1
|
Nie W, Wang Y, Tian X, Liu J, Jin Z, Xu J, He M, Shen Q, Guo H, Luan T. Cucurbitacin B and Its Derivatives: A Review of Progress in Biological Activities. Molecules 2024; 29:4193. [PMID: 39275042 PMCID: PMC11397067 DOI: 10.3390/molecules29174193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024] Open
Abstract
The emergence of natural products has provided extremely valuable references for the treatment of various diseases. Cucurbitacin B, a tetracyclic triterpenoid compound isolated from cucurbitaceae and other plants, is the most abundant member of the cucurbitin family and exhibits a wide range of biological activities, including anti-inflammatory, anti-cancer, and even agricultural applications. Due to its high toxicity and narrow therapeutic window, structural modification and dosage form development are necessary to address these issues with cucurbitacin B. This paper reviews recent research progress in the pharmacological action, structural modification, and application of cucurbitacin B. This review aims to enhance understanding of advancements in this field and provide constructive suggestions for further research on cucurbitacin B.
Collapse
Affiliation(s)
- Wenzhe Nie
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Yalan Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Xinlu Tian
- Department of Pharmacy, Shenyang Medical College, Shenyang 110034, China
| | - Jinying Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Zhanhui Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Junjie Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Miaohai He
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Qingkun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Hongyan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Tian Luan
- Department of Pharmacy, Shenyang Medical College, Shenyang 110034, China
| |
Collapse
|
2
|
Si Y, Ou H, Jin X, Gu M, Sheng S, Peng W, Yang D, Zhan X, Zhang L, Yu Q, Liu X, Liu Y. G protein pathway suppressor 2 suppresses aerobic glycolysis through RACK1-mediated HIF-1α degradation in breast cancer. Free Radic Biol Med 2024; 222:478-492. [PMID: 38942092 DOI: 10.1016/j.freeradbiomed.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/16/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Aerobic glycolysis has been recognized as a hallmark of human cancer. G protein pathway suppressor 2 (GPS2) is a negative regulator of the G protein-MAPK pathway and a core subunit of the NCoR/SMRT transcriptional co-repressor complex. However, how its biological properties intersect with cellular metabolism in breast cancer (BC) development remains poorly elucidated. Here, we report that GPS2 is low expressed in BC tissues and negatively correlated with poor prognosis. Both in vitro and in vivo studies demonstrate that GPS2 suppresses malignant progression of BC. Moreover, GPS2 suppresses aerobic glycolysis in BC cells. Mechanistically, GPS2 destabilizes HIF-1α to reduce the transcription of its downstream glycolytic regulators (PGK1, PGAM1, ENO1, PKM2, LDHA, PDK1, PDK2, and PDK4), and then suppresses cellular aerobic glycolysis. Notably, receptor for activated C kinase 1 (RACK1) is identified as a key ubiquitin ligase for GPS2 to promote HIF-1α degradation. GPS2 stabilizes the binding of HIF-1α to RACK1 by directly binding to RACK1, resulting in polyubiquitination and instability of HIF-1α. Amino acid residues 70-92 aa of the GPS2 N-terminus bind RACK1. A 23-amino-acid-long GPS2-derived peptide was developed based on this N-terminal region, which promotes the interaction of RACK1 with HIF-1α, downregulates HIF-1α expression and significantly suppresses BC tumorigenesis in vitro and in vivo. In conclusion, our findings indicate that GPS2 decreases the stability of HIF-1α, which in turn suppresses aerobic glycolysis and tumorigenesis in BC, suggesting that targeting HIF-1α degradation and treating with peptides may be a promising approach to treat BC.
Collapse
Affiliation(s)
- Yuan Si
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China.
| | - Hongling Ou
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xin Jin
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Institute of Modern Biology, Nanjing University, Nanjing, Jiangsu, China
| | - Manxiang Gu
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Songran Sheng
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Wenkang Peng
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Dan Yang
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xiangrong Zhan
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Liang Zhang
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Qingqing Yu
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xuewen Liu
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China.
| | - Ying Liu
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China.
| |
Collapse
|
3
|
Jiang Y, Liu L, Geng Y, Li Q, Luo D, Liang L, Liu W, Ouyang W, Hu J. Feasibility of the inhibitor development for cancer: A systematic approach for drug design. PLoS One 2024; 19:e0306632. [PMID: 39173044 PMCID: PMC11341021 DOI: 10.1371/journal.pone.0306632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/20/2024] [Indexed: 08/24/2024] Open
Abstract
The traditional Chinese medicine (TCM) bupleurum-ginger-licorice formula presents significant anti-cancer effects, but its active ingredients and inhibitory mechanism remain unclear. In this work, the core effective ingredient quercetin and its signal transducer and activator of transcription 3 (Stat3) receptor both were identified by network pharmacology. Quercetin is a low-toxicity, non-carcinogenic flavonoid with antioxidant, anti-inflammatory and anticancer activities, which is widely distributed in edible plants. Stat3 can bind to specific DNA response elements and serves as a transcription factor to promote the translation of some invasion/migration-related target genes, considered as a potential anticancer target. Here, molecular docking and molecular dynamics (MD) simulation both were used to explore molecular recognition of quercetin with Stat3. The results show that quercetin impairs DNA transcription efficiency by hindering Stat3 dimerization, partially destroying DNA conformation. Specifically, when the ligand occupies the SH2 cavity of the enzyme, spatial rejection is not conductive to phosphokinase binding. It indirectly prevents the phosphorylation of Y705 and the formation of Stat3 dimer. When the inhibitor binds to the DT1005 position, it obviously shortens the distance between DNA and DBD, enhances their binding capacity, and thereby reduces the degree of freedom required for transcription. This work not only provides the binding modes between Stat3 and quercetin, but also contributes to the optimization and design of such anti-cancer inhibitors.
Collapse
Affiliation(s)
- Yu Jiang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Ling Liu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
- Department of Thoracic Oncology, Affiliated Cancer Hospital, Guizhou Medical University, Guiyang, China
| | - Yichao Geng
- Department of Thoracic Oncology, Affiliated Cancer Hospital, Guizhou Medical University, Guiyang, China
| | - Qingsong Li
- Department of Thoracic Oncology, Affiliated Cancer Hospital, Guizhou Medical University, Guiyang, China
| | - Daxian Luo
- Department of Thoracic Oncology, Affiliated Cancer Hospital, Guizhou Medical University, Guiyang, China
| | - Li Liang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Wei Liu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Weiwei Ouyang
- Department of Thoracic Oncology, Affiliated Cancer Hospital, Guizhou Medical University, Guiyang, China
| | - Jianping Hu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| |
Collapse
|
4
|
Liu J, Yuan Q, Guo H, Guan H, Hong Z, Shang D. Deciphering drug resistance in gastric cancer: Potential mechanisms and future perspectives. Biomed Pharmacother 2024; 173:116310. [PMID: 38394851 DOI: 10.1016/j.biopha.2024.116310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/07/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Gastric cancer (GC) is a malignant tumor that originates from the epithelium of the gastric mucosa. The latest global cancer statistics show that GC ranks fifth in incidence and fourth in mortality among all cancers, posing a serious threat to public health. While early-stage GC is primarily treated through surgery, chemotherapy is the frontline option for advanced cases. Currently, commonly used chemotherapy regimens include FOLFOX (oxaliplatin + leucovorin + 5-fluorouracil) and XELOX (oxaliplatin + capecitabine). However, with the widespread use of chemotherapy, an increasing number of cases of drug resistance have emerged. This article primarily explores the potential mechanisms of chemotherapy resistance in GC patients from five perspectives: cell death, tumor microenvironment, non-coding RNA, epigenetics, and epithelial-mesenchymal transition. Additionally, it proposes feasibility strategies to overcome drug resistance from four angles: cancer stem cells, tumor microenvironment, natural products, and combined therapy. The hope is that this article will provide guidance for researchers in the field and bring hope to more GC patients.
Collapse
Affiliation(s)
- Jiahua Liu
- First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qihang Yuan
- First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hui Guo
- First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hewen Guan
- First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Zhijun Hong
- First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Dong Shang
- First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
5
|
Khan F, Pandey P, Verma M, Upadhyay TK. Terpenoid-Mediated Targeting of STAT3 Signaling in Cancer: An Overview of Preclinical Studies. Biomolecules 2024; 14:200. [PMID: 38397437 PMCID: PMC10886526 DOI: 10.3390/biom14020200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Cancer has become one of the most multifaceted and widespread illnesses affecting human health, causing substantial mortality at an alarming rate. After cardiovascular problems, the condition has a high occurrence rate and ranks second in terms of mortality. The development of new drugs has been facilitated by increased research and a deeper understanding of the mechanisms behind the emergence and advancement of the disease. Numerous preclinical and clinical studies have repeatedly demonstrated the protective effects of natural terpenoids against a range of malignancies. Numerous potential bioactive terpenoids have been investigated in natural sources for their chemopreventive and chemoprotective properties. In practically all body cells, the signaling molecule referred to as signal transducer and activator of transcription 3 (STAT3) is widely expressed. Numerous studies have demonstrated that STAT3 regulates its downstream target genes, including Bcl-2, Bcl-xL, cyclin D1, c-Myc, and survivin, to promote the growth of cells, differentiation, cell cycle progression, angiogenesis, and immune suppression in addition to chemotherapy resistance. Researchers viewed STAT3 as a primary target for cancer therapy because of its crucial involvement in cancer formation. This therapy primarily focuses on directly and indirectly preventing the expression of STAT3 in tumor cells. By explicitly targeting STAT3 in both in vitro and in vivo settings, it has been possible to explain the protective effect of terpenoids against malignant cells. In this study, we provide a complete overview of STAT3 signal transduction processes, the involvement of STAT3 in carcinogenesis, and mechanisms related to STAT3 persistent activation. The article also thoroughly summarizes the inhibition of STAT3 signaling by certain terpenoid phytochemicals, which have demonstrated strong efficacy in several preclinical cancer models.
Collapse
Affiliation(s)
- Fahad Khan
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, India;
| | - Pratibha Pandey
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali 140413, India
| | - Meenakshi Verma
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali 140413, India
- Department of Chemistry, University Institute of Sciences, Chandigarh University, Gharuan, Mohali 140413, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Research and Development Cell, Parul University, Vadodara 391760, India;
| |
Collapse
|
6
|
Zarezadeh SM, Sharafi AM, Erabi G, Tabashiri A, Teymouri N, Mehrabi H, Golzan SA, Faridzadeh A, Abdollahifar Z, Sami N, Arabpour J, Rahimi Z, Ansari A, Abbasi MR, Azizi N, Tamimi A, Poudineh M, Deravi N. Natural STAT3 Inhibitors for Cancer Treatment: A Comprehensive Literature Review. Recent Pat Anticancer Drug Discov 2024; 19:403-502. [PMID: 37534488 DOI: 10.2174/1574892818666230803100554] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 08/04/2023]
Abstract
Cancer is one of the leading causes of mortality and morbidity worldwide, affecting millions of people physically and financially every year. Over time, many anticancer treatments have been proposed and studied, including synthetic compound consumption, surgical procedures, or grueling chemotherapy. Although these treatments have improved the daily life quality of patients and increased their survival rate and life expectancy, they have also shown significant drawbacks, including staggering costs, multiple side effects, and difficulty in compliance and adherence to treatment. Therefore, natural compounds have been considered a possible key to overcoming these problems in recent years, and thorough research has been done to assess their effectiveness. In these studies, scientists have discovered a meaningful interaction between several natural materials and signal transducer and activator of transcription 3 molecules. STAT3 is a transcriptional protein that is vital for cell growth and survival. Mechanistic studies have established that activated STAT3 can increase cancer cell proliferation and invasion while reducing anticancer immunity. Thus, inhibiting STAT3 signaling by natural compounds has become one of the favorite research topics and an attractive target for developing novel cancer treatments. In the present article, we intend to comprehensively review the latest knowledge about the effects of various organic compounds on inhibiting the STAT3 signaling pathway to cure different cancer diseases.
Collapse
Affiliation(s)
- Seyed Mahdi Zarezadeh
- Students' Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Mohammad Sharafi
- Students' Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gisou Erabi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Arefeh Tabashiri
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Navid Teymouri
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hoda Mehrabi
- Student Research Committee, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Seyyed Amirhossein Golzan
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arezoo Faridzadeh
- Department of Immunology and Allergy, Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Abdollahifar
- Student Research Committee, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Nafiseh Sami
- Student Research Committee, Tehran Medical Sciences, Islamic Azad University Medical Branch of Tehran, Tehran, Iran
| | - Javad Arabpour
- Department of Microbiology, Faculty of New Sciences, Islamic Azad University Medical Branch of Tehran, Tehran, Iran
| | - Zahra Rahimi
- School of Medicine, Zanjan University of Medical Sciences Zanjan, Iran
| | - Arina Ansari
- Student Research Committee, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | | - Nima Azizi
- Students' Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Kumar M, Gupta S, Kalia K, Kumar D. Role of Phytoconstituents in Cancer Treatment: A Review. RECENT ADVANCES IN FOOD, NUTRITION & AGRICULTURE 2024; 15:115-137. [PMID: 38369892 DOI: 10.2174/012772574x274566231220051254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 02/20/2024]
Abstract
Over the years, natural compounds have become a significant advancement in cancer treatment, primarily due to their effectiveness, safety, bio-functionality, and wide range of molecular structures. They are now increasingly preferred in drug discovery due to these attributes. These compounds, whether occurring naturally or with synthetic modifications, find applications in various fields like biology, medicine, and engineering. While chemotherapy has been a successful method for treating cancer, it comes with systemic toxicity. To address this issue, researchers and medical practitioners are exploring the concept of combinational chemotherapy. This approach aims to reduce toxicity by using a mix of natural substances and their derivatives in clinical trials and prescription medications. Among the most extensively studied natural anticancer compounds are quercetin, curcumin, vincristine, and vinblastine. These compounds play crucial roles as immunotherapeutics and chemosensitizers, both as standalone treatments and in combination therapies with specific mechanisms. This review article provides a concise overview of the functions, potentials, and combinations of natural anticancer compounds in cancer treatment, along with their mechanisms of action and clinical applications.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Pharmacy, IEC College of Eng & Tech. Gautam Buddha Nagar, India
| | | | | | - Dharmendra Kumar
- Department of Pharmacy, IEC College of Eng & Tech. Gautam Buddha Nagar, India
| |
Collapse
|
8
|
Li M, Jiang P, Yang Y, Xiong L, Wei S, Wang J, Li C. The role of pyroptosis and gasdermin family in tumor progression and immune microenvironment. Exp Hematol Oncol 2023; 12:103. [PMID: 38066523 PMCID: PMC10704735 DOI: 10.1186/s40164-023-00464-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/29/2023] [Indexed: 06/29/2024] Open
Abstract
Pyroptosis, an inflammatory programmed cell death, distinguishes itself from apoptosis and necroptosis and has drawn increasing attention. Recent studies have revealed a correlation between the expression levels of many pyroptosis-related genes and both tumorigenesis and progression. Despite advancements in cancer treatments such as surgery, radiotherapy, chemotherapy, and immunotherapy, the persistent hallmark of cancer enables malignant cells to elude cell death and develop resistance to therapy. Recent findings indicate that pyroptosis can overcome apoptosis resistance amplify treatment-induced tumor cell death. Moreover, pyroptosis triggers antitumor immunity by releasing pro-inflammatory cytokines, augmenting macrophage phagocytosis, and activating cytotoxic T cells and natural killer cells. Additionally, it transforms "cold" tumors into "hot" tumors, thereby enhancing the antitumor effects of various treatments. Consequently, pyroptosis is intricately linked to tumor development and holds promise as an effective strategy for boosting therapeutic efficacy. As the principal executive protein of pyroptosis, the gasdermin family plays a pivotal role in influencing pyroptosis-associated outcomes in tumors and can serve as a regulatory target. This review provides a comprehensive summary of the relationship between pyroptosis and gasdermin family members, discusses their roles in tumor progression and the tumor immune microenvironment, and analyses the underlying therapeutic strategies for tumor treatment based on pyroptotic cell death.
Collapse
Affiliation(s)
- Mengyuan Li
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Ping Jiang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Yuhan Yang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Liting Xiong
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Shuhua Wei
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Junjie Wang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China.
| | - Chunxiao Li
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
9
|
Farahzadi R, Valipour B, Fathi E, Pirmoradi S, Molavi O, Montazersaheb S, Sanaat Z. Oxidative stress regulation and related metabolic pathways in epithelial-mesenchymal transition of breast cancer stem cells. Stem Cell Res Ther 2023; 14:342. [PMID: 38017510 PMCID: PMC10685711 DOI: 10.1186/s13287-023-03571-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 11/15/2023] [Indexed: 11/30/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a cell remodeling process in which epithelial cells undergo a reversible phenotype switch via the loss of adhesion capacity and acquisition of mesenchymal characteristics. In other words, EMT activation can increase invasiveness and metastatic properties, and prevent the sensitivity of tumor cells to chemotherapeutics, as mesenchymal cells have a higher resistance to chemotherapy and immunotherapy. EMT is orchestrated by a complex and multifactorial network, often linked to episodic, transient, or partial events. A variety of factors have been implicated in EMT development. Based on this concept, multiple metabolic pathways and master transcription factors, such as Snail, Twist, and ZEB, can drive the EMT. Emerging evidence suggests that oxidative stress plays a significant role in EMT induction. One emerging theory is that reducing mitochondrial-derived reactive oxygen species production may contribute to EMT development. This review describes how metabolic pathways and transcription factors are linked to EMT induction and addresses the involvement of signaling pathways.
Collapse
Affiliation(s)
- Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Valipour
- Department of Anatomical Sciences, Sarab Faculty of Medical Sciences, Sarab, Iran
| | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Samaneh Pirmoradi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Ommoleila Molavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Zohreh Sanaat
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Saeed M, Alshammari N, Saeed A, Ayyed Al-Shammary A, Alabdallah NM, Ahmad I, Aqil F. Molecular interactions of cucurbitacins A and B with anaplastic lymphoma kinase for lung cancer treatment. J Biomol Struct Dyn 2023:1-9. [PMID: 37921698 DOI: 10.1080/07391102.2023.2274976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023]
Abstract
Lung cancer is a major global public health issue and the leading cause of cancer-related deaths. Several medications are commonly used to treat lung cancer, either alone or in combination with other treatments. The anaplastic lymphoma kinase (ALK) protein is one of several target proteins that are thought to be potential therapeutic targets in the context of lung cancer. Several ALK inhibitors have been identified, but many of these have been associated with side effects and toxicity concerns. In this study, we intend to computationally predict the binding potential of cucurbitacins (CBNs), A and B to the active pockets of ALK, in order to estimate their potential ALK inhibitors. Compared to CBN-A, which has a binding energy of -7.9 kcal/mol, CBN B exhibits significantly better binding efficacy with a binding energy of -8.1 kcal/mol. This is closely comparable to the binding energy of Crizotinib, which is -8.2 kcal/mol. The results of the molecular dynamics simulation indicated that the docked complexes remained stable for the duration of the 100 ns simulation period. CBN inhibited the proliferation of both non-small cell lung cancer cell lines, H1299 and A549, in a dose-dependent manner. CBN-B inhibited the proliferation of lung cancer cells, showing IC50 values of 0.08 µM for H1299 cells and 0.10 µM for A549 cells. The computational analyses provide strong evidence that CBN-B has the potential to act as a potent natural inhibitor against ALK, and could prove to be a valuable treatment option for lung cancer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohd Saeed
- Department of Biology, College of Science, University of Hail, Ha'il, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Hail, Ha'il, Saudi Arabia
| | - Nawaf Alshammari
- Department of Biology, College of Science, University of Hail, Ha'il, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Hail, Ha'il, Saudi Arabia
| | - Amir Saeed
- Medical and Diagnostic Research Centre, University of Hail, Ha'il, Saudi Arabia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - Asma Ayyed Al-Shammary
- Department of Public Health, College of Public Health and Health Informatics, University of Ha'il, Ha'il, Saudi Arabia
| | - Nadiyah M Alabdallah
- Department of Biology, College of Science and Basic & Applied Scientific Research Centre, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Irfan Ahmad
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Farrukh Aqil
- Department of Medicine and Brown Cancer Center, University of Louisville, Louisville, KY, USA
| |
Collapse
|
11
|
Yu Z, Liang S, Ji L, Cheng Y, Yan W, Gao R, Zhang F. Network pharmacological analysis and experimental study of cucurbitacin B in oral squamous cell carcinoma. Mol Divers 2023:10.1007/s11030-023-10713-8. [PMID: 37615817 DOI: 10.1007/s11030-023-10713-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is a malignant tumor with a high incidence and poor prognosis. Cucurbitacin B (CuB) is a tetracyclic triterpenoid small-molecule compound extracted from plants, such as Cucurbitaceae and Brassicaceae, which has powerful anticancer effects. However, the effect and mechanism of CuB on OSCC remain unclear. Within the framework of the current study, network pharmacology was used to analyze the relationship between CuB and OSCC. The network pharmacology analysis showed that CuB and OSCC share 134 common targets; among them, PIK3R1, SRC, STAT3, AKT1, and MAPK1 are the key targets. The molecular docking analysis showed that CuB binds five target proteins. The results of the enrichment analysis showed that CuB exerted effects on OSCC through various pathways; of these pathways, PI3K-AKT was the most important pathway. The results of the in vitro cell experiments showed that CuB could inhibit the proliferation and migration of SCC25 and CAL27 cells, block the cell cycle in the G2 phase, induce cell apoptosis, and regulate the protein expression of the PI3K-AKT signaling pathway. The results of the in vivo animal experiments showed that CuB could inhibit 4NQO-induced oral cancer in mice. Therefore, network pharmacology, molecular docking, cell experiments, and animal experiments showed that CuB could play a role in OSCC by regulating multiple targets and pathways.
Collapse
Affiliation(s)
- Zhenyuan Yu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
| | - Shuang Liang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
| | - Lanting Ji
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
| | - YaHsin Cheng
- Department of Physiology, School of Medicine, China Medical University, Taichung City, Taiwan
| | - Wenpeng Yan
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
| | - Ruifang Gao
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
| | - Fang Zhang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
12
|
Yin S, Mai Z, Liu C, Xu L, Xia C. Label-free-based quantitative proteomic analysis of the inhibition of cisplatin-resistant ovarian cancer cell proliferation by cucurbitacin B. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 111:154669. [PMID: 36681055 DOI: 10.1016/j.phymed.2023.154669] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Ovarian cancer is a serious threat to women's health, and resistance to chemotherapeutic drugs constitutes one of the principal reasons for ovarian cancer recurrence and the low overall survival rate. Therefore, it is of paramount importance to develop additional and more-effective drugs to combat resistance to chemotherapeutic drugs. Cucurbitacin B (CuB) is a natural compound found in food plants such as bitter gourd and pumpkin, and it manifests favorable antitumor effects on a variety of malignant tumors. PURPOSE The present study aimed to determine the mechanism effects of CuB overcomes tumor-drug resistance in ovarian cancer. METHODS We used CCK-8, Edu, flow cytometric assays and cisplatin-resistant ovarian cancer xenograft mouse model to evaluate the cellular proliferation, cellular apoptosis.and tumor growth. We subsequently applied a pharmacoproteomic approach to analyze the molecular mechanisms by which CuB inhibited the proliferation of cisplatin-resistant ovarian cancer cells. We also employed western blot and molecular docking experiments to verify elements of PI3K/Akt/mTOR pathway expression. RESULTS We found that CuB inhibited cellular proliferation and promoted apoptosis in cisplatin-resistant ovarian cancer cell lines. We discerned that CuB inhibited tumor growth of xenograft mouse tumors. We ascertained that treatment of A2780-DDP cells with CuB resulted in the differential expression of 305 proteins, with 202 proteins downregulated and 103 proteins upregulated. Of these proteins, the mTOR protein was significantly downregulated in the drug-treated group. We also found that CuB inhibited PI3K, Akt, and mTOR and that it activated cGAS expression upstream of PI3K and inhibited ATR expression. Molecular docking experiments revealed that CuB was hydrogen-bonded to mTOR proteins at Gly (2142) and Thr (2207), with a binding force of -10.2 kcal/mol. CONCLUSION Our study confirmed that cucurbitacin B inhibits the PI3K/Akt/mTOR signaling pathway, targets mTOR, suppresses the proliferation of cisplatin-resistant ovarian cancer cells.And we also found that cucurbitacin B induces DNA damage, activates cGASA and recruits IKBα,playing a crucial role in eliciting anti-tumor immunity. We herein uncovered a new use for CuB in inhibiting tumor-drug resistance, providing a novel approach to overcoming chemotherapeutic drug resistance in ovarian cancer.
Collapse
Affiliation(s)
- Shuanghong Yin
- Affiliated Foshan Maternity and Chlid Healthcare Hospital, Southern Medical University, Foshan, 528000, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 515150, China
| | - Zhikai Mai
- Affiliated Foshan Maternity and Chlid Healthcare Hospital, Southern Medical University, Foshan, 528000, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 515150, China
| | - Can Liu
- Affiliated Foshan Maternity and Chlid Healthcare Hospital, Southern Medical University, Foshan, 528000, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 515150, China
| | - Lipeng Xu
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China.
| | - Chenglai Xia
- Affiliated Foshan Maternity and Chlid Healthcare Hospital, Southern Medical University, Foshan, 528000, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 515150, China.
| |
Collapse
|
13
|
Yu X, Chen W, Zhang J, Gao X, Cui Q, Song Z, Du J, Lv W. Antitumor activity and mechanism of cucurbitacin B in A549/DDP cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1095-1103. [PMID: 36642716 DOI: 10.1007/s00210-023-02386-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/03/2023] [Indexed: 01/17/2023]
Abstract
Cucurbitacin B (CuB) is a class of tetracyclic triterpenoids isolated from Cucurbitaceae with a wide range of anti-inflammatory and anti-tumor activities, mainly used in hepatitis and hepatocellular carcinoma, while there is relatively little research and application of this drug for lung cancer. In this study, CuB was administered on A549/DDP cells to observe how it affected the cells and their mechanism of action. CuB demonstrated good anti-tumor activity against A549/DDP cells in a dose-dependent manner and caused changes in the hedgehog (Hh) pathway. The results showed that CuB greatly inhibits the proliferation and the invasion of A549/DDP cells, and promoted apoptosis of A549/DDP cells. Meanwhile, it changed the expression of p53-related genes at the RNA and protein level. In conclusion, this experiment provides a theoretical basis for new applications of CuB and new thoughts on the mechanism of its anti-tumor activity, and provides a direction for deep research.
Collapse
Affiliation(s)
- Xinyuan Yu
- Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Weiwei Chen
- Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Jinjie Zhang
- Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Xinfu Gao
- Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Qidi Cui
- Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Zheng Song
- Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Jing Du
- Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Wenwen Lv
- Binzhou Medical University Hospital, Binzhou, Shandong, China.
| |
Collapse
|
14
|
Liu JH, Li C, Cao L, Zhang CH, Zhang ZH. Cucurbitacin B regulates lung cancer cell proliferation and apoptosis via inhibiting the IL-6/STAT3 pathway through the lncRNA XIST/miR-let-7c axis. PHARMACEUTICAL BIOLOGY 2022; 60:154-162. [PMID: 34967707 PMCID: PMC8725843 DOI: 10.1080/13880209.2021.2016866] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 10/26/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
CONTEXT Lung cancer, the most common type of cancer, has a high mortality rate. Cucurbitacin B (CuB), a natural compound extracted from Cucurbitaceae plants, has antitumor effects. OBJECTIVE We investigated the role of CuB on lung cancer and its potential mechanisms. MATERIALS AND METHODS A549 cells were treated with 0.1, 0.3, 0.6, and 0.9 μM CuB for 12, 24, and 48 h or untreated. Gene and protein levels were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting. Enzyme-linked immunosorbent assay (ELISA) detected inflammatory factors levels (TNF-α and IL-10). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), flow cytometry, and colony formation assays measured cell viability, apoptosis, and proliferation. The interaction between miR-let-7c and long non-coding RNA X inactive-specific transcript (XIST) or interleukin-6 (IL-6) was verified by dual-luciferase reporter assays. RESULTS CuB treatment inhibited the proliferation of lung cancer cells and promoted cell apoptosis, and increased the expression of Bax and cleaved caspase3, decreased cyclin B1 and Bcl-2 expression. CuB suppressed XIST and IL-6 expression, and enhanced miR-let-7c expression. XIST silencing enhanced the inhibitory effect of CuB on cell proliferation and the promotion effect on apoptosis via upregulating miR-let-7c. Moreover, XIST targeted miR-let-7c to activate the IL-6/STAT axis. MiR-let-7c overexpression enhanced the regulatory effect of CuB on proliferation and apoptosis via suppressing the IL-6/STAT3 pathway. DISCUSSION AND CONCLUSION CuB regulated cell proliferation and apoptosis by inhibiting the XIST/miR-let-7c/IL-6/STAT3 axis in lung cancer. These findings indicate CuB may have the possibility of clinical application in lung cancer treatment.
Collapse
Affiliation(s)
- Jian-Hua Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Chen Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Liang Cao
- Department of Respiratory Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Chang-Hong Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Zhi-Hua Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| |
Collapse
|
15
|
Najafi M, Tavakol S, Zarrabi A, Ashrafizadeh M. Dual role of quercetin in enhancing the efficacy of cisplatin in chemotherapy and protection against its side effects: a review. Arch Physiol Biochem 2022; 128:1438-1452. [PMID: 32521182 DOI: 10.1080/13813455.2020.1773864] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chemotherapy has opened a new window in cancer therapy. However, the resistance of cancer cells has dramatically reduced the efficacy of chemotherapy. Cisplatin is a chemotherapeutic agent and its potential in cancer therapy has been restricted by resistance of cancer cells. As a consequence, the scientists have attempted to find new strategies in elevating chemotherapy efficacy. Due to great anti-tumour activity, naturally occurring compounds are of interest in polychemotherapy. Quercetin is a flavonoid with high anti-tumour activity against different cancers that can be used with cisplatin to enhance its efficacy and also are seen to sensitise cancer cells into chemotherapy. Furthermore, cisplatin has side effects such as nephrotoxicity and ototoxicity. Administration of quercetin is advantageous in reducing the adverse effects of cisplatin without compromising its anti-tumour activity. In this review, we investigate the dual role of quercetin in enhancing anti-tumour activity of cisplatin and simultaneous reduction in its adverse effects.
Collapse
Affiliation(s)
- Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Turkey
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
16
|
Naeem A, Hu P, Yang M, Zhang J, Liu Y, Zhu W, Zheng Q. Natural Products as Anticancer Agents: Current Status and Future Perspectives. Molecules 2022; 27:molecules27238367. [PMID: 36500466 PMCID: PMC9737905 DOI: 10.3390/molecules27238367] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Natural products have been an invaluable and useful source of anticancer agents over the years. Several compounds have been synthesized from natural products by modifying their structures or by using naturally occurring compounds as building blocks in the synthesis of these compounds for various purposes in different fields, such as biology, medicine, and engineering. Multiple modern and costly treatments have been applied to combat cancer and limit its lethality, but the results are not significantly refreshing. Natural products, which are a significant source of new therapeutic drugs, are currently being investigated as potential cytotoxic agents and have shown a positive trend in preclinical research and have prompted numerous innovative strategies in order to combat cancer and expedite the clinical research. Natural products are becoming increasingly important for drug discovery due to their high molecular diversity and novel biofunctionality. Furthermore, natural products can provide superior efficacy and safety due to their unique molecular properties. The objective of the current review is to provide an overview of the emergence of natural products for the treatment and prevention of cancer, such as chemosensitizers, immunotherapeutics, combinatorial therapies with other anticancer drugs, novel formulations of natural products, and the molecular mechanisms underlying their anticancer properties.
Collapse
Affiliation(s)
- Abid Naeem
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Pengyi Hu
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Ming Yang
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Jing Zhang
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yali Liu
- Key Laboratory of Pharmacodynamics and Safety Evaluation, Health Commission of Jiangxi Province, Nanchang Medical College, Nanchang 330006, China
- Key Laboratory of Pharmacodynamics and Quality Evaluation on Anti-Inflammatory Chinese Herbs, Jiangxi Administration of Traditional Chinese Medicine, Nanchang Medical College, Nanchang 330006, China
| | - Weifeng Zhu
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Qin Zheng
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- Correspondence:
| |
Collapse
|
17
|
Ahsan H, Islam SU, Ahmed MB, Lee YS. Role of Nrf2, STAT3, and Src as Molecular Targets for Cancer Chemoprevention. Pharmaceutics 2022; 14:1775. [PMID: 36145523 PMCID: PMC9505731 DOI: 10.3390/pharmaceutics14091775] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/23/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is a complex and multistage disease that affects various intracellular pathways, leading to rapid cell proliferation, angiogenesis, cell motility, and migration, supported by antiapoptotic mechanisms. Chemoprevention is a new strategy to counteract cancer; to either prevent its incidence or suppress its progression. In this strategy, chemopreventive agents target molecules involved in multiple pathways of cancer initiation and progression. Nrf2, STAT3, and Src are promising molecular candidates that could be targeted for chemoprevention. Nrf2 is involved in the expression of antioxidant and phase II metabolizing enzymes, which have direct antiproliferative action as well as indirect activities of reducing oxidative stress and eliminating carcinogens. Similarly, its cross-talk with NF-κB has great anti-inflammatory potential, which can be utilized in inflammation-induced/associated cancers. STAT3, on the other hand, is involved in multiple pathways of cancer initiation and progression. Activation, phosphorylation, dimerization, and nuclear translocation are associated with tumor cell proliferation and angiogenesis. Src, being the first oncogene to be discovered, is important due to its convergence with many upstream stimuli, its cross-talk with other potential molecular targets, such as STAT3, and its ability to modify the cell cytoskeleton, making it important in cancer invasion and metastasis. Therefore, the development of natural/synthetic molecules and/or design of a regimen that can reduce oxidative stress and inflammation in the tumor microenvironment and stop multiple cellular targets in cancer to stop its initiation or retard its progression can form newer chemopreventive agents.
Collapse
Affiliation(s)
- Haseeb Ahsan
- Department of Pharmacy, Faculty of Life and Environmental Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Salman Ul Islam
- Department of Pharmacy, CECOS University, Peshawar 25000, Pakistan
| | - Muhammad Bilal Ahmed
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Young Sup Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
18
|
Chen T, Ma B, Lu S, Zeng L, Wang H, Shi W, Zhou L, Xia Y, Zhang X, Zhang J, Chen J. Cucumber-Derived Nanovesicles Containing Cucurbitacin B for Non-Small Cell Lung Cancer Therapy. Int J Nanomedicine 2022; 17:3583-3599. [PMID: 35974872 PMCID: PMC9376005 DOI: 10.2147/ijn.s362244] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/28/2022] [Indexed: 12/03/2022] Open
Abstract
Purpose In recent years, a variety of nanoparticles with excellent anticancer and delivery properties have emerged for cancer therapy. However, potential toxicity, high production cost and complex preparation procedures have been obstacles to their use in biomedicine. Here, we obtained cucumber-derived nanovesicles (CDNVs) at high yield and low cost by simple juicing and ultracentrifugation. The anticancer effects of CDNVs were evaluated in vitro and in vivo. Methods Transmission electron microscope, nanoparticle tracking analysis and laser particle size analysis were used to characterize the morphology, diameter and zeta potential of CDNVs, respectively. The anticancer effects of CDNVs in vitro were evaluated by MTT and apoptosis assays. The mechanism was further explored by measuring the protein levels of signal transducer and activator of transcription 3 pathway, reactive oxygen species, cell cycle distribution and caspase activity. In-vivo anticancer efficacy was evaluated by measuring tumor volume and weight of mice in three different treatment groups (CDNVs, cucurbitacin B and PBS). Results CDNVs inhibited proliferation of human non-small cell lung cancer cells by suppressing signal transducer and activator of transcription 3 activation, generating reactive oxygen species, promoting cell cycle arrest, and activating the caspase pathway. These CDNVs exhibited strong anticancer effects both in vitro and in vivo, and reduced the rate of tumor growth without obvious toxicity to mouse visceral organs. Compared with an equivalent dose of cucurbitacin B, CDNVs exerted stronger anticancer effects in vitro and in vivo. Conclusion These results demonstrate that CDNVs suppress tumor growth. This study addresses the development of cancer therapeutic drugs using plant-derived nanovesicles that are cost-efficient, simple to produce in high yields, and provide an alternative approach to drug isolation that may help advance sustainability of medicinal plants.
Collapse
Affiliation(s)
- Tingting Chen
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350108, People's Republic of China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, Fujian Province, 350108, People's Republic of China
| | - Bingxiang Ma
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350108, People's Republic of China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, Fujian Province, 350108, People's Republic of China
| | - Shi Lu
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350108, People's Republic of China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, Fujian Province, 350108, People's Republic of China
| | - Lupeng Zeng
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350108, People's Republic of China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, Fujian Province, 350108, People's Republic of China
| | - Huaying Wang
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350108, People's Republic of China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, Fujian Province, 350108, People's Republic of China
| | - Wanhua Shi
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350108, People's Republic of China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, Fujian Province, 350108, People's Republic of China
| | - Linying Zhou
- Electron Microscopy Facility, Public Technology Service Center, Fujian Medical University, Fuzhou, Fujian Province, 350108, People's Republic of China
| | - Yaokun Xia
- Key Laboratory of the Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, 350108, People's Republic of China
| | - Xi Zhang
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350108, People's Republic of China
| | - Jing Zhang
- Department of Chemical Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, 350002, People's Republic of China
| | - Jinghua Chen
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350108, People's Republic of China
| |
Collapse
|
19
|
Wang FF, Wang XF, Hu JH, Wang YJ. Total xanthone in mangosteen inhibits cell proliferation, migration, invasion, and inflammatory response in gastric cancer cells by regulating miR-338-3p. Shijie Huaren Xiaohua Zazhi 2022; 30:579-586. [DOI: 10.11569/wcjd.v30.i13.579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Total xanthone in mangosteen has antitumor effect, but its effect on the biological behavior of gastric cancer cells is still unknown. MicroRNAs (miRNAs) can play an important regulatory role in the occurrence and development of gastric cancer and may be a potential target for gastric cancer treatment, but whether they could be potential targets for total xanthone in mangosteen in the treatment of gastric cancer is unknown.
AIM To explore the effect of total xanthone in mangosteen on the biological behavior of gastric cancer AGS cells and the possible mechanism involved.
METHODS Human gastric cancer AGS cells were randomly divided into the following groups: NC group, low-dose xanthone group, medium-dose xanthone group, high-dose xanthone group, miR-NC group, miR-338-3p group, high-dose xanthone + anti-miR-NC group, and high-dose xanthone group + anti-miR-338-3p group. MTT and Transwell assays were used to detect cell proliferation, migration, and invasion. ELISA was used to detect the levels of TNF-α, IL-6, and IL-1β. qRT-PCR was used to detect the expression of miR-338-3p.
RESULTS After treatment with total xanthone in mangosteen, cell viability and the levels of TNF-α, IL-6, and IL-1β were decreased (P < 0.05), the number of migrating and invasive cells was decreased (P < 0.05), and the expression of miR-338-3p was increased (P < 0.05). After transfection with miR-338-3p mimic, cell viability and the levels of TNF-α, IL-6, and IL-1β were decreased (P < 0.05), and the number of migrating and invasive cells was decreased (P < 0.05). Transfection with anti-miR-338-3p could reverse the effect of total xanthone in mangosteen on the biological behavior of AGS cells.
CONCLUSION Total xanthone in mangosteen can inhibit the proliferation, migration, invasion, and inflammatory response of gastric cancer cells by promoting the expression of miR-338-3p.
Collapse
Affiliation(s)
- Fen-Fen Wang
- Department of Gastroenterology, Affiliated Hospital of Shaoxing University of Arts and Sciences, Shaoxing 312000, Zhejiang Province, China
| | - Xiu-Fang Wang
- Department of Gastroenterology, Affiliated Hospital of Shaoxing University of Arts and Sciences, Shaoxing 312000, Zhejiang Province, China
| | - Jian-Hao Hu
- Department of Gastroenterology, Affiliated Hospital of Shaoxing University of Arts and Sciences, Shaoxing 312000, Zhejiang Province, China
| | - Yin-Juan Wang
- Department of Gastroenterology, Affiliated Hospital of Shaoxing University of Arts and Sciences, Shaoxing 312000, Zhejiang Province, China
| |
Collapse
|
20
|
Wei J, Chen X, Li Y, Li R, Bao K, Liao L, Xie Y, Yang T, Zhu J, Mao F, Ni S, Jia R, Xu X, Li J. Cucurbitacin B-induced G2/M cell cycle arrest of conjunctival melanoma cells mediated by GRP78–FOXM1–KIF20A pathway. Acta Pharm Sin B 2022; 12:3861-3876. [PMID: 36213538 PMCID: PMC9532536 DOI: 10.1016/j.apsb.2022.05.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 11/27/2022] Open
Abstract
Conjunctival melanoma (CM) is a rare and fatal malignant eye tumor. In this study, we deciphered a novel anti-CM mechanism of a natural tetracyclic compound named as cucurbitacin B (CuB). We found that CuB remarkably inhibited the proliferation of CM cells including CM-AS16, CRMM1, CRMM2 and CM2005.1, without toxicity to normal cells. CuB can also induce CM cells G2/M cell cycle arrest. RNA-seq screening identified KIF20A, a key downstream effector of FOXM1 pathway, was abolished by CuB treatment. Further target identification by activity-based protein profiling chemoproteomic approach revealed that GRP78 is a potential target of CuB. Several lines of evidence demonstrated that CuB interacted with GRP78 and bound with a Kd value of 0.11 μmol/L. Furthermore, ATPase activity evaluation showed that CuB suppressed GRP78 both in human recombinant GRP78 protein and cellular lysates. Knockdown of the GRP78 gene significantly induced the downregulation of FOXM1 and related pathway proteins including KIF20A, underlying an interesting therapeutic perspective. Finally, CuB significantly inhibited tumor progression in NCG mice without causing obvious side effects in vivo. Taken together, our current work proved that GRP78–FOXM1–KIF20A as a promising pathway for CM therapy, and the traditional medicine CuB as a candidate drug to hinder this pathway.
Collapse
|
21
|
The novel STAT3 inhibitor WZ-2-033 causes regression of human triple-negative breast cancer and gastric cancer xenografts. Acta Pharmacol Sin 2022; 43:1013-1023. [PMID: 34267347 PMCID: PMC8976066 DOI: 10.1038/s41401-021-00718-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023] Open
Abstract
Hyperactive signal transducer and activator of transcription 3 (STAT3) signaling is frequently detected in human triple-negative breast cancer (TNBC) and gastric cancer, leading to uncontrolled tumor growth, resistance to chemotherapy, and poor prognosis. Thus, inhibition of STAT3 signaling is a promising therapeutic approach for both TNBC and gastric cancer, which have high incidences and mortality and limited effective therapeutic approaches. Here, we report a small molecule, WZ-2-033, capable of inhibiting STAT3 activation and dimerization and STAT3-related malignant transformation. We present in vitro evidence from surface plasmon resonance analysis that WZ-2-033 interacts with the STAT3 protein and from confocal imaging that WZ-2-033 disrupts HA-STAT3 and Flag-STAT3 dimerization in intact cells. WZ-2-033 suppresses STAT3-DNA-binding activity but has no effect on STAT5-DNA binding. WZ-2-033 inhibits the phosphorylation and nuclear accumulation of pY705-STAT3 and consequently suppresses STAT3-dependent transcriptional activity and the expression of STAT3 downstream genes. Moreover, WZ-2-033 significantly inhibited the proliferation, colony survival, migration, and invasion of TNBC cells and gastric cancer cells with aberrant STAT3 activation. Furthermore, administration of WZ-2-033 in vivo induced a significant antitumor response in mouse models of TNBC and gastric cancer that correlated with the inhibition of constitutively active STAT3 and the suppression of known STAT3 downstream genes. Thus, our study provides a novel STAT3 inhibitor with significant antitumor activity in human TNBC and gastric cancer harboring persistently active STAT3.
Collapse
|
22
|
Pang L, Zhang L, Zhou H, Cao L, Shao Y, Li T. Reactive Oxygen Species-Responsive Nanococktail With Self-Amplificated Drug Release for Efficient Co-Delivery of Paclitaxel/Cucurbitacin B and Synergistic Treatment of Gastric Cancer. Front Chem 2022; 10:844426. [PMID: 35308794 PMCID: PMC8931329 DOI: 10.3389/fchem.2022.844426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/03/2022] [Indexed: 12/21/2022] Open
Abstract
Application of drug combinations is a powerful strategy for the therapy of advanced gastric cancer. However, the clinical use of such combinations is greatly limited by the occurrence of severe systemic toxicity. Although polymeric-prodrug-based nanococktails can significantly reduce toxicity of drugs, they have been shown to have low intracellular drug release. To balance between efficacy and safety during application of polymeric-prodrug-based nanococktails, a reactive oxygen species (ROS)-responsive nanococktail (PCM) with self-amplification drug release was developed in this study. In summary, PCM micelles were co-assembled from ROS-sensitive cucurbitacin B (CuB) and paclitaxel (PTX) polymeric prodrug, which were fabricated by covalently grafting PTX and CuB to dextran via an ROS-sensitive linkage. To minimize the side effects of the PCM micelles, a polymeric-prodrug strategy was employed to prevent premature leakage. Once it entered cancer cells, PCM released CuB and PTX in response to ROS. Moreover, the released CuB further promoted ROS generation, which in turn enhanced drug release for better therapeutic effects. In vivo antitumor experiments showed that the PCM-treated group had lower tumor burden (tumor weight was reduced by 92%), but bodyweight loss was not significant. These results indicate that the developed polymeric prodrug, with a self-amplification drug release nanococktail strategy, can be an effective and safe strategy for cancer management.
Collapse
Affiliation(s)
- Lijun Pang
- Department of Oncology, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| | - Lei Zhang
- Department of Pharmacy, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| | - Hong Zhou
- Department of Oncology, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| | - Ling Cao
- Department of Oncology, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| | - Yueqin Shao
- Department of Oncology, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| | - Tengyun Li
- Department of Pharmacy, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
- *Correspondence: Tengyun Li,
| |
Collapse
|
23
|
Antiproliferative, genotoxic activities and quantification of extracts and cucurbitacin B obtained from Luffa operculata (L.) Cogn. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103589] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
24
|
Valashedi MR, Nikoo A, Najafi-Ghalehlou N, Tomita K, Kuwahara Y, Sato T, Roushandeh AM, Roudkenar MH. Pharmacological Targeting of Ferroptosis in Cancer Treatment. Curr Cancer Drug Targets 2021; 22:108-125. [PMID: 34856903 DOI: 10.2174/1568009621666211202091523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 01/17/2023]
Abstract
Ferroptosis is a non-apoptotic mode of Regulated Cell Death (RCD) driven by excessive accumulation of toxic lipid peroxides and iron overload. Ferroptosis could be triggered by inhibiting the antioxidant defense system and accumulating iron-dependent Reactive Oxygen Species (ROS) that react with polyunsaturated fatty acids in abundance. Emerging evidence over the past few years has revealed that ferroptosis is of great potential in inhibiting growth and metastasis and overcoming tumor cell resistance. Thus, targeting this form of cell death could be perceived as a potentially burgeoning approach in cancer treatment. This review briefly presents the underlying mechanisms of ferroptosis and further aims to discuss various types of existing drugs and natural compounds that could be potentially repurposed for targeting ferroptosis in tumor cells. This, in turn, will provide critical perspectives on future studies concerning ferroptosis-based cancer therapy.
Collapse
Affiliation(s)
- Mehdi Rabiee Valashedi
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht. Iran
| | - Amirsadegh Nikoo
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht. Iran
| | - Nima Najafi-Ghalehlou
- Department of Medical Laboratory Sciences, Faculty of Paramedicine, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Kazuo Tomita
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima. Japan
| | - Yoshikazu Kuwahara
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima. Iran
| | - Tomoaki Sato
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima. Iran
| | - Amaneh Mohammadi Roushandeh
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima. Iran
| | - Mehryar Habibi Roudkenar
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima. Iran
| |
Collapse
|
25
|
Silva VR, Santos LDS, Dias RB, Quadros CA, Bezerra DP. Emerging agents that target signaling pathways to eradicate colorectal cancer stem cells. Cancer Commun (Lond) 2021; 41:1275-1313. [PMID: 34791817 PMCID: PMC8696218 DOI: 10.1002/cac2.12235] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/28/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) represents the third most commonly diagnosed cancer and the second leading cause of cancer death worldwide. The modern concept of cancer biology indicates that cancer is formed of a small population of cells called cancer stem cells (CSCs), which present both pluripotency and self-renewal properties. These cells are considered responsible for the progression of the disease, recurrence and tumor resistance. Interestingly, some cell signaling pathways participate in CRC survival, proliferation, and self-renewal properties, and most of them are dysregulated in CSCs, including the Wingless (Wnt)/β-catenin, Notch, Hedgehog, nuclear factor kappa B (NF-κB), Janus kinase/signal transducer and activator of transcription (JAK/STAT), peroxisome proliferator-activated receptor (PPAR), phosphatidyl-inositol-3-kinase/Akt/mechanistic target of rapamycin (PI3K/Akt/mTOR), and transforming growth factor-β (TGF-β)/Smad pathways. In this review, we summarize the strategies for eradicating CRC stem cells by modulating these dysregulated pathways, which will contribute to the study of potential therapeutic schemes, combining conventional drugs with CSC-targeting drugs, and allowing better cure rates in anti-CRC therapy.
Collapse
Affiliation(s)
- Valdenizia R Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Luciano de S Santos
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Rosane B Dias
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Claudio A Quadros
- São Rafael Hospital, Rede D'Or/São Luiz, Salvador, Bahia, 41253-190, Brazil.,Bahia State University, Salvador, Bahia, 41150-000, Brazil
| | - Daniel P Bezerra
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| |
Collapse
|
26
|
Si Y, Zhang H, Peng P, Zhu C, Shen J, Xiong Y, Liu X, Xiang Y, Li W, Ren Y, Wan F, Zhang L, Liu Y. G protein pathway suppressor 2 suppresses gastric cancer by destabilizing epidermal growth factor receptor. Cancer Sci 2021; 112:4867-4882. [PMID: 34609770 PMCID: PMC8645722 DOI: 10.1111/cas.15151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/13/2021] [Accepted: 09/18/2021] [Indexed: 11/29/2022] Open
Abstract
G protein pathway suppressor 2 (GPS2) is expressed in most human tissues, including the stomach. However, the biological functions of GPS2 in cancer, as well as the underlying molecular mechanisms, remain poorly understood. Here, we report that GPS2 expression was aberrantly downregulated in gastric cancer (GC) tissues compared with control tissues. Clinicopathologic analysis showed that low GPS2 expression was significantly correlated with pathological grade, lymph node stage, and invasive depth. Kaplan‐Meier analysis indicated that patients with low GPS2 expression showed poorer overall survival rates than those with high GPS2 expression. Moreover, GPS2 overexpression decreased GC cell proliferation, colony formation, tumorigenesis, and invasion. Overexpression of GPS2 reduced the protein expression of epidermal growth factor receptor (EGFR) and inhibited its downstream signaling in GC cells. Interestingly, GPS2 decreased EGFR protein expression, which was reversed by a lysosome inhibitor. Furthermore, GPS2 reduced EGFR protein stability by enhancing the binding of EGFR and an E3 ligase, c‐Cbl, which promoted the ubiquitination of EGFR, ultimately leading to its degradation through the lysosomal pathway. Further analysis indicated that GPS2 activated autophagy and promoted the autophagic flux by destabilizing EGFR. Taken together, these results suggest that low GPS2 expression is associated with GC progression and provide insights into the applicability of the GPS2‐EGFR axis as a potential therapeutic target in GC.
Collapse
Affiliation(s)
- Yuan Si
- Laboratory of Molecular Targeted Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Haitao Zhang
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Peng Peng
- Laboratory of Molecular Targeted Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China.,Laboratory of Molecular Targeted Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
| | - Chu Zhu
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jie Shen
- Laboratory of Molecular Targeted Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Yilian Xiong
- Laboratory of Molecular Targeted Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Xuewen Liu
- Laboratory of Molecular Targeted Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Laboratory of Molecular Targeted Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
| | - Yuchen Xiang
- Laboratory of Molecular Targeted Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China.,Laboratory of Molecular Targeted Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
| | - Wenjuan Li
- Laboratory of Molecular Targeted Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Yuliang Ren
- Laboratory of Molecular Targeted Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Fang Wan
- Laboratory of Molecular Targeted Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Liang Zhang
- Laboratory of Molecular Targeted Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China.,Laboratory of Molecular Targeted Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
| | - Ying Liu
- Laboratory of Molecular Targeted Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China.,Laboratory of Molecular Targeted Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
27
|
Zhang SX, Liu W, Ai B, Sun LL, Chen ZS, Lin LZ. Current Advances and Outlook in Gastric Cancer Chemoresistance: A Review. Recent Pat Anticancer Drug Discov 2021; 17:26-41. [PMID: 34587888 DOI: 10.2174/1574892816666210929165729] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/19/2021] [Accepted: 09/20/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Surgical resection of the lesion is the standard primary treatment of gastric cancer. Unfortunately, most patients are already in the advanced stage of the disease when they are diagnosed with gastric cancer. Alternative therapies, such as radiation therapy and chemotherapy, can achieve only very limited benefits. The emergence of cancer drug resistance has always been the major obstacle to the cure of tumors. The main goal of modern cancer pharmacology is to determine the underlying mechanism of anticancer drugs. OBJECTIVE Here, we mainly review the latest research results related to the mechanism of chemotherapy resistance in gastric cancer, the application of natural products in overcoming the chemotherapy resistance of gastric cancer, and the new strategies currently being developed to treat tumors based on immunotherapy and gene therapy. CONCLUSION The emergence of cancer drug resistance is the main obstacle in achieving alleviation and final cure for gastric cancer. Mixed therapies are considered to be a possible way to overcome chemoresistance. Natural products are the main resource for discovering new drugs specific for treating chemoresistance, and further research is needed to clarify the mechanism of natural product activity in patients. .
Collapse
Affiliation(s)
- Sheng-Xiong Zhang
- Guangdong Province Work Injury Rehabilitation Hospital, Guangzhou, 510440. China
| | - Wei Liu
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006. China
| | - Bo Ai
- Huazhong University of Science and Technology, Wuhan, 430030. China
| | - Ling-Ling Sun
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405. China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY 11439, New York. United States
| | - Li-Zhu Lin
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405. China
| |
Collapse
|
28
|
Li RR, Zeng DY. The effects and mechanism of α-mangostin on chemosensitivity of gastric cancer cells. Kaohsiung J Med Sci 2021; 37:709-717. [PMID: 34003591 DOI: 10.1002/kjm2.12388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/23/2021] [Accepted: 04/07/2021] [Indexed: 12/25/2022] Open
Abstract
This work investigated the effect of α-mangostin (α-M) on gastric cancer (GC) cell chemoresistance and its underlying mechanisms. Different concentrations of α-M and CDDP were applied to treat GC cells (SGC7901) and CDDP-resistant GC cells (SGC7901/CDDP) for 24 or 48 h. CCK-8 assays were used to measure the inhibitory effect of CDDP or α-M on SGC7901 and SGC7901/CDDP cells as well as the half-maximal inhibitory concentrations (IC50) of α-M for SGC7901 and SGC7901/CDDP cells. The optimal concentration and induction time of CDDP or α-M were determined. SGC7901/CDDP cells were treated with CDDP or/and α-M, where some of them were transfected with pcDNA3.1 or pcDNA3.1-EBI3. Cell proliferation and apoptosis were assessed as well as the levels of EBI3, STAT3, p-STAT3, autophagy-related proteins, and apoptosis-related proteins. CDDP inhibited SGC7901 cell proliferation in a dose-dependent manner. The IC50 of α-M for SGC7901 cells was 12.86 μM and that for SGC7901/CDDP cells was 13.69 μM. The optimal concentrations of CDDP and α-M for SGC7901/CDDP cells were 2 and 15 μM, respectively, and the optimal time was 48 h. The SGC7901/CDDP cells in the CDDP+/α-M+ group had elevated inhibition of proliferation and apoptosis rates. Western blot analysis revealed enhanced levels of LC3-II/I and Beclin1, reduced p62 level, decreased Bcl2 level, and increased levels of Bax and cleaved caspase-3/9. The EBI3/STAT3 pathway was implicated in the effect of α-M on SGC7901/CDDP cell development. α-M increases the chemosensitivity of GC cells by facilitating autophagy and inactivating the EBI3/STAT3 pathway.
Collapse
Affiliation(s)
- Rong-Rong Li
- Department of Medical Oncology-Gastroenterology and Urology, Hunan Cancer Hospital, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - De-Yu Zeng
- Department of Medical Oncology-Gastroenterology and Urology, Hunan Cancer Hospital, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
29
|
Employing siRNA tool and its delivery platforms in suppressing cisplatin resistance: Approaching to a new era of cancer chemotherapy. Life Sci 2021; 277:119430. [PMID: 33789144 DOI: 10.1016/j.lfs.2021.119430] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/10/2021] [Accepted: 03/23/2021] [Indexed: 12/18/2022]
Abstract
Although chemotherapy is a first option in treatment of cancer patients, drug resistance has led to its failure, requiring strategies to overcome it. Cancer cells are capable of switching among molecular pathways to ensure their proliferation and metastasis, leading to their resistance to chemotherapy. The molecular pathways and mechanisms that are responsible for cancer progression and growth, can be negatively affected for providing chemosensitivity. Small interfering RNA (siRNA) is a powerful tool extensively applied in cancer therapy in both pre-clinical (in vitro and in vivo) and clinical studies because of its potential in suppressing tumor-promoting factors. As such oncogene pathways account for cisplatin (CP) resistance, their targeting by siRNA plays an important role in reversing chemoresistance. In the present review, application of siRNA for suppressing CP resistance is discussed. The first priority of using siRNA is sensitizing cancer cells to CP-mediated apoptosis via down-regulating survivin, ATG7, Bcl-2, Bcl-xl, and XIAP. The cancer stem cell properties and related molecular pathways including ID1, Oct-4 and nanog are inhibited by siRNA in CP sensitivity. Cell cycle arrest and enhanced accumulation of CP in cancer cells can be obtained using siRNA. In overcoming siRNA challenges such as off-targeting feature and degradation, carriers including nanoparticles and biological carriers have been applied. These carriers are important in enhancing cellular accumulation of siRNA, elevating gene silencing efficacy and reversing CP resistance.
Collapse
|
30
|
Cucurbitacin B exhibits antitumor effects on CD133+ HepG2 liver cancer stem cells by inhibiting JAK2/STAT3 signaling pathway. Anticancer Drugs 2021; 32:548-557. [PMID: 33675610 DOI: 10.1097/cad.0000000000001062] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cancer stem cells (CSCs), a crucial cancer cell subpopulation, possess stemness phenotypic characteristics. Cucurbitacin B (CuB), a tetracyclic triterpenoid isolated from Cucurbitaceae, exerts widely pharmacological activities in many diseases. The aim of this study was to enrich, identify liver CSCs and investigate antitumor effects of CuB as well as explore the underlying molecular mechanisms in these liver CSCs. HepG2 cell lines were used for the enrichment of liver CSCs by serum-free medium culture and magnetic-activated cell sorting. The CSC characteristics were analyzed by immunofluorescent staining, sphere-forming, western blot and xenograft tumorigenicity assay. CuB' antitumor effects and underlying molecular mechanism were measured by cell counting kit-8, colony formation, sphere-forming, cell cycle, xenograft and western blot assay. Our results showed that we could enrich 97.29% CD133+ HepG2 cells, which possessed CSC characteristics including re-renewal capacity, proliferative ability, sorafenib resistance, overexpressed stemness-related molecules and enhanced tumorigenic potential. Furthermore, we also found that CuB inhibited cell viability, sphere formation, colony formation and arrested cell cycle at G2/M phase as well as sensitized CD133+ HepG2 cells to sorafenib in vitro and in vivo. Western blot assay indicated that CuB inhibited expression levels of cyclin B1, CDK1, CD133, p-JAK2 and p-STAT3. In conclusion, our findings indicated that CuB could exhibit antitumor effects on CD133+ HepG2 CSCs by inhibiting the Janus kinase 2/signal transducers and activators of transcription-3 signaling pathway, expanding basic and preclinical investigations on liver CSCs.
Collapse
|
31
|
Xu JL, Yuan L, Tang YC, Xu ZY, Xu HD, Cheng XD, Qin JJ. The Role of Autophagy in Gastric Cancer Chemoresistance: Friend or Foe? Front Cell Dev Biol 2020; 8:621428. [PMID: 33344463 PMCID: PMC7744622 DOI: 10.3389/fcell.2020.621428] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer is the third most common cause of cancer-related death worldwide. Drug resistance is the main inevitable and vital factor leading to a low 5-year survival rate for patients with gastric cancer. Autophagy, as a highly conserved homeostatic pathway, is mainly regulated by different proteins and non-coding RNAs (ncRNAs) and plays dual roles in drug resistance of gastric cancer. Thus, targeting key regulatory nodes in the process of autophagy by small molecule inhibitors or activators has become one of the most promising strategies for the treatment of gastric cancer in recent years. In this review, we provide a systematic summary focusing on the relationship between autophagy and chemotherapy resistance in gastric cancer. We comprehensively discuss the roles and molecular mechanisms of multiple proteins and the emerging ncRNAs including miRNAs and lncRNAs in the regulation of autophagy pathways and gastric cancer chemoresistance. We also summarize the regulatory effects of autophagy inhibitor and activators on gastric cancer chemoresistance. Understanding the vital roles of autophagy in gastric cancer chemoresistance will provide novel opportunities to develop promising therapeutic strategies for gastric cancer.
Collapse
Affiliation(s)
- Jing-Li Xu
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, China.,Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China.,The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Yuan
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, China.,Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China.,The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan-Cheng Tang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong, China
| | - Zhi-Yuan Xu
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, China.,Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Han-Dong Xu
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, China.,Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China.,The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiang-Dong Cheng
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, China.,Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Jiang-Jiang Qin
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, China.,Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
32
|
Wang X, Li H, Li D, Bai Y, Zhang Y, Yan X, Li J, Zhao R, Liu J, Liu W, Shi M, Xu C, Yang T, Zhang T. Sorafenib and CuB exert synergistic antitumor effects against hepatocellular carcinoma cells via inhibition of STAT3 phosphorylation. FEBS Open Bio 2020; 11:133-145. [PMID: 33176070 PMCID: PMC7780105 DOI: 10.1002/2211-5463.13035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/27/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022] Open
Abstract
Sorafenib, the first‐line agent for treatment of advanced hepatocellular carcinoma (HCC), improves median overall survival by approximately 3 months. In the present study, we investigated whether sorafenib combined with cucurbitacin B (CuB), a natural tetracyclic triterpenoid isolated from Cucurbitaceae, exerts enhanced antitumor effects against HCC. Cell viability and colony formation ability were detected by cell‐counting kit‐8 and colony formation assays. Cell cycle and apoptosis were analyzed by flow cytometry. Protein expression was detected by western blotting. HepG2 xenografts in nude mice were used to evaluate in vivo antitumor effects. We report that sorafenib and CuB exhibited synergistic effects on cellular proliferation inhibition and cell apoptosis induction, but not on cell cycle arrest. Furthermore, combination treatment enhanced levels of cleaved caspase 3 and cleaved caspase 9, but suppressed phosphorylation of STAT3. Epidermal growth factor, a potent stimulator of signal transducer and activator of transcription‐3 (STAT3), promoted cell viability and colony formation ability, whereas combination treatment exerted inhibitory effects on epidermal growth factor‐induced STAT3 phosphorylation. Finally, HepG2 xenograft mice cotreated with sorafenib and CuB exhibited reduced tumor progression without notable weight loss. In conclusion, sorafenib and CuB exert synergistic antitumor effects through a pathway that may involve STAT3 phosphorylation, and this may represent a promising therapeutic approach for treatment of HCC.
Collapse
Affiliation(s)
- Xiaoli Wang
- Department of Cancer, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hua Li
- Cancer Center, The General Hospital of Western Theater Command, Chengdu, China
| | - Dong Li
- Cancer Center, The General Hospital of Western Theater Command, Chengdu, China
| | - Yudi Bai
- Basic School of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Yao Zhang
- Basic School of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Xue Yan
- College of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Jin Li
- College of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Ri Zhao
- Scientific Research Center, Chengdu Medical College, Chengdu, China
| | - Jiahui Liu
- Basic School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Liu
- Clinical School of Medicine, Southwest Medical University, Luzhou, China
| | - Maolin Shi
- Clinical School of Medicine, Southwest Medical University, Luzhou, China
| | - Cheng Xu
- Department of Cancer, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tai Yang
- College of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Tao Zhang
- Cancer Center, The General Hospital of Western Theater Command, Chengdu, China
| |
Collapse
|
33
|
Nakonieczna S, Grabarska A, Kukula-Koch W. The Potential Anticancer Activity of Phytoconstituents against Gastric Cancer-A Review on In Vitro, In Vivo, and Clinical Studies. Int J Mol Sci 2020; 21:E8307. [PMID: 33167519 PMCID: PMC7663924 DOI: 10.3390/ijms21218307] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
Gastric cancer belongs to the heterogeneous malignancies and, according to the World Health Organization, it is the fifth most commonly diagnosed cancer in men. The aim of this review is to provide an overview on the role of natural products of plant origin in the therapy of gastric cancer and to present the potentially active metabolites which can be used in the natural therapeutical strategies as the support to the conventional treatment. Many of the naturally spread secondary metabolites have been proved to exhibit chemopreventive properties when tested on the cell lines or in vivo. This manuscript aims to discuss the pharmacological significance of both the total extracts and the single isolated metabolites in the stomach cancer prevention and to focus on their mechanisms of action. A wide variety of plant-derived anticancer metabolites from different groups presented in the manuscript that include polyphenols, terpenes, alkaloids, or sulphur-containing compounds, underlines the multidirectional nature of natural products.
Collapse
Affiliation(s)
- Sylwia Nakonieczna
- Chair and Department of Pharmacognosy, Medical University of Lublin, 1, Chodzki str., 20-093 Lublin, Poland;
| | - Aneta Grabarska
- Chair and Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1, Chodźki, 20-093 Lublin, Poland
| | - Wirginia Kukula-Koch
- Chair and Department of Pharmacognosy, Medical University of Lublin, 1, Chodzki str., 20-093 Lublin, Poland;
| |
Collapse
|
34
|
Lin X, Farooqi AA. Cucurbitacin mediated regulation of deregulated oncogenic signaling cascades and non-coding RNAs in different cancers: Spotlight on JAK/STAT, Wnt/β-catenin, mTOR, TRAIL-mediated pathways. Semin Cancer Biol 2020; 73:302-309. [PMID: 33152487 DOI: 10.1016/j.semcancer.2020.10.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 01/03/2023]
Abstract
Research over decades has enabled us in developing a better understanding of the multifaceted and heterogeneous nature of cancer. High-throughput technologies have helped the researchers in unraveling of the underlying mechanisms which centrally regulate cancer onset, metastasis and drug resistance. Our rapidly expanding knowledge about signal transduction cascade has added another layer of complexity to already complicated nature of cancer. Deregulation of cell signaling pathways played a linchpin role in carcinogenesis and metastasis. Cucurbitacins have gained tremendous attention because of their remarkable pharmacological properties and considerable ability to mechanistically modulate myriad of cell signaling pathways in different cancers. In this review, we have attempted to provide a mechanistic and comprehensive analysis of regulation of oncogenic pathways by cucurbitacins in different cancers. We have partitioned this review into separate sections for exclusive analysis of each signaling pathway and critical assessment of the knowledge gaps. In this review, we will summarize most recent and landmark developments related to regulation of Wnt/β-catenin, JAK/STAT, mTOR, VEGFR, EGFR and Hippo pathway by cucurbitacins. Moreover, we will also address how cucurbitacins regulate DNA damage repair pathway and TRAIL-driven signaling in various cancers. However, there are still outstanding questions related to regulation of SHH/GLI, TGF/SMAD and Notch-driven pathway by cucurbitacins in different cancers. Future studies must converge on the analysis of full-fledge potential of cucurbitacins by in-depth analysis of these pathways and how these pathways can be therapeutically targeted by cucurbitacins.
Collapse
Affiliation(s)
- Xiukun Lin
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Ammad Ahmad Farooqi
- Department of Molecular Oncology, Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan.
| |
Collapse
|
35
|
Xia L, Kang D, Wan D, Chu C, Chen M, Zhang S, Li X, He L, Yan J, Liu T, Peng Y. Honokiol-Chlorambucil Co-Prodrugs Selectively Enhance the Killing Effect through STAT3 Binding on Lymphocytic Leukemia Cells In Vitro and In Vivo. ACS OMEGA 2020; 5:19844-19852. [PMID: 32803080 PMCID: PMC7424726 DOI: 10.1021/acsomega.0c02832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 07/17/2020] [Indexed: 05/08/2023]
Abstract
The broad-spectrum DNA alkylating therapeutic, chlorambucil (CBL), has limited safety and shows lower therapy effect because of a short half-life while used in the clinic. Therefore, it is very necessary to develop a more efficient and safer type of CBL derivate against tumors with selective targeting of cancer cells. In addition, the natural product of honokiol (HN), the novel potent chemo-preventive or therapeutic entity/carrier, can target the mitochondria of cancer cells through STAT3 to prevent cancer from spreading and metastasizing. In this study, we designed and synthesized the honokiol-chlorambucil (HN-CBL) co-prodrugs through carbonate ester linkage conjugating with the targeted delivery help of the HN skeleton in cancer cells. Biological evaluation indicated that HN-CBL can remarkably enhance the antiproliferation of human leukemic cell lines CCRF-CEM, Jurkat, U937, MV4-11, and K562. Furthermore, HN-CBL can also selectively inhibit the lymphocytic leukemia (LL) cell survival compared to those mononuclear cells derived from healthy donors (PBMCs), enhance mitochondrial activity in leukemia cells, and induce LL cell apoptosis. Molecular docking and western blot study showed that HN-CBL can also bind with the STAT3 protein at some hydrophobic residues and downregulate the phosphorylation level of STAT3-like HN. Significantly, HN-CBL could dramatically delay leukemia growth in vivo with no observable physiological toxicity. Thus, HN-CBL may provide a novel and effective targeting therapeutic against LL with fewer side effects.
Collapse
Affiliation(s)
- Li Xia
- School of Traditional
Chinese Medicine, Guangdong Food and Drug
Vocational College, Guangzhou 510520, PR China
| | - Dali Kang
- School of Traditional
Chinese Medicine, Guangdong Food and Drug
Vocational College, Guangzhou 510520, PR China
- Department
of Pediatrics, Xiangya Hospital, Central
South University, Changsha 410008, PR China
| | - Dan Wan
- Institute
of Chinese Medicine, Hunan Academy of Traditional Chinese Medicine&Innovation
Centre for Science and Technology, Hunan
University of Chinese Medicine, Changsha 410208, PR China
- College of Life Science, Molecular Science and Biomedicine
Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, Hunan University, Changsha 410082, PR China
| | - Chu Chu
- College of Pharmaceutical Science, Zhejiang
University of Technology, Hangzhou 310014, PR China
| | - Meizi Chen
- Department
of General Internal Medicine, The First
People’s Hospital of Chenzhou, Chenzhou 423000, PR China
| | - Shuihan Zhang
- Institute
of Chinese Medicine, Hunan Academy of Traditional Chinese Medicine&Innovation
Centre for Science and Technology, Hunan
University of Chinese Medicine, Changsha 410208, PR China
| | - Xiong Li
- Institute
of Chinese Medicine, Hunan Academy of Traditional Chinese Medicine&Innovation
Centre for Science and Technology, Hunan
University of Chinese Medicine, Changsha 410208, PR China
- School of Clinical Pharmacy/The First Hospital, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Leye He
- Department of Urological Surgery and Research Institute
for Prostate Disease, Third Xiangya Hospital,
Central South University, Changsha 410013, PR China
| | - Jianye Yan
- Institute
of Chinese Medicine, Hunan Academy of Traditional Chinese Medicine&Innovation
Centre for Science and Technology, Hunan
University of Chinese Medicine, Changsha 410208, PR China
| | - Teng Liu
- Department
of Pediatrics, Xiangya Hospital, Central
South University, Changsha 410008, PR China
- . Phone: +86-731- 89753044
| | - Yongbo Peng
- Institute
of Chinese Medicine, Hunan Academy of Traditional Chinese Medicine&Innovation
Centre for Science and Technology, Hunan
University of Chinese Medicine, Changsha 410208, PR China
- College of Life Science, Molecular Science and Biomedicine
Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, Hunan University, Changsha 410082, PR China
- . Phone: +86-731-88821894
| |
Collapse
|
36
|
Tse C, Warner A, Farook R, Cronin JG. Phytochemical Targeting of STAT3 Orchestrated Lipid Metabolism in Therapy-Resistant Cancers. Biomolecules 2020; 10:biom10081118. [PMID: 32731620 PMCID: PMC7464013 DOI: 10.3390/biom10081118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
Lipids are critical for maintaining homeostasis and cellular metabolism. However, the dysregulation of lipid metabolism contributes to the pathogenesis of chronic inflammatory diseases and is a hallmark of several cancer types. Tumours exist in a microenvironment of poor vascularization-depleted oxygen and restricted nutrients. Under these conditions, tumours have been shown to increasingly depend on the metabolism of fatty acids for sustained proliferation and survival. Signal transducer and activator of transcription 3 (STAT3) plays a key role in cellular processes such as cell growth, apoptosis and lipid metabolism. Aberrant STAT3 activity, as seen in several cancer types, is associated with tumour progression and malignancy, in addition to propagating crosstalk between tumour cells and the microenvironment. Furthermore, STAT3-regulated lipid metabolism is critical for cancer stem cell self-renewal and therapy resistance. Plant-derived compounds known as phytochemicals are a potential source for novel cancer therapeutic drugs. Dietary phytochemicals are known to modulate key cellular signalling pathways involved in lipid homeostasis and metabolism, including the STAT3 signalling pathways. Targeting STAT3 orchestrated lipid metabolism has shown therapeutic promise in human cancer models. In this review, we summarize the antitumour activity of phytochemicals with an emphasis placed on their effect on STAT3-regulated lipid metabolism and their role in abrogating therapy resistance.
Collapse
|