Dowle AA, Parry E, Alves-Ferreira EVC, Hogg K, Kolokousi F, Larson TR, Plevin MJ, Cruz AK, Walrad PB. PRMT7 regulates RNA-binding capacity and protein stability in Leishmania parasites. Nucleic Acids Res 2020; 48:5511-5526. [PMID: 32365184 PMCID: PMC7261171 DOI: 10.1093/nar/gkaa211] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 03/17/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
RNA binding proteins (RBPs) are the primary gene regulators in kinetoplastids as transcriptional control is nearly absent, making Leishmania an exceptional model for investigating methylation of non-histone substrates. Arginine methylation is an evolutionarily conserved protein modification catalyzed by Protein aRginine Methyl Transferases (PRMTs). The chromatin modifier PRMT7 is the only Type III PRMT found in higher eukaryotes and a restricted number of unicellular eukaryotes. In Leishmania major, PRMT7 is a cytoplasmic protein implicit in pathogenesis with unknown substrates. Using comparative methyl-SILAC proteomics for the first time in protozoa, we identified 40 putative targets, including 17 RBPs hypomethylated upon PRMT7 knockout. PRMT7 can modify Alba3 and RBP16 trans-regulators (mammalian RPP25 and YBX2 homologs, respectively) as direct substrates in vitro. The absence of PRMT7 levels in vivo selectively reduces Alba3 mRNA-binding capacity to specific target transcripts and can impact the relative stability of RBP16 in the cytoplasm. RNA immunoprecipitation analyses demonstrate PRMT7-dependent methylation promotes Alba3 association with select target transcripts and thus indirectly stabilizes mRNA of a known virulence factor, δ-amastin surface antigen. These results highlight a novel role for PRMT7-mediated arginine methylation of RBP substrates, suggesting a regulatory pathway controlling gene expression and virulence in Leishmania. This work introduces Leishmania PRMTs as epigenetic regulators of mRNA metabolism with mechanistic insight into the functional manipulation of RBPs by methylation.
Collapse
Affiliation(s)
- Tiago R Ferreira
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | - Adam A Dowle
- Metabolomics and Proteomics Lab, Bioscience Technology Facility, Department of Biology, University of York, UK
| | - Ewan Parry
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | | | - Karen Hogg
- Imaging and Cytometry Lab, Bioscience Technology Facility, Department of Biology, University of York, UK
| | - Foteini Kolokousi
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | - Tony R Larson
- Metabolomics and Proteomics Lab, Bioscience Technology Facility, Department of Biology, University of York, UK
| | - Michael J Plevin
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | - Angela K Cruz
- Cell and Molecular Biology Department, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Pegine B Walrad
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| |
Collapse
|
47
|
Pharmacological inhibition of PRMT7 links arginine monomethylation to the cellular stress response. Nat Commun 2020; 11:2396. [PMID: 32409666 PMCID: PMC7224190 DOI: 10.1038/s41467-020-16271-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 04/20/2020] [Indexed: 02/07/2023] Open
Abstract
Protein arginine methyltransferases (PRMTs) regulate diverse biological processes and are increasingly being recognized for their potential as drug targets. Here we report the discovery of a potent, selective, and cell-active chemical probe for PRMT7. SGC3027 is a cell permeable prodrug, which in cells is converted to SGC8158, a potent, SAM-competitive PRMT7 inhibitor. Inhibition or knockout of cellular PRMT7 results in drastically reduced levels of arginine monomethylated HSP70 family stress-associated proteins. Structural and biochemical analyses reveal that PRMT7-driven in vitro methylation of HSP70 at R469 requires an ATP-bound, open conformation of HSP70. In cells, SGC3027 inhibits methylation of both constitutive and inducible forms of HSP70, and leads to decreased tolerance for perturbations of proteostasis including heat shock and proteasome inhibitors. These results demonstrate a role for PRMT7 and arginine methylation in stress response. Protein arginine methyltransferases (PRMTs) are increasingly recognized as potential therapeutic targets but PRMT7 remains an understudied member of this enzyme family. Here, the authors develop a chemical probe for PRMT7 and apply it to elucidate the role of PRMT7 in the cellular stress response.
Collapse
|
48
|
Wang L, Li X, Zhang W, Yang Y, Meng Q, Wang C, Xin X, Jiang X, Song S, Lu Y, Pu H, Gui X, Li T, Xu J, Li J, Jia S, Lu D. miR24-2 Promotes Malignant Progression of Human Liver Cancer Stem Cells by Enhancing Tyrosine Kinase Src Epigenetically. Mol Ther 2020; 28:572-586. [PMID: 31732298 PMCID: PMC7001004 DOI: 10.1016/j.ymthe.2019.10.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/23/2019] [Accepted: 10/18/2019] [Indexed: 12/26/2022] Open
Abstract
MicroRNA24-2 (miR24-2) is associated with human tumorigenesis; however, its molecular mechanisms are poorly understood. Herein, our findings demonstrate that miR24-2 promotes the proliferation ability in vitro and the tumorigenic ability in vivo in human liver cancer stem cells (hLCSCs). Mechanically, the miR24-2 targets for 3' UTR (2,627-2,648) of protein arginine methyltransferase 7 (PRMT7) inhibit the translational ability of prmt7 gene. Moreover, miR24-2 inhibits the di-/tri-methylation of histone H4 arginine 3 by reducing PRMT7 and then promotes the expression of Nanog via long noncoding RNA HULC. Notably, miR24-2 inhibits histone deacetylase HDAC3 through miR675, which promotes the acetylation of histone H4 at lysine 16. Subsequently, miR24-2 enhances the interaction between LC3 and ATG4 dependent on PI3K and triggers cellular autophagy. Strikingly, miR24-2 inhibits the degradation of pyruvate kinase M1 via autophagosome-P62 in hLCSCs. Furthermore, miR24-2 enhances the activity of Src by promoting the binding of PKM1 to the Src promoter regions in hLCSCs. In particular, our results also indicate that src gene determines the oncogenic functions of miR24-2. These results provided a valuable theoretical basis for the discovery of liver cancer therapeutic targets and diagnosis markers based on miR24-2.
Collapse
Affiliation(s)
- Liyan Wang
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Xiaonan Li
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Wei Zhang
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Yuxin Yang
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Qiuyu Meng
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Chen Wang
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Xiaoru Xin
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Xiaoxue Jiang
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Shuting Song
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Yanan Lu
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Hu Pu
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Xin Gui
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Tianming Li
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Jie Xu
- School of Medicine, Tongji University, Shanghai 200092, China
| | - Jiao Li
- School of Medicine, Tongji University, Shanghai 200092, China
| | - Song Jia
- School of Medicine, Tongji University, Shanghai 200092, China
| | - Dongdong Lu
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
49
|
Li F, Zhu H, Hou M, Zhang X, Li Z, Zhao H, Zhou Q, Zhong X. Identification, expression and functional analysis of prmt7 in medaka Oryzias latipes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:77-87. [PMID: 31990140 DOI: 10.1002/jez.b.22927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/05/2019] [Accepted: 01/02/2020] [Indexed: 11/07/2022]
Abstract
Arginine methylation is an important posttranslational modification and catalyzed by a family of protein arginine methyltransferases (PRMTs). PRMT7 is the type III PRMT and produces solely monomethylarginine products. PRMT7 has been found to play important roles in multiple biological processes in mammals. However, the expression pattern and function of Prmt7 remain largely unknown in fish. In this study, we characterized the medaka prmt7 gene and determined its expression pattern and function during embryogenesis and germ cell development. The results showed that the chromosomal location and gene structure of medaka prmt7 were similar to its mammalian orthologs. Comparisons of deduced amino acid sequences indicated that medaka Prmt7 was a homolog of human PRMT7 with two methyltransferase domains. Reverse transcription-polymerase chain reaction (RT-PCR) and real time RT-PCR revealed that medaka prmt7 had maternal origin with continuous and dynamical expression during embryonic development. Whole-mount in situ hybridization analysis observed that the transcripts of prmt7 were ubiquitous at morula and gastrula stage, and were later riched in the brain and otic vesicles during embryogenesis. In the adult stage, prmt7 messenger RNA was detected in all examined tissues with the high levels in the ovary and testis. The expression of prmt7 in the gonads was restricted to oocytes of the ovary and spermatids/sperm of the testis. Functional analysis showed that knockdown of medaka prmt7 did not reduce the total number of primordial germ cells (PGCs) in vivo but significantly affected PGCs distribution during embryonic development. These results indicate that prmt7 may be involved in germ cell development in medaka.
Collapse
Affiliation(s)
- Fangqing Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, P. R. China
| | - Huihui Zhu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, P. R. China
| | - Mengying Hou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, P. R. China
| | - Xiaoyi Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, P. R. China
| | - Zhenzhen Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, P. R. China
| | - Haobin Zhao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, P. R. China
| | - Qingchun Zhou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, P. R. China
| | - Xueping Zhong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, P. R. China
| |
Collapse
|
50
|
Jarrold J, Davies CC. PRMTs and Arginine Methylation: Cancer's Best-Kept Secret? Trends Mol Med 2019; 25:993-1009. [PMID: 31230909 DOI: 10.1016/j.molmed.2019.05.007] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/10/2019] [Accepted: 05/16/2019] [Indexed: 12/19/2022]
Abstract
Post-translational modification (PTM) of proteins is vital for increasing proteome diversity and maintaining cellular homeostasis. If the writing, reading, and removal of modifications are not controlled, cancer can develop. Arginine methylation is an understudied modification that is increasingly associated with cancer progression. Consequently protein arginine methyltransferases (PRMTs), the writers of arginine methylation, have rapidly gained interest as novel drug targets. However, for clinical success a deep mechanistic understanding of the biology of PRMTs is required. In this review we focus on advances made regarding the role of PRMTs in stem cell biology, epigenetics, splicing, immune surveillance and the DNA damage response, and highlight the rapid rise of specific inhibitors that are now in clinical trials for cancer therapy.
Collapse
Affiliation(s)
- James Jarrold
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Clare C Davies
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|