1
|
Chen Y, Ye X, Hu M, Hu Y, Ding J. Long non-coding RNAs in pancreatic cancer. Clin Chim Acta 2025; 566:120040. [PMID: 39536894 DOI: 10.1016/j.cca.2024.120040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/06/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
This article reviews the recent advances in pathogenesis, diagnosis and treatment of pancreatic cancer, as well as the relationship between long non-coding RNA (lncRNA) in disease progression. Unfortunately, pancreatic cancer has no early symptoms and quickly invades surrounding tissue and organs, making it one of the deadliest. Accordingly, we urgently need to identify high-risk individuals with precancerous lesions through screening methods to identify early disease, provide better prevention strategies and improve overall survival. LncRNAs have a variety of biological functions in both physiologic and pathophysiologic states including tumor growth, differentiation and proliferation. Herein we review the biological functions, expression patterns, clinical significance and targeted therapy potential of lncRNAs to provide new approaches for diagnosis and treatment in pancreatic cancer.
Collapse
Affiliation(s)
- Yuan Chen
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, Zhejiang, China
| | - Xiaohua Ye
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, Zhejiang, China
| | - Minli Hu
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, Zhejiang, China
| | - Yibing Hu
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, Zhejiang, China
| | - Jin Ding
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, Zhejiang, China.
| |
Collapse
|
2
|
Gao R, Lin P, Yang W, Fang Z, Gao C, Cheng B, Fang J, Yu W. Bio-Inspired Nanodelivery Platform: Platelet Membrane-Cloaked Genistein Nanosystem for Targeted Lung Cancer Therapy. Int J Nanomedicine 2024; 19:10455-10478. [PMID: 39430311 PMCID: PMC11491070 DOI: 10.2147/ijn.s479438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/24/2024] [Indexed: 10/22/2024] Open
Abstract
Background Genistein (Gen), a natural polyphenolic compound, has emerged as a promising candidate for lung cancer treatment. However, the potential clinical application of Gen is limited due to its poor solubility, low bioavailability, and toxic side effects. To address these challenges, a biomimetic delivery platform with cell membranes derived from natural cells as carrier material was constructed. This innovative approach aims to facilitate targeted drug delivery and solve the problem of biocompatibility of synthetic materials. Methods First, the liposomes (LPs) loaded with Gen (LPs@Gen) was prepared using the ethanol injection method. Subsequently, PLTM-LPs@Gen was obtained through co-extrusion after mixing platelet membrane (PLTM) and LPs@Gen. Additionally, the biological and physicochemical properties of PLTM-LPs@Gen were investigated. Finally, the targeting ability, therapeutic efficacy, and safety of PLTM-LPs@Gen for lung cancer were evaluated using both a cell model and a tumor-bearing nude mouse model. Results The optimal preparation ratio for LPs@Gen was Gen: soybean lecithin: cholesterol: DSPE-PEG2000 (3:30:5:10, mass ratio), while the ideal fusion ratio of LPs@Gen and PLTM was 1:1. The particle size of PLTM-LPs@Gen was 108.33 ± 1.06 nm, and the encapsulation efficiency and drug loading were 94.29% and 3.09% respectively. Gen was released continuously and slowly from PLTM-LPs@Gen. Moreover, PLTM-LPs@Gen exhibited good stability within one week. The results of in vitro cellular uptake and in vivo distribution experiments indicated that the carrier material, PLTM-LPs, has the immune escape ability and tumor targeting ability. Consequently, it showed better therapeutic effects than free drugs and traditional LPs in vitro and in vivo tumor models. In addition, safety experiments demonstrated that PLTM-LPs@Gen possesses good biocompatibility. Conclusion Biomimetic nanomedicine provides a new strategy for the precision treatment of lung cancer in clinical practice.
Collapse
Affiliation(s)
- Rui Gao
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, People’s Republic of China
| | - Peihong Lin
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, People’s Republic of China
| | - Wenjing Yang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, People’s Republic of China
| | - Zhengyu Fang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, People’s Republic of China
| | - Chunxiao Gao
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, People’s Republic of China
| | - Bin Cheng
- Department of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, Ningbo, 315500, People’s Republic of China
| | - Jie Fang
- Zhejiang Provincial Laboratory of Experimental Animal’s & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, 310013, People’s Republic of China
| | - Wenying Yu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, People’s Republic of China
| |
Collapse
|
3
|
Razavinia A, Razavinia A, Jamshidi Khalife Lou R, Ghavami M, Shahri F, Tafazoli A, Khalesi B, Hashemi ZS, Khalili S. Exosomes as novel tools for renal cell carcinoma therapy, diagnosis, and prognosis. Heliyon 2024; 10:e32875. [PMID: 38948044 PMCID: PMC11211897 DOI: 10.1016/j.heliyon.2024.e32875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/06/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024] Open
Abstract
Background Renal Cell Carcinoma (RCC) stands as a formidable challenge within the field of oncology, despite considerable research endeavors. The advanced stages of this malignancy present formidable barriers to effective treatment and management. Objective This review aims to explore the potential of exosomes in addressing the diagnostic and therapeutic challenges associated with RCC. Specifically, it investigates the role of exosomes as biomarkers and therapeutic vehicles in the context of RCC management. Methods For this review article, a comprehensive literature search was conducted using databases such as PubMed, employing relevant keywords to identify research articles pertinent to the objectives of the review. Initially, 200 articles were identified, which underwent screening to remove duplicates and assess relevance based on titles and abstracts, followed by a detailed examination of full texts. From the selected articles, relevant data were extracted and synthesized to address the review's objectives. The conclusions were drawn based on a thorough analysis of the findings. The quality was ensured through independent review and resolution of discrepancies among multiple reviewers. Results Exosomes demonstrate potential as diagnostic tools for early detection, prognosis, and treatment monitoring in RCC. Their ability to deliver various therapeutic agents, such as small interfering RNAs, lncRNAs, chemotherapeutic drugs, and immune-stimulating agents, allows for a personalized approach to RCC management. By leveraging exosome-based technologies, precision and efficacy in treatment strategies can be significantly enhanced. Conclusion Despite the promising advancements enabled by exosomes in the management of RCC, further research is necessary to refine exosome-based technologies and validate their efficacy, safety, and long-term benefits through rigorous clinical trials. Embracing exosomes as integral components of RCC diagnosis and treatment represents a significant step towards improving patient outcomes and addressing the persistent challenges posed by this malignancy in the field of oncology.
Collapse
Affiliation(s)
- Amir Razavinia
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Abazar Razavinia
- Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Roya Jamshidi Khalife Lou
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahlegha Ghavami
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Forouzan Shahri
- Department of Chemistry, Faculty of Sciences, University of Guilan, Iran
| | - Aida Tafazoli
- Department of Bacterial and Virology, Shiraz medical school, Shiraz, Iran
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj 3197619751, Iran
| | - Zahra Sadat Hashemi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| |
Collapse
|
4
|
Zhang M, Yang DY, He ZY, Wu Y, Tian XY, Huang QY, Ma WB, Deng M, Wang QZ, Yan SJ, Zheng HL. Auranofin inhibits the occurrence of colorectal cancer by promoting mTOR-dependent autophagy and inhibiting epithelial-mesenchymal transformation. Anticancer Drugs 2024; 35:129-139. [PMID: 37615540 DOI: 10.1097/cad.0000000000001540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Colorectal cancer (CRC) is one of the world's most common and deadly cancers. According to GLOBOCAN2020's global incidence rate and mortality estimates, CRC is the third main cause of cancer and the second leading cause of cancer-related deaths worldwide. The US Food and Drug Administration has approved auranofin for the treatment of rheumatoid arthritis. It is a gold-containing chemical that inhibits thioredoxin reductase. Auranofin has a number of biological activities, including anticancer activity, although it has not been researched extensively in CRC, and the mechanism of action on CRC cells is still unknown. The goal of this research was to see how Auranofin affected CRC cells in vivo and in vitro . The two chemical libraries were tested for drugs that make CRC cells more responsive. The CCK-8 technique was used to determine the cell survival rate. The invasion, migration, and proliferation of cells were assessed using a transwell test and a colony cloning experiment. An electron microscope was used to observe autophagosome formation. Western blotting was also used to determine the degree of expression of related proteins in cells. Auranofin's tumor-suppressing properties were further tested in a xenograft tumor model of human SW620 CRC cells. Auranofin dramatically reduced the occurrence of CRC by decreasing the proliferation, migration, and invasion of CRC cells, according to our findings. Through a mTOR-dependent mechanism, auranofin inhibits the epithelial-mesenchymal transition (EMT) and induces autophagy in CRC cells. Finally, in-vivo tests revealed that auranofin suppressed tumor growth in xenograft mice while causing no harm. In summary, auranofin suppresses CRC cell growth, invasion, and migration. Auranofin inhibits the occurrence and progression of CRC by decreasing EMT and inducing autophagy in CRC cells via a mTOR-dependent mechanism. These findings suggest that auranofin could be a potential chemotherapeutic medication for the treatment of human CRC.
Collapse
Affiliation(s)
- Mei Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical College
| | - Dong-Yuan Yang
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical College
| | - Zhi-Yi He
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical College
| | - Yu Wu
- School of Pharmacy, Bengbu Medical College/Anhui Biochemical Drug Engineering Technology Research Center, Bengbu, China
| | - Xiu-Yun Tian
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical College
| | - Qing-Yang Huang
- School of Pharmacy, Bengbu Medical College/Anhui Biochemical Drug Engineering Technology Research Center, Bengbu, China
| | - Wang-Bo Ma
- School of Pharmacy, Bengbu Medical College/Anhui Biochemical Drug Engineering Technology Research Center, Bengbu, China
| | - Min Deng
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical College
| | - Qi-Zhi Wang
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical College
| | - Shan-Jun Yan
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical College
| | - Hai-Lun Zheng
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical College
| |
Collapse
|
5
|
Zhang M, Sun Y, Xu H, Shi Y, Shen R, Teng F, Xu J, Jia X. Circular RNA hsa_circ_0007444 inhibits ovarian cancer progression through miR-23a-3p/DICER1 axis. Acta Biochim Biophys Sin (Shanghai) 2023; 55:574-586. [PMID: 37057923 PMCID: PMC10195148 DOI: 10.3724/abbs.2023052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/21/2022] [Indexed: 04/15/2023] Open
Abstract
Ovarian cancer is the second leading cause of death in women with gynecological malignancy in China. Circular RNAs are a class of noncoding regulatory RNAs reported to be involved in cancer development and progression. Previous studies, including our own, have indicated that hsa_circ_0007444 is downregulated in ovarian cancer tissues. This study aims to elucidate the function and mechanism of hsa_circ_0007444 in ovarian cancer progression. The expression of hsa_circ_0007444 is determined by quantitative real-time PCR (qRT-PCR). Cell proliferation, invasion, migration and apoptosis are examined by cell counting-kit 8 (CCK-8), transwell and flow cytometry assays. Tumor growth and metastasis are assessed in vivo using Balb/c nude mouse xenograft model and tail vein injection model. And the mechanism of action of hsa_circ_0007444 is analysed by RNA-binding protein immunoprecipitation (RIP), luciferase reporter and rescue assays. hsa_circ_0007444 is downregulated in ovarian cancer tissues and cell lines compared with that in normal ovarian tissues and normal epithelial cell line. Gain- and loss-of-function results indicate that hsa_circ_0007444 inhibits cell proliferation, invasion, migration and increases cell apoptosis of ovarian cancer cells in vitro, and inhibits tumor growth and lung metastasis in vivo. Mechanistically, hsa_circ_0007444 can interact with AGO2 and sponge miR-23a-3p, thereby upregulating DICER1 expression, which is an important tumor suppressor in ovarian cancer. And miR-23a-3p mimics can rescue the inhibitory effect of hsa_circ_0007444 on ovarian cancer cell proliferation, invasion and migration. Therefore, hsa_circ_0007444 can inhibit ovarian cancer progression through the hsa_circ_0007444/miR-23a-3p/DICER1 axis.
Collapse
Affiliation(s)
- Min Zhang
- Department of GynecologyWomen’s Hospital of Nanjing Medical UniversityNanjing Maternity and Child Health Care HospitalNanjing210004China
- Department of GynecologyGannan Medical UniversityGanzhou341000China
| | - Yu Sun
- Department of GynecologyWomen’s Hospital of Nanjing Medical UniversityNanjing Maternity and Child Health Care HospitalNanjing210004China
| | - Hanzi Xu
- Jiangsu Institute of Cancer Researchthe Affiliated Cancer Hospital of Nanjing Medical UniversityNanjing210009China
| | - Yaqian Shi
- Department of GynecologyWomen’s Hospital of Nanjing Medical UniversityNanjing Maternity and Child Health Care HospitalNanjing210004China
| | - Rong Shen
- Department of GynecologyWomen’s Hospital of Nanjing Medical UniversityNanjing Maternity and Child Health Care HospitalNanjing210004China
| | - Fang Teng
- Department of GynecologyWomen’s Hospital of Nanjing Medical UniversityNanjing Maternity and Child Health Care HospitalNanjing210004China
| | - Juan Xu
- Department of GynecologyWomen’s Hospital of Nanjing Medical UniversityNanjing Maternity and Child Health Care HospitalNanjing210004China
| | - Xuemei Jia
- Department of GynecologyWomen’s Hospital of Nanjing Medical UniversityNanjing Maternity and Child Health Care HospitalNanjing210004China
| |
Collapse
|
6
|
Jiang XY, Zhu QC, Zhang XJ, Duan T, Feng J, Sui XB, Sun XN, Mou YP. Roles of lncRNAs in pancreatic ductal adenocarcinoma: Diagnosis, treatment, and the development of drug resistance. Hepatobiliary Pancreat Dis Int 2023; 22:128-139. [PMID: 36543619 DOI: 10.1016/j.hbpd.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 12/07/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers, primarily due to its late diagnosis, high propensity to metastasis, and the development of resistance to chemo-/radiotherapy. Accumulating evidence suggests that long non-coding RNAs (lncRNAs) are intimately involved in the treatment resistance of pancreatic cancer cells via interacting with critical signaling pathways and may serve as potential diagnostic/prognostic markers or therapeutic targets in PDAC. DATA SOURCES We carried out a systematic review on lncRNAs-based research in the context of pancreatic cancer and presented an overview of the updated information regarding the molecular mechanisms underlying lncRNAs-modulated pancreatic cancer progression and drug resistance, together with their potential value in diagnosis, prognosis, and treatment of PDAC. Literature mining was performed in PubMed with the following keywords: long non-coding RNA, pancreatic ductal adenocarcinoma, pancreatic cancer up to January 2022. Publications relevant to the roles of lncRNAs in diagnosis, prognosis, drug resistance, and therapy of PDAC were collected and systematically reviewed. RESULTS LncRNAs, such as HOTAIR, HOTTIP, and PVT1, play essential roles in regulating pancreatic cancer cell proliferation, invasion, migration, and drug resistance, thus may serve as potential diagnostic/prognostic markers or therapeutic targets in PDAC. They participate in tumorigenesis mainly by targeting miRNAs, interacting with signaling molecules, and involving in the epithelial-mesenchymal transition process. CONCLUSIONS The functional lncRNAs play essential roles in pancreatic cancer cell proliferation, invasion, migration, and drug resistance and have potential values in diagnosis, prognostic prediction, and treatment of PDAC.
Collapse
Affiliation(s)
- Xiao-Yin Jiang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, China; Department of Gastrointestinal and Pancreatic Surgery, Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou 310014, China; School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Qi-Cong Zhu
- Department of Gastrointestinal and Pancreatic Surgery, Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Xiao-Jian Zhang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ting Duan
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiao Feng
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Xin-Bing Sui
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Xue-Ni Sun
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Yi-Ping Mou
- Department of Gastrointestinal and Pancreatic Surgery, Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou 310014, China.
| |
Collapse
|
7
|
Zuo H, Liu S, Li X, Hou G. miR-23a-3p promotes the development of colon cancer by inhibiting the expression of NDRG4. Clin Transl Oncol 2023; 25:933-940. [PMID: 36374403 DOI: 10.1007/s12094-022-02996-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Previous studies have found that miR-23a-3p, a diagnostic marker for colon cancer (CC), is upregulated in primary CC from stage I/II patients. Nevertheless, the specific functions and molecular mechanisms of miR-23a-3p in colon cancer remain unclear. METHODS The expression levels of miR-23a-3p and NDRG4 were analyzed by western blot and RT‒qPCR assays. Cell viability and proliferation were measured by CCK8 and colony formation assays. Cell apoptosis was assessed by flow cytometry. Cell migration and invasion were detected by transwell assay. Target binding was detected by luciferase reporter assay. RESULTS miR-23a-3p was dramatically elevated in CC tissues and cells. In HT29 and SW480 cells, downregulation of miR-23a-3p hampered cell proliferation, migration, and invasion while increasing cell apoptosis. The effects of miR-23a-3p silencing on CC progression were slowed by NDRG4 downregulation. CONCLUSIONS miR-23a-3p promoted CC progression by modulating the expression of NDRG4. This study demonstrated the mechanism of miR-23a-3p in CC, which may offer a new target for CC therapy.
Collapse
Affiliation(s)
- Hao Zuo
- Department of General Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1 Huanghe Xi Road, Huaian, 223300, Jiangsu, China
| | - Shiqi Liu
- Department of General Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1 Huanghe Xi Road, Huaian, 223300, Jiangsu, China
| | - Xiangwei Li
- Department of General Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1 Huanghe Xi Road, Huaian, 223300, Jiangsu, China
| | - Guowei Hou
- Department of General Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1 Huanghe Xi Road, Huaian, 223300, Jiangsu, China.
| |
Collapse
|
8
|
Bao T, Zhu H, Zheng Y, Hu J, Wang H, Cheng H, Zhang Y, Tian Z. Expression of long noncoding RNA uc.375 in bronchopulmonary dysplasia and its function in the proliferation and apoptosis of mouse alveolar epithelial cell line MLE 12. Front Physiol 2022; 13:971732. [PMID: 36111163 PMCID: PMC9468891 DOI: 10.3389/fphys.2022.971732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Background: According to our previous gene ChIP results, long noncoding RNA uc.375 was down-regulated in lung tissue of bronchopulmonary dysplasia (BPD) mice induced by hyperoxia. FoxA1 gene showed higher levels in lung tissue of BPD mice and is reported to promote the apoptosis of alveolar epithelial cells. We aimed to clarify the expression pattern of uc.375 in BPD and explore the interaction between uc.375 and FoxA1.Methods: Newborn mice were placed in a 95% high-oxygen environment for 7 days. Lung tissue samples from mice were used for lncRNA microarray to screen BPD related lncRNAs. Mouse alveolar epithelial cell line MLE 12 was stably transfected with uc.375 and FoxA1 silencing or overexpression lentiviral vectors. The proliferation activity of MLE 12 cells was detected by a cell counting kit 8 (CCK-8) assay. MLE 12 cell apoptosis was determined by Hoechst/PI staining and flow cytometry analysis. The protein levels of Cleaved Caspase-3, FoxA1, SP-C and UCP2 were investigated by western blot. The relative mRNA expression levels were detected by quantitative real-time PCR.Results: uc.375 is mainly distributed in the nucleus of alveolar epithelial cells, as revealed by In Situ Hybridization assay results. uc.375 was lowly expressed in the lung tissues of BPD mice. According to the results of CCK-8 assay, analysis of Hoechst/PI staining and western blotting, uc.375 silencing inhibited cell proliferation, facilitated apoptosis of MLE 12 cells, promoted caspase 3 and FoxA1 expression, and inhibited the expression of SP-C and UCP2. On the contrary, after overexpressing uc.375, the opposite results were obtained. Silencing FoxA1 inhibited MLE 12 apoptosis, promoted proliferation, inhibited apoptosis-related factor caspase 3, and promoted the expression of SP-C and UCP2. FoxA1 silencing also reversed the effect induced by uc.375 knockdown on the proliferation and apoptosis of MLE 12 cells.Conclusion: Based on the biomedical images-derived analysis results, uc.375 negatively regulates FoxA1 expression, affects alveolar development, and plays an important role in the initiation and progression of BPD, providing a new molecular target for the prevention and treatment of BPD.
Collapse
|
9
|
Ma Y, Di Y, Li Q, Zhan Q, He X, Liu S, Zou H, Corpe C, Chen L, Wang J. LncRNAs as epigenetic regulators of epithelial to mesenchymal transition in pancreatic cancer. Discov Oncol 2022; 13:61. [PMID: 35819532 PMCID: PMC9276894 DOI: 10.1007/s12672-022-00522-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/01/2022] [Indexed: 11/04/2022] Open
Abstract
Pancreatic cancer is the leading cause of cancer-related mortality because of tumor metastasis. Activation of the epithelial-to-mesenchymal transition (EMT) pathway has been confirmed to be an important driver of pancreatic cancer progression from initiation to metastasis. Long noncoding RNAs (lncRNAs) have been reported to exert essential physiological functions in pancreatic cancer progression by regulating the EMT program. In this review, we have summarized the role of EMT-related lncRNAs in human pancreatic cancer and the potential molecular mechanisms by which lncRNAs can be vital epigenetic regulators of epithelial to mesenchymal transition. Specifically, EMT-activating transcription factors (EMT-TFs) regulate EMT via TGF-β/Smad, Wnt/β-catenin, and JAK/STAT pathways. In addition, the interaction between lncRNAs and HIF-1α and m6A RNA methylation also have an impact on tumor metastasis and EMT in pancreatic cancer. This review will provide insights into lncRNAs as promising biomarkers for tumor metastasis and potential therapeutic strategies for pancreatic cancer.
Collapse
Affiliation(s)
- Yan Ma
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508, People's Republic of China
| | - Yang Di
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiuyue Li
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508, People's Republic of China
| | - Qilin Zhan
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508, People's Republic of China
| | - Xiaomeng He
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508, People's Republic of China
| | - Shanshan Liu
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508, People's Republic of China
| | - Heng Zou
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508, People's Republic of China
| | - Christopher Corpe
- King's College London, Nutritional Science Department, 150 Stamford Street, Waterloo, London, SE19NH, UK
| | - Litian Chen
- Department of Hepatobiliary Surgery, Shanghai Jiaotong University School of Medicine Xinhua Hospital, Kongjiang Road 1665, Shanghai, China.
| | - Jin Wang
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508, People's Republic of China.
| |
Collapse
|
10
|
Li B, Pang S, Dou J, Zhou C, Shen B, Zhou Y. The inhibitory effect of LINC00261 upregulation on the pancreatic cancer EMT process is mediated by KLF13 via the mTOR signaling pathway. Clin Transl Oncol 2022; 24:1059-1072. [PMID: 35066757 DOI: 10.1007/s12094-021-02747-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 11/30/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE The long noncoding RNA LINC00261 was reported to be involved in carcinogenesis and has been validated as a tumor suppressor in pancreatic cancer (PC); however, how LINC00261 is regulated has not been fully examined. Here, we attempted to investigate the upstream and downstream targets of LINC00261 in PC. METHODS LINC00261 expression in PC tissues was examined by the Gene Expression Omnibus (GEO) datasets and the Gene Expression Profiling Interactive Analysis (GEPIA) database. The quantitative reverse transcription polymerase chain reaction (qRT-PCR) assays were performed to detect the expression level of LINC00261 in PC cells. The location of LINC00261 in PC cells was identified by RNA fluorescence in situ hybridization (RNA-FISH). Cell Counting Kit-8 (CCK-8), cell apoptosis assay, transwell invasion and migration assays testified the critical role of LINC00261 in PC. The luciferase reporter assay was applied to confirm the binding of LINC00261 to its upstream transcription factor KLF13. The changes in LINC00261 related target protein levels were analyzed by Western blotting assay. RESULTS LINC00261 was significantly lower in PC tissues and was mainly concentrated in the nucleus. Overexpression of LINC00261 inhibited the invasion and migration of PC cells. Mechanistically, transcription factor KLF13 was confirmed to inhibit the epithelial-mesenchymal transition (EMT) process of PC cells by promoting the transcription of LINC00261 and suppressing the expression of metastasis-associated proteins, such as matrix metalloproteinase MMP2 and vimentin, thus inhibiting the metastasis of PC. CONCLUSION LINC00261 regulates PC cell metastasis through the "KLF13-LINC00261-mTOR-P70S6K1-S6" signaling pathway, which provides a significant set of potential PC therapeutic targets.
Collapse
Affiliation(s)
- B Li
- School of Life Science and Technology, China Pharmaceutical University, Jiangsu, 211198, P.R. China
| | - S Pang
- School of Life Science and Technology, China Pharmaceutical University, Jiangsu, 211198, P.R. China
| | - J Dou
- School of Life Science and Technology, China Pharmaceutical University, Jiangsu, 211198, P.R. China
| | - C Zhou
- School of Life Science and Technology, China Pharmaceutical University, Jiangsu, 211198, P.R. China
| | - B Shen
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, P.R. China.
- Institute of Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiaotong University, Shanghai, 200025, P.R. China.
| | - Y Zhou
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, P.R. China.
- Institute of Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiaotong University, Shanghai, 200025, P.R. China.
| |
Collapse
|
11
|
Khan MZI, Tam MSY, Azam Z, Law HKW. Proteomic profiling of metabolic proteins as potential biomarkers of radioresponsiveness for colorectal cancer. J Proteomics 2022; 262:104600. [DOI: 10.1016/j.jprot.2022.104600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/25/2022] [Accepted: 05/01/2022] [Indexed: 12/24/2022]
|
12
|
Chen G, Qin X, Wang Y, Gao B, Ling M, Yin W, Li Y, Pan B. Expression status and prognostic value of autophagy-related lncRNAs in prostate cancer. Cell Cycle 2022; 21:1684-1696. [PMID: 35414328 PMCID: PMC9302510 DOI: 10.1080/15384101.2022.2065149] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND LncRNAs involve in the autophagy to regulate Prostate cancer (PCa) initiation and progression. Therefore, it urges to explore more significant AR-lncRNAs in PCa. METHODS mRNA data and clinical information of PCa were achieved from TCGA database, and ARGs were obtained from the HADb. AR-lncRNAs were identified by correlation analysis of DE ARGs and lncRNAs. Univariate Cox regression, LASSO regression, and multivariate Cox regression were used to identify the prognostic AR-lncRNA signature and constructed a risk model. GESA was used to biological function analysis between high- and low-risk score group. A nomogram was constructed and used to predicate the survival of PCa patients. A calibration curve was used to determines accuracy of the predication model. AR-related ceRNA network was constructed by correlation analysis. Expression of six AR-related lncRNAs were detected by qRT-PCR. RESULTS 222 ARGs and 385 AR-lncRNAs were screened from PCa and normal tissues, and 17 AR-lncRNAs were identified as prognostic signature for PCa. Based on the expression of prognostic signature, a risk score was calculated, and PCa samples were distributed into high- and low-risk score groups. The biological function and predicated value of the prognostic signature were also examined. Finally, based on the correlation between each ARG and its prognostic signature, three modules of AR-lncRNA-miRNA-mRNA regulatory networks were constructed based on 6 AR-lncRNAs, 17 miRNAs, and 12 ARGs. And we found that AC012085.2, UBXN10-AS1, LINC00261 downregulated, whereas AP004608.1, AC104667.2, AC008610.1 upregulated in PCa compared with BPH tissues. CONCLUSION Our finding supplied the potential AR-lncRNAs prognostic signature for PCa.
Collapse
Affiliation(s)
- Guo Chen
- Department of Urology. The First Affiliated Hospital of Jinan University, 510630, Guangzhou, Guangdong, China
| | - Xiaoping Qin
- Department of Urology. The First Affiliated Hospital of Jinan University, 510630, Guangzhou, Guangdong, China
| | - Yu Wang
- Department of Endocrinology. The First Affiliated Hospital of Jinan University, 510630 Guangzhou, Guangdong, China
| | - Biyun Gao
- Department of Urology. The First Affiliated Hospital of Jinan University, 510630, Guangzhou, Guangdong, China
| | - Muan Ling
- Department of Urology. The First Affiliated Hospital of Jinan University, 510630, Guangzhou, Guangdong, China
| | - Wenjun Yin
- Department of Urology. The First Affiliated Hospital of Jinan University, 510630, Guangzhou, Guangdong, China
| | - Yutong Li
- Department of Urology. The First Affiliated Hospital of Jinan University, 510630, Guangzhou, Guangdong, China
| | - Bin Pan
- Department of Urology. The First Affiliated Hospital of Jinan University, 510630, Guangzhou, Guangdong, China
| |
Collapse
|
13
|
Ni Q, Zhang H, Shi X, Li X. Exosomal microRNA-23a-3p contributes to the progression of cholangiocarcinoma by interaction with Dynamin3. Bioengineered 2022; 13:6208-6221. [PMID: 35200104 PMCID: PMC8973721 DOI: 10.1080/21655979.2022.2037249] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cholangiocarcinoma (abbreviated as CCA) accounts for about 3% of digestive tract tumors, which is a rare disease with relatively low incidence. Herein, we firstly discovered overexpression of microRNA-23a-3p (abbreviated as miR-23a-3p) in CCA tissues, as well as cell lines via bioinformatics prediction. Next, by conducting miR-23a-3p knockdown system in HUCCT1 cells and miR-23a-3p overexpression system in RBE cells, we investigated the biological effects of miR-23a-3p. Based on our findings, inhibition of miR-23a-3p was able to prevent cancer cell proliferation via colony formation, CCK-8, as well as EdU assays. Moreover, invasion as well as migration abilities of cells was examined by transwell assay and wound healing test. Animal study further verified that knockdown miR-23a-3p slowed down tumor growth and lung metastasis. In addition, we identified cholangiocarcinoma cells transferred miR-23a-3p through exosomes by a series of assays. Functional experiments have confirmed that exosomal miR-23a-3p could benefit for cancer cell growth and metastasis, serving as a cancer promoting gene. Furthermore, we found Dynamin3 (abbreviated as DNM3) turned out to be a target of miR-23a-3p, while DNM3 was down-regulated in cholangiocarcinoma. Knockdown DNM3 accelerated cancer cell development. Collectively, our findings firstly pointed out that exosomal miR-23a-3p was conducive to the progression of cholangiocarcinoma by interaction with DNM3, which provided potential evidence for cancer treatment.
Collapse
Affiliation(s)
- Qingfeng Ni
- The National Institute of Living Donor Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Hai Zhang
- The National Institute of Living Donor Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Xiaoli Shi
- The National Institute of Living Donor Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Xiangcheng Li
- The National Institute of Living Donor Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
14
|
Huo H, Hu C, Lu Y, Zhou J, Mai Z. Silencing of circCDC14A prevents cerebral ischemia-reperfusion injury via miR-23a-3p/CXCL12 axis. J Biochem Mol Toxicol 2022; 36:e22982. [PMID: 34978116 DOI: 10.1002/jbt.22982] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/12/2021] [Accepted: 12/09/2021] [Indexed: 12/26/2022]
Abstract
Ischemic stroke is one of the main causes of death and disability. Circular RNAs (circRNAs) have received extensive attention in the pathogenesis of ischemic stroke. Here, we evaluated the role of circCDC14A in cerebral ischemia-reperfusion (CI/R) injury in vivo and in vitro. The expression of circCDC14A was significantly upregulated in the middle cerebral artery occlusion (MCAO) model and oxygen and glucose deprivation/reoxygenation (OGD/R)-treated HT22 cells. Knockdown of circCDC14A suppressed the cell viability reduction caused by OGD/R, as well as cell damage and apoptosis. Mechanistically, circCDC14A acted as a sponge for miR-23a-3p and promoted the expression of chemokine stromal-derived factor-1 (CXCL12) by negatively regulating miR-23a-3p. Rescue experiments further confirmed that miR-23a-3p inhibitor or circCDC14A-overexpression vectors blocked the beneficial effects of circCDC14A knockdown in OGD/R-induced HT22 cells. Moreover, knockdown of circCDC14A suppressed MCAO-induced cerebral infarction and neurological damage, as well as the brain tissue damage and neuronal apoptosis in vivo. Consistently, miR-23a-3p antagomir treatment abolished the cerebral protective effects of circCDC14A knockdown on MCAO mice. In conclusion, circCDC14A promoted CI/R injury by regulating the miR-23a-3p/CXCL12 axis, which suggested that circCDC14A may become a potential therapeutic target for CI/R injury.
Collapse
Affiliation(s)
- Huiyi Huo
- Department of Neonatology, The First People's Hospital Of Foshan (The Affiliated Foshan Hospital of Sun Yat-sen University), Foshan, Guangdong, China
| | - Chao Hu
- Department of Stomatology, Shunde Hospital of Southern Medical University, Shunde, Guangdong, China
| | - Yongxue Lu
- Department of Neonatology, The First People's Hospital Of Foshan (The Affiliated Foshan Hospital of Sun Yat-sen University), Foshan, Guangdong, China
| | - Jinyu Zhou
- Department of Neonatology, The First People's Hospital Of Foshan (The Affiliated Foshan Hospital of Sun Yat-sen University), Foshan, Guangdong, China
| | - Zhiguang Mai
- Department of Neonatology, The First People's Hospital Of Foshan (The Affiliated Foshan Hospital of Sun Yat-sen University), Foshan, Guangdong, China
| |
Collapse
|
15
|
Xiong G, Pan S, Jin J, Wang X, He R, Peng F, Li X, Wang M, Zheng J, Zhu F, Qin R. Long Noncoding Competing Endogenous RNA Networks in Pancreatic Cancer. Front Oncol 2021; 11:765216. [PMID: 34760707 PMCID: PMC8573238 DOI: 10.3389/fonc.2021.765216] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer (PC) is a highly malignant disease characterized by insidious onset, rapid progress, and poor therapeutic effects. The molecular mechanisms associated with PC initiation and progression are largely insufficient, hampering the exploitation of novel diagnostic biomarkers and development of efficient therapeutic strategies. Emerging evidence recently reveals that noncoding RNAs (ncRNAs), including long ncRNAs (lncRNAs) and microRNAs (miRNAs), extensively participate in PC pathogenesis. Specifically, lncRNAs can function as competing endogenous RNAs (ceRNAs), competitively sequestering miRNAs, therefore modulating the expression levels of their downstream target genes. Such complex lncRNA/miRNA/mRNA networks, namely, ceRNA networks, play crucial roles in the biological processes of PC by regulating cell growth and survival, epithelial-mesenchymal transition and metastasis, cancer stem cell maintenance, metabolism, autophagy, chemoresistance, and angiogenesis. In this review, the emerging knowledge on the lncRNA-associated ceRNA networks involved in PC initiation and progression will be summarized, and the potentials of the competitive crosstalk as diagnostic, prognostic, and therapeutic targets will be comprehensively discussed.
Collapse
Affiliation(s)
- Guangbing Xiong
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shutao Pan
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jikuan Jin
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxiang Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruizhi He
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Peng
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu Li
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianwei Zheng
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Zhu
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renyi Qin
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Ghafouri-Fard S, Fathi M, Zhai T, Taheri M, Dong P. LncRNAs: Novel Biomarkers for Pancreatic Cancer. Biomolecules 2021; 11:1665. [PMID: 34827663 PMCID: PMC8615627 DOI: 10.3390/biom11111665] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/31/2021] [Accepted: 11/09/2021] [Indexed: 12/31/2022] Open
Abstract
Pancreatic cancer is one of the most deadly neoplasms and the seventh major cause of cancer-related deaths among both males and females. This cancer has a poor prognosis due to the lack of appropriate methods for early detection of cancer. Long non-coding RNAs (lncRNAs) have been recently found to influence the progression and initiation of pancreatic cancer. MACC1-AS1, LINC00976, LINC00462, LINC01559, HOXA-AS2, LINC00152, TP73-AS1, XIST, SNHG12, LUCAT1, and UCA1 are among the oncogenic lncRNAs in pancreatic cancer. On the other hand, LINC01111, LINC01963, DGCR5, MEG3, GAS5, and LINC00261 are among tumor suppressor lncRNAs in this tissue. In the current review, we summarize the roles of these two classes of lncRNAs in pancreatic cancer and discuss their potential as attractive diagnostic and prognostic biomarkers for pancreatic cancer. We also identified that the low expression of MEG3, LINC01963, and LINC00261 and the high expression of MACC1-AS1, LINC00462, LINC01559, and UCA1 were significantly correlated with worse survival in pancreatic cancer patients. Further research on these lncRNAs will provide new clues that could potentially improve the early diagnosis, prognostic prediction, and personalized treatments of patients with pancreatic cancer.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1983535511, Iran;
| | - Mohadeseh Fathi
- Men’s Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1983535511, Iran;
| | - Tianyue Zhai
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, N15, W7, Kita-ku, Sapporo 0608638, Japan;
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran 1983535511, Iran
| | - Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, N15, W7, Kita-ku, Sapporo 0608638, Japan;
| |
Collapse
|
17
|
Smolarz B, Durczyński A, Romanowicz H, Hogendorf P. The Role of microRNA in Pancreatic Cancer. Biomedicines 2021; 9:biomedicines9101322. [PMID: 34680441 PMCID: PMC8533140 DOI: 10.3390/biomedicines9101322] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are small ribonucleic acid molecules that play a key role in regulating gene expression. The increasing number of studies undertaken on the functioning of microRNAs in the tumor formation clearly indicates their important potential in oncological therapy. Pancreatic cancer is one of the deadliest cancers. The expression of miRNAs released into the bloodstream appears to be a good indicator of progression and evaluation of the aggressiveness of pancreatic cancer, as indicated by studies. The work reviewed the latest literature on the importance of miRNAs for pancreatic cancer development.
Collapse
Affiliation(s)
- Beata Smolarz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland;
- Correspondence: ; Tel.: +48-42-271-1290
| | - Adam Durczyński
- Department of General and Transplant Surgery, N. Barlicki Memorial Clinical Hospital, Medical University of Lodz, 90-153 Lodz, Poland; (A.D.); (P.H.)
| | - Hanna Romanowicz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland;
| | - Piotr Hogendorf
- Department of General and Transplant Surgery, N. Barlicki Memorial Clinical Hospital, Medical University of Lodz, 90-153 Lodz, Poland; (A.D.); (P.H.)
| |
Collapse
|
18
|
Shen J, Shu Q. Silencing of lncRNA MEG8 Represses the Viability, Migration, and Invasion of Wilms' Tumor Cells through Mediating miR-23a-3p/CRK Axis. Urol Int 2021; 106:1075-1087. [PMID: 34518485 DOI: 10.1159/000518502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 07/14/2021] [Indexed: 11/19/2022]
Abstract
PURPOSE Compelling evidence has unveiled the importance of long noncoding RNAs (lncRNAs) in malignant behavior of Wilms' tumor (WT). Hereon, we intend to assess the function and associated molecular mechanism of lncRNA maternally expressed gene 8 (MEG8) in WT cells. METHODS Expression levels of MEG8, miR-23a-3p, and CT10 regulator of kinase (CRK) were determined by quantitative real-time polymerase chain reaction. Cell viability was assessed by MTT assay. Besides, wound healing assay and transwell assay were applied to examine abilities of cell migration and invasion, respectively. Dual-luciferase reporter assay was employed to test the interplay among MEG8, miR-23a-3p, and CRK. Western blot was used to detect relative protein expression of CRK. RESULTS MEG8 and CRK expression was elevated, while miR-23a-3p expression was decreased in WT tissues and cells. The histologic type, lymphatic metastasis, and National Wilms Tumor Study (NWTS) stage were associated with the expression of MEG8, miR-23a-3p, and CRK in WT patients. MEG8 knockdown or miR-23a-3p overexpression restrained WT cells in cell viability, migration, and invasiveness in vitro. As to mechanism exploration, MEG8 could directly bind to miR-23a-3p and then miR-23a-3p targeted CRK. MEG8 was inversely correlated with miR-23a-3p and positively correlated with CRK in WT tissues. Meantime, miR-23a-3p was inversely correlated with CRK in WT tissues. Additionally, MEG8 knockdown-mediated suppressive impacts on cell viability, migration, and invasiveness were reversed by overexpression of CRK or repression of miR-23a-3p in WT cells. CONCLUSIONS The cell viability, migration, and invasiveness of WT cells were repressed by MEG8 knockdown via targeting the miR-23a-3p/CRK axis.
Collapse
Affiliation(s)
- Jing Shen
- National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou City, China,
| | - Qiang Shu
- National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou City, China
| |
Collapse
|
19
|
Li K, Zhu X, Yuan C. Inhibition of miR-185-3p Confers Erlotinib Resistance Through Upregulation of PFKL/MET in Lung Cancers. Front Cell Dev Biol 2021; 9:677860. [PMID: 34368128 PMCID: PMC8335405 DOI: 10.3389/fcell.2021.677860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/21/2021] [Indexed: 01/20/2023] Open
Abstract
Erlotinib (ER), as an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), has a significant therapeutic effect in lung cancers. However, EGFR TKI resistance inevitably occurs after treatment for approximately 12 months, which weakens its antitumor effect. Here, we identified miR-185-3p as a significantly downregulated microRNA responsible for acquired EGFR TKI resistance in cells and patients with lung cancer. qRT-PCR and Western Blot were performed to determine the relative expression of miR-185-3p in ER-resistant tumor tissues and cells. The viability and apoptosis of lung cancer cells were evaluated by Cell Counting Kit-8 (CCK8) assay and flow cytometry, respectively. The binding between miR-185-3p and liver-type phosphofructokinase (PFKL) was verified by dual luciferase assay. It was found that overexpression of miR-185-3p conferred ER sensitivity in lung cancer cell lines. MiR-185-3p was downregulated in ER-resistant lung cancer cells (H1299/ER and A549/ER). MiR-185-3p inhibited proliferation and induced cell apoptosis in ER-resistant cells. Mechanistically, miR-185-3p downregulation contributed to ER resistance through upregulating the PFKL. Moreover, Mesenchymal to epithelial transition (MET) oncoprotein promoted EGFR-TKI resistance by regulating miR-185-3p and PFKL. These findings revealed a novel mechanism in which downregulation of miR-185-3p may induce overexpression of PFKL and MET and confer ER resistance in lung cells. Combination of PFKL/MET inhibitors and EGFR TKIs could be a rational therapeutic approach for lung cancer patients with EGFR mutation.
Collapse
Affiliation(s)
- Ke Li
- Department of Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Xinling Zhu
- Department of Operating Room, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Conghu Yuan
- Department of Anesthesiology, Yancheng Third People's Hospital, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, China
| |
Collapse
|
20
|
Xu D, Yang F, Fan Y, Jing W, Wen J, Miao W, Ding X, Yang H. LncRNA DLEU1 Contributes to the Growth and Invasion of Colorectal Cancer via Targeting miR-320b/PRPS1. Front Oncol 2021; 11:640276. [PMID: 34113562 PMCID: PMC8185642 DOI: 10.3389/fonc.2021.640276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 05/06/2021] [Indexed: 11/13/2022] Open
Abstract
Growing evidences suggest that long non-coding RNAs (lncRNAs) are closely correlated to the development of human cancer, such as colorectal cancer (CRC). A previous report suggested that DLEU1 accelerated CRC development. However, DLEU1's underlying mechanism in CRC remains unclear. In our study, the level of DLEU1 in CRC tissues is investigated by qRT-PCR. Our data exhibited that DLEU1 level was observably increased in CRC tissues and CRC cell lines and was closely associated with bad prognosis of CRC patients. CRC cell proliferation was repressed by sh-LncRNA DLEU1, whereas cell apoptosis was markedly stimulated. Moreover, knockdown of DLEU1 inhibited cell migration and invasion. Mechanistically, through interacting with miR-320b in CRC, DLEU1 promoted the level of PRPS1 which was a target of miR-320b. The rescue experiment confirmed that knockdown of DLEU1 repressed cell proliferation, migration and invasion while stimulated cell apoptosis via miR-320b/phosphoribosyl pyrophosphate synthetase 1 (PRPS1) axis. Meanwhile, the data of xenograft model exhibited that inhibition of DLEU1 suppressed tumor growth in vivo. In summary, DLEU1 knockdown may repress PRPS1 expression via miR-320b, and then repress cell proliferation, migration and invasion while stimulate cell apoptosis. Our research may provide a novel target for the treatment of CRC.
Collapse
Affiliation(s)
- Dong Xu
- Department of General Surgery, Gaochun People's Hospital, Nanjing, China
| | - Fei Yang
- Department of Internal Medicine, Gaochun People's Hospital, Nanjing, China
| | - Yongchao Fan
- Center for New Drug Safety Evaluation and Research, Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China
| | - Wanling Jing
- Center for New Drug Safety Evaluation and Research, Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China
| | - Jianfei Wen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wen Miao
- Center for New Drug Safety Evaluation and Research, Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China
| | - Xiaoyan Ding
- Center for New Drug Safety Evaluation and Research, Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China
| | - Hongbao Yang
- Center for New Drug Safety Evaluation and Research, Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
21
|
Zhang M, Gao F, Yu X, Zhang Q, Sun Z, He Y, Guo W. LINC00261: a burgeoning long noncoding RNA related to cancer. Cancer Cell Int 2021; 21:274. [PMID: 34022894 PMCID: PMC8141177 DOI: 10.1186/s12935-021-01988-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/15/2021] [Indexed: 02/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs), are transcripts longer than 200 nucleotides that are considered to be vital regulators of many cellular processes, particularly in tumorigenesis and cancer progression. long intergenic non-protein coding RNA 261 (LINC00261), a recently discovered lncRNA, is abnormally expressed in a variety of human malignancies, including pancreatic cancer, gastric cancer, colorectal cancer, lung cancer, hepatocellular carcinoma, breast cancer, laryngeal carcinoma, endometrial carcinoma, esophageal cancer, prostate cancer, choriocarcinoma, and cholangiocarcinoma. LINC00261 mainly functions as a tumor suppressor that regulates a variety of biological processes in the above-mentioned cancers, such as cell proliferation, apoptosis, motility, chemoresistance, and tumorigenesis. In addition, the up-regulation of LINC00261 is closely correlated with both favorable prognoses and many clinical characteristics. In the present review, we summarize recent research documenting the expression and biological mechanisms of LINC00261 in tumor development. These findings suggest that LINC00261, as a tumor suppressor, has bright prospects both as a biomarker and a therapeutic target.
Collapse
Affiliation(s)
- Menggang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshedong Road, Erqi District, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, 450052, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Fang Gao
- Health Management Center, Binzhou People's Hospital, Binzhou, 256600, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshedong Road, Erqi District, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, 450052, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Qiyao Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshedong Road, Erqi District, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, 450052, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Zongzong Sun
- Department of Obstetrics and Gynaecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshedong Road, Erqi District, Zhengzhou, 450052, China.
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, 450052, Zhengzhou, China.
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China.
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshedong Road, Erqi District, Zhengzhou, 450052, China.
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, 450052, Zhengzhou, China.
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China.
| |
Collapse
|
22
|
Islam Khan MZ, Law HKW. Cancer Susceptibility Candidate 9 (CASC9) Promotes Colorectal Cancer Carcinogenesis via mTOR-Dependent Autophagy and Epithelial-Mesenchymal Transition Pathways. Front Mol Biosci 2021; 8:627022. [PMID: 34017854 PMCID: PMC8129023 DOI: 10.3389/fmolb.2021.627022] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/09/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most common cancer worldwide. Many recent studies have demonstrated that different long non-coding RNAs (lncRNAs) are involved in the initiation, advancement, and metastasis of many cancers including CRC. Cancer susceptibility candidate 9 (CASC9) is an lncRNA that has been reported in many cancers, but its role in CRC is poorly understood. In this study, we aimed to examine the expression of CASC9 in CRC cell lines and to determine the mechanism of action of CASC9 in CRC carcinogenesis. METHODS The expression of CASC9 in CRC tissues was compared with normal samples from publicly available datasets in The Cancer Genome Atlas (TCGA) and The Encyclopedia of RNA Interactomes (ENCORI). CASC9 expression was further verified in four CRC cell lines (DLD1, HT-29, SW480, and HCT-116) and normal colorectal cell line (CCD-112CoN) by real-time quantitative polymerase chain reaction (RT-qPCR). After gene silencing in HCT-116 and SW480, Cell Counting Kit-8 assay, clonogenic assay, and wound healing assay were performed to evaluate cell proliferation, viability, and migration index of cells. Western blotting was used to explore the key pathways involved. RESULTS CASC9 was significantly upregulated as analyzed from both public datasets TCGA and ENCORI where its overexpression was associated with poor survival of CRC patients. Similarly, CASC9 was significantly overexpressed in the CRC cell lines compared with normal cells studied. The silencing of CASC9 in HCT-116 and SW480 attenuated cell proliferation and migration significantly. Furthermore, pathways investigations showed that silencing of CASC9 significantly induced autophagy, promoted AMP-activated protein kinase (AMPK) phosphorylation, inhibited mTOR and AKT signaling pathways, and altered epithelial-mesenchymal transition (EMT) marker protein expression. CONCLUSION We demonstrated that silencing of CASC9 contributes to the reduced CRC cell proliferation and migration by regulating autophagy and AKT/mTOR/EMT signaling. Therefore, CASC9 plays an important role in carcinogenesis, and its expression may act as a prognostic biomarker and a potential therapeutic target of CRC management.
Collapse
Affiliation(s)
| | - Helen Ka Wai Law
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
23
|
Liu ZQ, Zhang GT, Jiang L, Li CQ, Chen QT, Luo DQ. Construction and Comparison of ceRNA Regulatory Network for Different Age Female Breast Cancer. Front Genet 2021; 12:603544. [PMID: 33968126 PMCID: PMC8097183 DOI: 10.3389/fgene.2021.603544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/15/2021] [Indexed: 01/14/2023] Open
Abstract
Studies have shown the difference appearing among the prognosis of patients in different age groups. However, the molecular mechanism implicated in this disparity have not been elaborated. In this study, expression profiles of female breast cancer (BRCA) associated mRNAs, lncRNAs and miRNAs were downloaded from the TCGA database. The sample were manually classified into three groups according to their age at initial pathological diagnosis: young (age ≤ 39 years), elderly (age ≥ 65 years), and intermediate (age 40-64 years). lncRNA-miRNA-mRNA competitive endogenous RNA (ceRNA) network was respectively constructed for different age BRCA. Then, the biological functions of differentially expressed mRNAs (DEmRNAs) in ceRNA network were further investigated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Finally, survival analysis was used to identify prognostic biomarkers for different age BRCA patients. We identified 13 RNAs, 38 RNAs and 40 RNAs specific to patients aged ≤ 39 years, aged 40-64 years, and aged ≥ 65 years, respectively. Furthermore, the unique pathways were mainly enriched in cytokine-cytokine receptor interaction in patients aged 40-64 years, and were mainly enriched in TGF-beta signaling pathway in patients aged ≥ 65 years. According to the survival analysis, AGAP11, has-mir-301b, and OSR1 were respectively functioned as prognostic biomarkers in young, intermediate, and elderly group. In summary, our study identified the differences in the ceRNA regulatory networks and provides an effective bioinformatics basis for further understanding of the pathogenesis and predicting outcomes for different age BRCA.
Collapse
Affiliation(s)
- Zhi-Qin Liu
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Institute of Life Science and Green Development, College of Pharmaceutical Science, Hebei University, Baoding, China
| | - Gao-Tao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Life Science, Hebei University, Baoding, China
| | - Li Jiang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Life Science, Hebei University, Baoding, China
| | - Chun-Qing Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Life Science, Hebei University, Baoding, China
| | - Que-Ting Chen
- Department of Breast Surgery, Affiliated Hospital of Hebei University, Hebei University, Baoding, China
| | - Du-Qiang Luo
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Life Science, Hebei University, Baoding, China
| |
Collapse
|
24
|
Meng X, Deng Y, He S, Niu L, Zhu H. m 6A-Mediated Upregulation of LINC00857 Promotes Pancreatic Cancer Tumorigenesis by Regulating the miR-150-5p/E2F3 Axis. Front Oncol 2021; 11:629947. [PMID: 33680969 PMCID: PMC7930559 DOI: 10.3389/fonc.2021.629947] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/05/2021] [Indexed: 12/12/2022] Open
Abstract
The mortality and morbidity rates of pancreatic cancer (PC) have been increasing over the past two decades. Recent evidence indicates that long non-coding RNAs (lncRNAs) are usually dysregulated in the tumorigenesis and progression of PC. In the present study, we showed that the expression of LINC00857 was upregulated in PC and associated with poor prognosis based on the Gene Expression Profiling Interactive Analysis (GEPIA) database and validated in our PC tissues and cell lines. N6-Methyladenosine (m6A) was highly enriched within LINC00857 and enhanced its RNA stability. Knockdown of LINC00857 remarkably inhibited the proliferation and promoted the apoptosis of PC cells. Then, by using bioinformation analysis and verified experiments, we identified that LINC00857 functioned as a competing endogenous RNA (ceRNA) for sponging miR-150-5p, leading to the upregulation of its target E2F3 in PC cells. Taken above, our study revealed a potential ceRNA regulatory pathway in which LINC00857 modulates E2F3 expression by binding to miR-150-5p, ultimately promoting tumorigenesis in PC. LINC00857/miR-150-5p/E2F3 regulatory axis may be taken as an alternative therapeutic target for treating PC.
Collapse
Affiliation(s)
- Xiangrui Meng
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yanyao Deng
- Department of Neurology, The First Hospital of Changsha, Changsha, China
| | - Shuhan He
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Li Niu
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hongwei Zhu
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
25
|
Yun Z, Meng F, Li S, Zhang P. Long non-coding RNA CERS6-AS1 facilitates the oncogenicity of pancreatic ductal adenocarcinoma by regulating the microRNA-15a-5p/FGFR1 axis. Aging (Albany NY) 2021; 13:6041-6054. [PMID: 33581689 PMCID: PMC7950275 DOI: 10.18632/aging.202540] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022]
Abstract
The long non-coding RNA CERS6 antisense RNA 1 (CERS6-AS1) has critical regulatory roles in breast cancer progression. Here, we determined CERS6-AS1 expression in pancreatic ductal adenocarcinoma (PDAC) and the roles of CERS6-AS1 in PDAC carcinogenesis. The mechanisms underlying the regulatory actions of CERS6-AS1 in PDAC cells were elucidated in detail. CERS6-AS1 expression was evidently increased in PDAC tissues and cell lines. Patients with PDAC having high CERS6-AS1 expression had shorter overall survival periods than those having low CERS6-AS1 expression. Functionally, the knockdown of CERS6-AS1 attenuated the proliferation, migration, and invasion and stimulated apoptosis of PDAC cells in vitro. Additionally, CERS6-AS1 depletion decreased PDAC tumor growth in vivo. Mechanistically, CERS6-AS1 could competitively bind to microRNA-15a-5p (miR-15a-5p) and effectively work as a molecular sponge in PDAC cells, resulting in the upregulation of fibroblast growth factor receptor 1 (FGFR1), a direct target of miR-15a-5p. Rescue experiments revealed that miR-15a-5p downregulation or FGFR1 restoration rescued the effects of CERS6-AS1 knockdown on the behaviors of PDAC cells. In conclusion, CERS6-AS1 promoted the oncogenicity of PDAC by serving as a competing endogenous RNA to sequester miR-15a-5p and increase FGFR1 expression, which highlights the potential of the CERS6-AS1/miR-15a-5p/FGFR1 pathway as an effective target for cancer therapy.
Collapse
Affiliation(s)
- Zhennan Yun
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Fanqi Meng
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Shiquan Li
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Ping Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| |
Collapse
|
26
|
Li X, Li J, Lu P, Li M. LINC00261 relieves the progression of sepsis-induced acute kidney injury by inhibiting NF-κB activation through targeting the miR-654-5p/SOCS3 axis. J Bioenerg Biomembr 2021; 53:129-137. [PMID: 33481135 DOI: 10.1007/s10863-021-09874-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/13/2021] [Indexed: 12/16/2022]
Abstract
Sepsis is a life-threatening disease, which can cause the dysfunction of multiple organs, including kidney. Recently, a number of studies found that the long non-coding RNA (lncRNA) is closely associated with the development and progression of sepsis; however, the role of long intergenic non-protein coding RNA 261 (LINC00261) in sepsis-induced acute kidney injury is poorly understood. In this study, we found the expression of LINC00261 was significantly decreased in the serum of patients with sepsis than healthy controls. A similar result was also observed in the mouse model of sepsis induced by lipopolysaccharide (LPS). Further investigations revealed that overexpression of LINC00261 improved the viability, suppressed the apoptosis and reduced the generation of inflammatory cytokines in LPS-treated HK-2 cells. Mechanistically, we confirmed that LINC00261 could function as a sponge to combine with microRNA-654-5p (miR-654-5p) which inhibits nuclear factor-κB (NF-κB) activity by targeting suppressor of cytokine signaling 3 (SOCS3). In conclusion, our results demonstrate that LINC00261 may regulate the progression of sepsis-induced acute kidney injury via the miR-654-5p/SOCS3/NF-κB pathway and therefore provides a new insight into the treatment of this disease.
Collapse
Affiliation(s)
- Xinying Li
- Department of Emergency, Shandong Otolaryngological Hospital Affiliated to Shandong University, No.4 DuanXing West Road, Huaiyin District, Jinan, 250022, Shandong Province, China
| | - Jinying Li
- Department of Emergency, Shandong Otolaryngological Hospital Affiliated to Shandong University, No.4 DuanXing West Road, Huaiyin District, Jinan, 250022, Shandong Province, China
| | - Ping Lu
- Department of Emergency, The Fourth People's Hospital of Jinan, Jinan, 250031, Shandong Province, China
| | - Mingzhe Li
- Department of Emergency, Shandong Otolaryngological Hospital Affiliated to Shandong University, No.4 DuanXing West Road, Huaiyin District, Jinan, 250022, Shandong Province, China.
| |
Collapse
|
27
|
Zhai S, Xu Z, Xie J, Zhang J, Wang X, Peng C, Li H, Chen H, Shen B, Deng X. Epigenetic silencing of LncRNA LINC00261 promotes c-myc-mediated aerobic glycolysis by regulating miR-222-3p/HIPK2/ERK axis and sequestering IGF2BP1. Oncogene 2020; 40:277-291. [PMID: 33122827 PMCID: PMC7808938 DOI: 10.1038/s41388-020-01525-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/01/2020] [Accepted: 10/13/2020] [Indexed: 12/19/2022]
Abstract
Long noncoding RNAs have been identified as key regulators in the progression of various cancers. LINC00261 has been reported as a tumor suppressor in multiple cancers. However, its function and underlying mechanisms in pancreatic cancer remain largely unclear. Quantitative real-time PCR was performed to detect RNA expression. In situ hybridization was used to discover the subcellular location. The direct binding of LINC00261 to miR-222-3p was verified using a dual-luciferase reporter assay and RNA immunoprecipitation. LINC00261-binding proteins were detected using an RNA pulldown assay. LINC00261 was downregulated in pancreatic cancer tissues and cell lines. Its reduced expression was correlated with advanced pathological stage and poor prognosis. Forced expression of LINC00261 suppressed pancreatic cancer glycolysis and proliferation and induced cell cycle arrest and apoptosis. Mechanistically, downregulation of LINC00261 was caused by hypermethylation of the CpG island in the promoter region and EZH2-mediated histone H3 lysine 27 trimethylation. Moreover, LINC00261 exerted its biological function by binding to miR-222-3p to activate the HIPK2/ERK/c-myc pathway. In addition, LINC00261 could also reduce c-myc expression by sequestering IGF2BP1. Our study suggests that LINC00261 functions as a tumor suppressor in pancreatic cancer and identifies novel epigenetic and posttranscriptional regulatory mechanisms of LINC00261, which contribute to the targeted therapy of pancreatic cancer.
Collapse
Affiliation(s)
- Shuyu Zhai
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zhiwei Xu
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Junjie Xie
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jun Zhang
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xinjing Wang
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Chenghong Peng
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Hongwei Li
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Hao Chen
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China. .,Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China. .,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China. .,Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China. .,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Xiaxing Deng
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China. .,Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China. .,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|