1
|
Zhang H, Wu J, Fu D, Zhang M, Wang L, Gong M. Prokaryotic expression, purification, and the in vitro and in vivo protection study of dehydrin WDHN2 from Triticum aestivum. PROTOPLASMA 2024; 261:771-781. [PMID: 38342804 DOI: 10.1007/s00709-024-01933-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 01/28/2024] [Indexed: 02/13/2024]
Abstract
Dehydrins proteins accumulate and play important protective roles in most plants during abiotic stresses. The objective of this study was to characterize a YSK2-type dehydrin gene, WDHN2, isolated from Triticum aestivum previously. In this work, wheat dehydrin WDHN2 was expressed in Escherichia coli and purified by immobilized metal affinity chromatography, which exhibited as a single band by sodium dodecyl sulfonate polyacrylamide gel electrophoresis and western blotting. We show that WDHN2 is capable of alleviating lactate dehydrogenase inactivation from heat and desiccation in vitro enzyme activity protection assay. In vivo assay of Escherichia coli viability demonstrates the enhancement of cell survival by the overexpression of WDHN2. The protein aggregation prevention assay explores that WDHN2 has a broad protective effect on the cellular proteome. The results show that WDHN2 is mainly accumulated in the nucleus and cytosol, suggesting that this dehydrin may exert its function in both cellular compartments. Our data suggest that WDHN2 acts as a chaperone molecular in vivo.
Collapse
Affiliation(s)
- Hongmei Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, Henan, China
- Key Laboratory of Microbial Resources Exploitation and Utilization, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| | - Jiafa Wu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, Henan, China
- Key Laboratory of Microbial Resources Exploitation and Utilization, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| | - Dandan Fu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| | - Min Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| | - Lunji Wang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| | - Minggui Gong
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, Henan, China.
- Key Laboratory of Microbial Resources Exploitation and Utilization, Henan University of Science and Technology, Luoyang, 471023, Henan, China.
| |
Collapse
|
2
|
Hernández‐Sánchez I, Rindfleisch T, Alpers J, Dulle M, Garvey CJ, Knox‐Brown P, Miettinen MS, Nagy G, Pusterla JM, Rekas A, Shou K, Stadler AM, Walther D, Wolff M, Zuther E, Thalhammer A. Functional in vitro diversity of an intrinsically disordered plant protein during freeze-thawing is encoded by its structural plasticity. Protein Sci 2024; 33:e4989. [PMID: 38659213 PMCID: PMC11043620 DOI: 10.1002/pro.4989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/09/2024] [Accepted: 03/31/2024] [Indexed: 04/26/2024]
Abstract
Intrinsically disordered late embryogenesis abundant (LEA) proteins play a central role in the tolerance of plants and other organisms to dehydration brought upon, for example, by freezing temperatures, high salt concentration, drought or desiccation, and many LEA proteins have been found to stabilize dehydration-sensitive cellular structures. Their conformational ensembles are highly sensitive to the environment, allowing them to undergo conformational changes and adopt ordered secondary and quaternary structures and to participate in formation of membraneless organelles. In an interdisciplinary approach, we discovered how the functional diversity of the Arabidopsis thaliana LEA protein COR15A found in vitro is encoded in its structural repertoire, with the stabilization of membranes being achieved at the level of secondary structure and the stabilization of enzymes accomplished by the formation of oligomeric complexes. We provide molecular details on intra- and inter-monomeric helix-helix interactions, demonstrate how oligomerization is driven by an α-helical molecular recognition feature (α-MoRF) and provide a rationale that the formation of noncanonical, loosely packed, right-handed coiled-coils might be a recurring theme for homo- and hetero-oligomerization of LEA proteins.
Collapse
Affiliation(s)
- Itzell Hernández‐Sánchez
- Max‐Planck Institute of Molecular Plant PhysiologyPotsdamGermany
- Present address:
Center for Desert Agriculture, Biological and Environmental Science and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Tobias Rindfleisch
- Max‐Planck Institute of Molecular Plant PhysiologyPotsdamGermany
- Physical BiochemistryUniversity of PotsdamPotsdamGermany
- Department of ChemistryUniversity of BergenBergenNorway
- Computational Biology Unit, Department of InformaticsUniversity of BergenBergenNorway
| | - Jessica Alpers
- Max‐Planck Institute of Molecular Plant PhysiologyPotsdamGermany
| | - Martin Dulle
- Jülich Centre for Neutron Science (JCNS‐1) and Institute of Biological Information Processing (IBI‐8: Neutron Scattering and Biological Matter)Forschungszentrum Jülich GmbHJülichGermany
| | | | - Patrick Knox‐Brown
- Physical BiochemistryUniversity of PotsdamPotsdamGermany
- Present address:
Department of Discovery Pharmaceutical SciencesMerck & Co., Inc.South San FranciscoCaliforniaUSA
| | - Markus S. Miettinen
- Department of ChemistryUniversity of BergenBergenNorway
- Computational Biology Unit, Department of InformaticsUniversity of BergenBergenNorway
- Department of Theory and Bio‐SystemsMax Planck Institute of Colloids and InterfacesPotsdamGermany
| | - Gergely Nagy
- Neutron Scattering DivisionOak Ridge National LaboratoryOak RidgeTennesseeUSA
| | - Julio M. Pusterla
- Jülich Centre for Neutron Science (JCNS‐1) and Institute of Biological Information Processing (IBI‐8: Neutron Scattering and Biological Matter)Forschungszentrum Jülich GmbHJülichGermany
| | - Agata Rekas
- Australian Nuclear Science and Technology Organization (ANSTO)KirraweeNew South WalesAustralia
| | - Keyun Shou
- Jülich Centre for Neutron Science (JCNS‐1) and Institute of Biological Information Processing (IBI‐8: Neutron Scattering and Biological Matter)Forschungszentrum Jülich GmbHJülichGermany
- Australian Nuclear Science and Technology Organization (ANSTO)KirraweeNew South WalesAustralia
- Institute of Physical Chemistry, RWTH Aachen UniversityAachenGermany
| | - Andreas M. Stadler
- Jülich Centre for Neutron Science (JCNS‐1) and Institute of Biological Information Processing (IBI‐8: Neutron Scattering and Biological Matter)Forschungszentrum Jülich GmbHJülichGermany
- Institute of Physical Chemistry, RWTH Aachen UniversityAachenGermany
| | - Dirk Walther
- Max‐Planck Institute of Molecular Plant PhysiologyPotsdamGermany
| | - Martin Wolff
- Physical BiochemistryUniversity of PotsdamPotsdamGermany
| | - Ellen Zuther
- Max‐Planck Institute of Molecular Plant PhysiologyPotsdamGermany
- Present address:
Center of Artificial Intelligence in Public Health Research (ZKI‐PH)Robert Koch InstituteBerlinGermany
| | | |
Collapse
|
3
|
Su J, Xu X, Cseke LJ, Whittier S, Zhou R, Zhang Z, Dietz Z, Singh K, Yang B, Chen SY, Picking W, Zou X, Gassmann W. Cell-specific polymerization-driven biomolecular condensate formation fine-tunes root tissue morphogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587845. [PMID: 38617336 PMCID: PMC11014531 DOI: 10.1101/2024.04.02.587845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Formation of biomolecular condensates can be driven by weak multivalent interactions and emergent polymerization. However, the mechanism of polymerization-mediated condensate formation is less studied. We found lateral root cap cell (LRC)-specific SUPPRESSOR OF RPS4-RLD1 (SRFR1) condensates fine-tune primary root development. Polymerization of the SRFR1 N-terminal domain is required for both LRC condensate formation and optimal root growth. Surprisingly, the first intrinsically disordered region (IDR1) of SRFR1 can be functionally substituted by a specific group of intrinsically disordered proteins known as dehydrins. This finding facilitated the identification of functional segments in the IDR1 of SRFR1, a generalizable strategy to decode unknown IDRs. With this functional information we further improved root growth by modifying the SRFR1 condensation module, providing a strategy to improve plant growth and resilience.
Collapse
|
4
|
Karas M, Vešelényiová D, Boszorádová E, Nemeček P, Gerši Z, Moravčíková J. Comparative Analysis of Dehydrins from Woody Plant Species. Biomolecules 2024; 14:250. [PMID: 38540671 PMCID: PMC10967807 DOI: 10.3390/biom14030250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/26/2024] [Accepted: 02/18/2024] [Indexed: 11/11/2024] Open
Abstract
We conducted analyses on 253 protein sequences (Pfam00257) derived from 25 woody plant species, including trees, shrubs, and vines. Our goal was to gain insights into their architectural types, biochemical characteristics, and potential involvement in mitigating abiotic stresses, such as drought, cold, or salinity. The investigated protein sequences (253) comprised 221 angiosperms (85 trees/shrubs and 36 vines) and 32 gymnosperms. Our sequence analyses revealed the presence of seven architectural types: Kn, KnS, SKn, YnKn, YnSKn, FSKn, and FnKn. The FSKn type predominated in tree and shrub dehydrins of both gymnosperms and angiosperms, while the YnSKn type was more prevalent in vine dehydrins. The YnSKn and YnKn types were absent in gymnosperms. Gymnosperm dehydrins exhibited a shift towards more negative GRAVY scores and Fold Indexes. Additionally, they demonstrated a higher Lys content and lower His content. By analyzing promoter sequences in the angiosperm species, including trees, shrubs, and vines, we found that these dehydrins are induced by the ABA-dependent and light-responsive pathways. The presence of stress- and hormone-related cis-elements suggests a protective effect against dehydration, cold, or salinity. These findings could serve as a foundation for future studies on woody dehydrins, especially in the context of biotechnological applications.
Collapse
Affiliation(s)
- Milan Karas
- Institute of Biology and Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Nám. J. Herdu 2, 917 01 Trnava, Slovakia; (M.K.); (D.V.); (Z.G.)
| | - Dominika Vešelényiová
- Institute of Biology and Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Nám. J. Herdu 2, 917 01 Trnava, Slovakia; (M.K.); (D.V.); (Z.G.)
| | - Eva Boszorádová
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center Slovak Academy of Sciences, Akademická 2, P.O. Box 39A, 950 07 Nitra, Slovakia;
| | - Peter Nemeček
- Institute of Chemistry and Environmental Sciences, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Nám. J. Herdu 2, 917 01 Trnava, Slovakia;
| | - Zuzana Gerši
- Institute of Biology and Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Nám. J. Herdu 2, 917 01 Trnava, Slovakia; (M.K.); (D.V.); (Z.G.)
| | - Jana Moravčíková
- Institute of Biology and Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Nám. J. Herdu 2, 917 01 Trnava, Slovakia; (M.K.); (D.V.); (Z.G.)
| |
Collapse
|
5
|
Hsiao AS. Protein Disorder in Plant Stress Adaptation: From Late Embryogenesis Abundant to Other Intrinsically Disordered Proteins. Int J Mol Sci 2024; 25:1178. [PMID: 38256256 PMCID: PMC10816898 DOI: 10.3390/ijms25021178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Global climate change has caused severe abiotic and biotic stresses, affecting plant growth and food security. The mechanical understanding of plant stress responses is critical for achieving sustainable agriculture. Intrinsically disordered proteins (IDPs) are a group of proteins without unique three-dimensional structures. The environmental sensitivity and structural flexibility of IDPs contribute to the growth and developmental plasticity for sessile plants to deal with environmental challenges. This article discusses the roles of various disordered proteins in plant stress tolerance and resistance, describes the current mechanistic insights into unstructured proteins such as the disorder-to-order transition for adopting secondary structures to interact with specific partners (i.e., cellular membranes, membrane proteins, metal ions, and DNA), and elucidates the roles of liquid-liquid phase separation driven by protein disorder in stress responses. By comparing IDP studies in animal systems, this article provides conceptual principles of plant protein disorder in stress adaptation, reveals the current research gaps, and advises on the future research direction. The highlighting of relevant unanswered questions in plant protein disorder research aims to encourage more studies on these emerging topics to understand the mechanisms of action behind their stress resistance phenotypes.
Collapse
Affiliation(s)
- An-Shan Hsiao
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
6
|
Cabras S, Nueda MEC. Transfer Learning in Multiple Hypothesis Testing. ENTROPY (BASEL, SWITZERLAND) 2024; 26:49. [PMID: 38248175 PMCID: PMC11154554 DOI: 10.3390/e26010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/15/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024]
Abstract
In this investigation, a synthesis of Convolutional Neural Networks (CNNs) and Bayesian inference is presented, leading to a novel approach to the problem of Multiple Hypothesis Testing (MHT). Diverging from traditional paradigms, this study introduces a sequence-based uncalibrated Bayes factor approach to test many hypotheses using the same family of sampling parametric models. A two-step methodology is employed: initially, a learning phase is conducted utilizing simulated datasets encompassing a wide spectrum of null and alternative hypotheses, followed by a transfer phase applying this fitted model to real-world experimental sequences. The outcome is a CNN model capable of navigating the complex domain of MHT with improved precision over traditional methods, also demonstrating robustness under varying conditions, including the number of true nulls and dependencies between tests. Although indications of empirical evaluations are presented and show that the methodology will prove useful, more work is required to provide a full evaluation from a theoretical perspective. The potential of this innovative approach is further illustrated within the critical domain of genomics. Although formal proof of the consistency of the model remains elusive due to the inherent complexity of the algorithms, this paper also provides some theoretical insights and advocates for continued exploration of this methodology.
Collapse
Affiliation(s)
- Stefano Cabras
- Department of Statistics, University Carlos III of Madrid, 28903 Madrid, Spain
| | | |
Collapse
|
7
|
Li X, Feng H, Liu S, Cui J, Liu J, Shi M, Zhao J, Wang L. Dehydrin CaDHN2 Enhances Drought Tolerance by Affecting Ascorbic Acid Synthesis under Drought in Peppers. PLANTS (BASEL, SWITZERLAND) 2023; 12:3895. [PMID: 38005792 PMCID: PMC10675185 DOI: 10.3390/plants12223895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023]
Abstract
Peppers (Capsicum annuum L.), as a horticultural crop with one of the highest ascorbic acid contents, are negatively affected by detrimental environmental conditions both in terms of quality and productivity. In peppers, the high level of ascorbic acid is not only a nutrient substance but also plays a role in environmental stress, i.e., drought stress. When suffering from drought stress, plants accumulate dehydrins, which play important roles in the stress response. Here, we isolated an SK3-type DHN gene CaDHN2 from peppers. CaDHN2 was located in the nucleus, cytoplasm, and cell membrane. In CaDHN2-silenced peppers, which are generated by virus-induced gene silencing (VIGS), the survival rate is much lower, the electrolytic leakage is higher, and the accumulation of reactive oxygen species (ROS) is greater when compared with the control under drought stress. Moreover, when CaDHN2 (CaDHN2-OE) is overexpressed in Arabidopsis, theoverexpressing plants show enhanced drought tolerance, increased antioxidant enzyme activities, and lower ROS content. Based on yeast two-hybrid (Y2H), GST-pull down, and bimolecular fluorescence complementation (BiFC) results, we found that CaDHN2 interacts with CaGGP1, the key enzyme in ascorbic acid (AsA) synthesis, in the cytoplasm. Accordingly, the level of ascorbic acid is highly reduced in CaDHN2-silenced peppers, indicating that CaDHN2 interacts with CaGGP1 to affect the synthesis of ascorbic acid under drought stress, thus improving the drought tolerance of peppers. Our research provides a basis for further study of the function of DHN genes.
Collapse
Affiliation(s)
- Xin Li
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China; (X.L.); (S.L.); (J.C.); (J.L.)
| | - Hao Feng
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.F.); (M.S.); (J.Z.)
| | - Sha Liu
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China; (X.L.); (S.L.); (J.C.); (J.L.)
| | - Junjun Cui
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China; (X.L.); (S.L.); (J.C.); (J.L.)
| | - Jiannan Liu
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China; (X.L.); (S.L.); (J.C.); (J.L.)
| | - Mingyu Shi
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.F.); (M.S.); (J.Z.)
| | - Jielong Zhao
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.F.); (M.S.); (J.Z.)
| | - Lihu Wang
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China; (X.L.); (S.L.); (J.C.); (J.L.)
| |
Collapse
|
8
|
Szlachtowska Z, Rurek M. Plant dehydrins and dehydrin-like proteins: characterization and participation in abiotic stress response. FRONTIERS IN PLANT SCIENCE 2023; 14:1213188. [PMID: 37484455 PMCID: PMC10358736 DOI: 10.3389/fpls.2023.1213188] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023]
Abstract
Abiotic stress has a significant impact on plant growth and development. It causes changes in the subcellular organelles, which, due to their stress sensitivity, can be affected. Cellular components involved in the abiotic stress response include dehydrins, widely distributed proteins forming a class II of late embryogenesis abundant protein family with characteristic properties including the presence of evolutionarily conserved sequence motifs (including lysine-rich K-segment, N-terminal Y-segment, and often phosphorylated S motif) and high hydrophilicity and disordered structure in the unbound state. Selected dehydrins and few poorly characterized dehydrin-like proteins participate in cellular stress acclimation and are also shown to interact with organelles. Through their functioning in stabilizing biological membranes and binding reactive oxygen species, dehydrins and dehydrin-like proteins contribute to the protection of fragile organellar structures under adverse conditions. Our review characterizes the participation of plant dehydrins and dehydrin-like proteins (including some organellar proteins) in plant acclimation to diverse abiotic stress conditions and summarizes recent updates on their structure (the identification of dehydrin less conserved motifs), classification (new proposed subclasses), tissue- and developmentally specific accumulation, and key cellular activities (including organellar protection under stress acclimation). Recent findings on the subcellular localization (with emphasis on the mitochondria and plastids) and prospective applications of dehydrins and dehydrin-like proteins in functional studies to alleviate the harmful stress consequences by means of plant genetic engineering and a genome editing strategy are also discussed.
Collapse
|
9
|
Ghanmi S, Smith MA, Zaidi I, Drira M, Graether SP, Hanin M. Isolation and molecular characterization of an FSK 2-type dehydrin from Atriplex halimus. PHYTOCHEMISTRY 2023:113783. [PMID: 37406790 DOI: 10.1016/j.phytochem.2023.113783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
Dehydrins form the group II LEA protein family and are known to play multiple roles in plant stress tolerance and enzyme protection. They harbor a variable number of conserved lysine rich motifs (K-segments) and may also contain three additional conserved motifs (Y-, F- and S-segments). In this work, we report the isolation and characterization of an FSK2-type dehydrin from the halophytic species Atriplex halimus, which we designate as AhDHN1. In silico analysis of the protein sequence revealed that AhDHN1 contains large number of hydrophilic residues, and is predicted to be intrinsically disordered. In addition, it has an FSK2 architecture with one F-segment, one S-segment, and two K-segments. The expression analysis showed that the AhDHN1 transcript is induced by salt and water stress treatments in the leaves of Atriplex seedlings. Moreover, circular dichroism spectrum performed on recombinant AhDHN1 showed that the dehydrin lacks any secondary structure, confirming its intrinsic disorder nature. However, there is a gain of α-helicity in the presence of membrane-like SDS micelles. In vitro assays revealed that AhDHN1 is able to effectively protect enzymatic activity of the lactate dehydrogenase against cold, heat and dehydration stresses. Our findings strongly suggest that AhDHN1 can be involved in the adaptation mechanisms of halophytes to adverse environments.
Collapse
Affiliation(s)
- Siwar Ghanmi
- Plant Physiology & Functional Genomics Research Unit, Institute of Biotechnology, University of Sfax, 3038 Sfax, Tunisia
| | - Margaret A Smith
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Ikram Zaidi
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, BP "1177", University of Sfax, 3018 Sfax, Tunisia
| | - Marwa Drira
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, BP "1177", University of Sfax, 3018 Sfax, Tunisia
| | - Steffen P Graether
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Moez Hanin
- Plant Physiology & Functional Genomics Research Unit, Institute of Biotechnology, University of Sfax, 3038 Sfax, Tunisia.
| |
Collapse
|
10
|
Veerabagu M, van der Schoot C, Turečková V, Tarkowská D, Strnad M, Rinne PLH. Light on perenniality: Para-dormancy is based on ABA-GA antagonism and endo-dormancy on the shutdown of GA biosynthesis. PLANT, CELL & ENVIRONMENT 2023; 46:1785-1804. [PMID: 36760106 DOI: 10.1111/pce.14562] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/23/2023] [Accepted: 02/07/2023] [Indexed: 05/04/2023]
Abstract
Perennial para- and endo-dormancy are seasonally separate phenomena. Whereas para-dormancy is the suppression of axillary buds (AXBs) by a growing shoot, endo-dormancy is the short-day elicited arrest of terminal and AXBs. In hybrid aspen (Populus tremula x P. tremuloides) compromising the apex releases para-dormancy, whereas endo-dormancy requires chilling. ABA and GA are implicated in both phenomena. To untangle their roles, we blocked ABA biosynthesis with fluridone (FD), which significantly reduced ABA levels, downregulated GA-deactivation genes, upregulated the major GA3ox-biosynthetic genes, and initiated branching. Comprehensive GA-metabolite analyses suggested that FD treatment shifted GA production to the non-13-hydroxylation pathway, enhancing GA4 function. Applied ABA counteracted FD effects on GA metabolism and downregulated several GA3/4 -inducible α- and γ-clade 1,3-β-glucanases that hydrolyze callose at plasmodesmata (PD), thereby enhancing PD-callose accumulation. Remarkably, ABA-deficient plants repressed GA4 biosynthesis and established endo-dormancy like controls but showed increased stress sensitivity. Repression of GA4 biosynthesis involved short-day induced DNA methylation events within the GA3ox2 promoter. In conclusion, the results cast new light on the roles of ABA and GA in dormancy cycling. In para-dormancy, PD-callose turnover is antagonized by ABA, whereas in short-day conditions, lack of GA4 biosynthesis promotes callose deposition that is structurally persistent throughout endo-dormancy.
Collapse
Affiliation(s)
| | | | - Veronika Turečková
- Laboratory of Growth Regulators, Faculty of Sciences, Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, Faculty of Sciences, Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Faculty of Sciences, Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Päivi L H Rinne
- Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
11
|
Szabała BM. The cationic nature of lysine-rich segments modulates the structural and biochemical properties of wild potato FSK 3 dehydrin. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:480-488. [PMID: 36512982 DOI: 10.1016/j.plaphy.2022.11.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Dehydrins are hydrophilic stress-induced proteins that are thought to protect cellular machinery from the adverse effect of dehydration caused by low temperature, drought, or salinity. In the previous study, acidic FSK3 dehydrin DHN24 from Solanum sogarandinum was found to accumulate at multiple sites in phloem cells in response to cold treatment. This study investigated the biochemical and structural properties of recombinant DHN24. It was shown that the overexpression of DHN24 in Escherichia coli led to the inhibition of bacterial growth. The purified DHN24 was found to protect lactate dehydrogenase from freeze-induced denaturation. Circular dichroism (CD) analysis showed that DHN24 was disordered in aqueous solutions, but adopted α-helical conformation in a membrane-mimetic environment using sodium dodecyl sulfate micelles. DHN24 also interacted with anionic phosphatidic acid (PA). DHN24 contains four lysine-rich regions including three K-segments and a region upstream of the S-segment. The role of their local cationic nature is unknown. These segments are predicted to form helical structures. The CD analysis of mutant proteins in the membrane-mimetic environment matched these predictions most closely, revealing that the positively charged lysine residues in these regions promoted disorder-to-order transitions. Moreover, the inhibition of bacterial growth and interactions with PA were regulated by the local cationic nature of DHN24, while no such regulation was observed for its cryoprotective activity. The importance of the positive charge of the lysine-rich segments and disordered structure for DHN24 activity is discussed in relation to its possible biological function.
Collapse
Affiliation(s)
- Bartosz M Szabała
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland; Institute of Biology, Department of Genetics, Breeding and Plant Biotechnology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 166 St., 02-787, Warsaw, Poland.
| |
Collapse
|
12
|
Chen N, Fan X, Wang C, Jiao P, Jiang Z, Ma Y, Guan S, Liu S. Overexpression of ZmDHN15 Enhances Cold Tolerance in Yeast and Arabidopsis. Int J Mol Sci 2022; 24:480. [PMID: 36613921 PMCID: PMC9820458 DOI: 10.3390/ijms24010480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/12/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Maize (Zea mays L.) originates from the subtropical region and is a warm-loving crop affected by low-temperature stress. Dehydrin (DHN) protein, a member of the Group 2 LEA (late embryogenesis abundant proteins) family, plays an important role in plant abiotic stress. In this study, five maize DHN genes were screened based on the previous transcriptome sequencing data in our laboratory, and we performed sequence analysis and promoter analysis on these five DHN genes. The results showed that the promoter region has many cis-acting elements related to cold stress. The significantly upregulated ZmDHN15 gene has been further screened by expression pattern analysis. The subcellular localization results show that ZmDHN15 fusion protein is localized in the cytoplasm. To verify the role of ZmDHN15 in cold stress, we overexpressed ZmDHN15 in yeast and Arabidopsis. We found that the expression of ZmDHN15 can significantly improve the cold resistance of yeast. Under cold stress, ZmDHN15-overexpressing Arabidopsis showed lower MDA content, lower relative electrolyte leakage, and less ROS (reactive oxygen species) when compared to wild-type plants, as well as higher seed germination rate, seedling survival rate, and chlorophyll content. Furthermore, analysis of the expression patterns of ROS-associated marker genes and cold-response-related genes indicated that ZmDHN15 genes play an important role in the expression of these genes. In conclusion, the overexpression of the ZmDHN15 gene can effectively improve the tolerance to cold stress in yeast and Arabidopsis. This study is important for maize germplasm innovation and the genetic improvement of crops.
Collapse
Affiliation(s)
- Nannan Chen
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Xuhong Fan
- Jilin Academy of Agricultural Sciences, Changchun 130118, China
| | - Chunlai Wang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Peng Jiao
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Zhenzhong Jiang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Yiyong Ma
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Shuyan Guan
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Siyan Liu
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
13
|
A YSK-Type Dehydrin from Nicotiana tabacum Enhanced Copper Tolerance in Escherichia coli. Int J Mol Sci 2022; 23:ijms232315162. [PMID: 36499485 PMCID: PMC9737620 DOI: 10.3390/ijms232315162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/04/2022] Open
Abstract
Copper is an essential micronutrient for the maintenance of normal cell function but is toxic in excess. Dehydrins are group two late embryogenesis abundant proteins, which facilitate plant survival in harsh environmental conditions. Here, a YSK-type dehydrin, NtDhn17, was cloned from Nicotiana tabacum under copper toxicity and characterized using a heterologous expression system and in vitro or in vivo experiments and exhibited characteristics of intrinsic disorder during in vitro analyses. Heterologous expression of NtDHN17 enhanced the tolerance of E. coli to various metals, osmotic, and oxidative stress. NtDHN17 showed no Cu2+-binding properties in vivo or in vitro, indicating that metal ion binding is not universal among dehydrins. In vitro and in vivo experiments suggested that NtDHN17 behaved as a potent anti-aggregation agent providing strong protection to aggregated proteins induced by excess copper ions, an effect dependent on the K-segment but not on the Y- or S-segments. In summary, the protective role of NtDHN17 towards E. coli under conditions of copper toxicity may be related to anti-aggregation ability rather than its acting as an ion scavenger, which might be a valuable target for the genetic improvement of resistance to heavy metal stresses in plants.
Collapse
|
14
|
The Halophyte Dehydrin Sequence Landscape. Biomolecules 2022; 12:biom12020330. [PMID: 35204830 PMCID: PMC8869203 DOI: 10.3390/biom12020330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 12/04/2022] Open
Abstract
Dehydrins (DHNs) belong to the LEA (late embryogenesis abundant) family group II, that comprise four conserved motifs (the Y-, S-, F-, and K-segments) and are known to play a multifunctional role in plant stress tolerance. Based on the presence and order of these segments, dehydrins are divided into six subclasses: YnSKn, FnSKn, YnKn, SKn, Kn, and KnS. DHNs are rarely studied in halophytes, and their contribution to the mechanisms developed by these plants to survive in extreme conditions remains unknown. In this work, we carried out multiple genomic analyses of the conservation of halophytic DHN sequences to discover new segments, and examine their architectures, while comparing them with their orthologs in glycophytic plants. We performed an in silico analysis on 86 DHN sequences from 10 halophytic genomes. The phylogenetic tree showed that there are different distributions of the architectures among the different species, and that FSKn is the only architecture present in every plant studied. It was found that K-, F-, Y-, and S-segments are highly conserved in halophytes and glycophytes with a few modifications, mainly involving charged amino acids. Finally, expression data collected for three halophytic species (Puccinillia tenuiflora, Eutrema salsugenium, and Hordeum marinum) revealed that many DHNs are upregulated by salt stress, and the intensity of this upregulation depends on the DHN architecture.
Collapse
|
15
|
Bondos SE, Dunker AK, Uversky VN. Intrinsically disordered proteins play diverse roles in cell signaling. Cell Commun Signal 2022; 20:20. [PMID: 35177069 PMCID: PMC8851865 DOI: 10.1186/s12964-022-00821-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/11/2021] [Indexed: 11/29/2022] Open
Abstract
Signaling pathways allow cells to detect and respond to a wide variety of chemical (e.g. Ca2+ or chemokine proteins) and physical stimuli (e.g., sheer stress, light). Together, these pathways form an extensive communication network that regulates basic cell activities and coordinates the function of multiple cells or tissues. The process of cell signaling imposes many demands on the proteins that comprise these pathways, including the abilities to form active and inactive states, and to engage in multiple protein interactions. Furthermore, successful signaling often requires amplifying the signal, regulating or tuning the response to the signal, combining information sourced from multiple pathways, all while ensuring fidelity of the process. This sensitivity, adaptability, and tunability are possible, in part, due to the inclusion of intrinsically disordered regions in many proteins involved in cell signaling. The goal of this collection is to highlight the many roles of intrinsic disorder in cell signaling. Following an overview of resources that can be used to study intrinsically disordered proteins, this review highlights the critical role of intrinsically disordered proteins for signaling in widely diverse organisms (animals, plants, bacteria, fungi), in every category of cell signaling pathway (autocrine, juxtacrine, intracrine, paracrine, and endocrine) and at each stage (ligand, receptor, transducer, effector, terminator) in the cell signaling process. Thus, a cell signaling pathway cannot be fully described without understanding how intrinsically disordered protein regions contribute to its function. The ubiquitous presence of intrinsic disorder in different stages of diverse cell signaling pathways suggest that more mechanisms by which disorder modulates intra- and inter-cell signals remain to be discovered.
Collapse
Affiliation(s)
- Sarah E. Bondos
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843 USA
| | - A. Keith Dunker
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612 USA
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, Moscow Region, Russia 142290
| |
Collapse
|
16
|
Melgar AE, Zelada AM. Evolutionary analysis of angiosperm dehydrin gene family reveals three orthologues groups associated to specific protein domains. Sci Rep 2021; 11:23869. [PMID: 34903751 PMCID: PMC8669000 DOI: 10.1038/s41598-021-03066-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/25/2021] [Indexed: 11/30/2022] Open
Abstract
Dehydrins (DHNs) are a family of plant proteins that play important roles on abiotic stress tolerance and seed development. They are classified into five structural subgroups: K-, SK-, YK-, YSK-, and KS-DHNs, according to the presence of conserved motifs named K-, Y- and S- segments. We carried out a comparative structural and phylogenetic analysis of these proteins, focusing on the less-studied KS-type DHNs. A search for conserved motifs in DHNs from 56 plant genomes revealed that KS-DHNs possess a unique and highly conserved N-terminal, 15-residue amino acid motif, not previously described. This novel motif, that we named H-segment, is present in DHNs of angiosperms, gymnosperms and lycophytes, suggesting that HKS-DHNs were present in the first vascular plants. Phylogenetic and microsynteny analyses indicate that the five structural subgroups of angiosperm DHNs can be assigned to three groups of orthologue genes, characterized by the presence of the H-, F- or Y- segments. Importantly, the hydrophilin character of DHNs correlate with the phylogenetic origin of the DHNs rather than to the traditional structural subgroups. We propose that angiosperm DHNs can be ultimately subdivided into three orthologous groups, a phylogenetic framework that should help future studies on the evolution and function of this protein family.
Collapse
Affiliation(s)
- Alejandra E Melgar
- Laboratorio de Agrobiotecnología, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Biodiversidad y Biología Experimental y Aplicada, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires (IBBEA, CONICET-UBA), Buenos Aires, Argentina
| | - Alicia M Zelada
- Laboratorio de Agrobiotecnología, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina. .,Instituto de Biodiversidad y Biología Experimental y Aplicada, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires (IBBEA, CONICET-UBA), Buenos Aires, Argentina.
| |
Collapse
|
17
|
Osuda H, Sunano Y, Hara M. An intrinsically disordered radish vacuolar calcium-binding protein (RVCaB) showed cryoprotective activity for lactate dehydrogenase with its hydrophobic region. Int J Biol Macromol 2021; 182:1130-1137. [PMID: 33857518 DOI: 10.1016/j.ijbiomac.2021.04.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 11/19/2022]
Abstract
A soluble protein fraction from radish (Raphanus sativus L.) taproot had cryoprotective activity for lactate dehydrogenase (LDH). The activity was found mainly in the heat-stable fractions of soluble proteins. The cryoprotective protein, whose molecular mass was 43 kDa in sodium dodecyl sulfate polyacrylamide gel electrophoresis, was obtained by successive chromatographies on TOYOPEARL SuperQ and TOYOPEARL DEAE. MALDI-TOF MS/MS analysis indicated that the purified protein was a radish vacuolar calcium-binding protein (RVCaB), which is reportedly related to calcium storage in the vacuoles of radish taproot. The purified RVCaB inhibited the cryoinactivation, cryodenaturation, and cryoaggregation of LDH. RVCaB had greater cryoprotective activity than general cryoprotectants. When RVCaB was divided into 15 segments (Seg01 to Seg15, 15 amino acids each), Seg03, which had a high hydrophobicity scale, showed remarkable cryoprotective activity. This indicated that RVCaB protected LDH from freezing and thawing damage presumably through a specific hydrophobic area (i.e., Seg03).
Collapse
Affiliation(s)
- Honami Osuda
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Shizuoka, Shizuoka 422-8529, Japan
| | - Yui Sunano
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Shizuoka, Shizuoka 422-8529, Japan
| | - Masakazu Hara
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Shizuoka, Shizuoka 422-8529, Japan; Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Shizuoka, Shizuoka 422-8529, Japan; Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Shizuoka, Shizuoka 422-8529, Japan.
| |
Collapse
|
18
|
Upadhyaya G, Das A, Basu C, Agarwal T, Basak C, Chakraborty C, Halder T, Basu G, Ray S. Multiple copies of a novel amphipathic α-helix forming segment in Physcomitrella patens dehydrin play a key role in abiotic stress mitigation. J Biol Chem 2021; 296:100596. [PMID: 33781743 PMCID: PMC8100072 DOI: 10.1016/j.jbc.2021.100596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/01/2022] Open
Abstract
Plants use a diverse set of proteins to mitigate various abiotic stresses. The intrinsically disordered protein dehydrin is an important member of this repertoire of proteins, characterized by a canonical amphipathic K-segment. It can also contain other stress-mitigating noncanonical segments—a likely reflection of the extremely diverse nature of abiotic stress encountered by plants. Among plants, the poikilohydric mosses have no inbuilt mechanism to prevent desiccation and therefore are likely to contain unique noncanonical stress-responsive motifs in their dehydrins. Here we report the recurring occurrence of a novel amphipathic helix-forming segment (D-segment: EGφφD(R/K)AKDAφ, where φ represents a hydrophobic residue) in Physcomitrella patens dehydrin (PpDHNA), a poikilohydric moss. NMR and CD spectroscopic experiments demonstrated the helix-forming tendency of the D-segment, with the shuffled D-segment as control. PpDHNA activity was shown to be size as well as D-segment dependent from in vitro, in vivo, and in planta studies using PpDHNA and various deletion mutants. Bimolecular fluorescence complementation studies showed that D-segment-mediated PpDHNA self-association is a requirement for stress abatement. The D-segment was also found to occur in two rehydrin proteins from Syntrichia ruralis, another poikilohydric plant like P. patens. Multiple occurrences of the D-segment in poikilohydric plant dehydrins/rehydrins, along with the experimental demonstration of the role of D-segment in stress abatement, implies that the D-segment mediates unique resurrection strategies, which may be employed by plant dehydrins that are capable of mitigating extreme stress.
Collapse
Affiliation(s)
- Gouranga Upadhyaya
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, Kolkata, India
| | - Arup Das
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, Kolkata, India
| | | | - Tanushree Agarwal
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, Kolkata, India
| | - Chandra Basak
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, Kolkata, India
| | - Chandrima Chakraborty
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, Kolkata, India
| | - Tanmoy Halder
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, Kolkata, India
| | - Gautam Basu
- Department of Biophysics, Bose Institute, Kolkata, India
| | - Sudipta Ray
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, Kolkata, India.
| |
Collapse
|
19
|
CaDHN3, a Pepper ( Capsicum annuum L.) Dehydrin Gene Enhances the Tolerance against Salt and Drought Stresses by Reducing ROS Accumulation. Int J Mol Sci 2021; 22:ijms22063205. [PMID: 33809823 PMCID: PMC8004091 DOI: 10.3390/ijms22063205] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 01/24/2023] Open
Abstract
Dehydrins (DHNs) play an important role in abiotic stress tolerance in a large number of plants, but very little is known about the function of DHNs in pepper plants. Here, we isolated a Y1SK2-type DHN gene “CaDHN3” from pepper. To authenticate the function of CaDHN3 in salt and drought stresses, it was overexpressed in Arabidopsis and silenced in pepper through virus-induced gene silencing (VIGS). Sub-cellular localization showed that CaDHN3 was located in the nucleus and cell membrane. It was found that CaDHN3-overexpressed (OE) in Arabidopsis plants showed salt and drought tolerance phenotypic characteristics, i.e., increased the initial rooting length and germination rate, enhanced chlorophyll content, lowered the relative electrolyte leakage (REL) and malondialdehyde (MDA) content than the wild-type (WT) plants. Moreover, a substantial increase in the activities of antioxidant enzymes; including the superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), and lower hydrogen peroxide (H2O2) contents and higher O2•− contents in the transgenic Arabidopsis plants. Silencing of CaDHN3 in pepper decreased the salt- and drought-stress tolerance, through a higher REL and MDA content, and there was more accumulation of reactive oxygen species (ROS) in the CaDHN3-silenced pepper plants than the control plants. Based on the yeast two-hybrid (Y2H) screening and Bimolecular Fluorescence Complementation (BiFC) results, we found that CaDHN3 interacts with CaHIRD11 protein in the plasma membrane. Correspondingly, the expressions of four osmotic-related genes were significantly up-regulated in the CaDHN3-overexpressed lines. In brief, our results manifested that CaDHN3 may play an important role in regulating the relative osmotic stress responses in plants through the ROS signaling pathway. The results of this study will provide a basis for further analyses of the function of DHN genes in pepper.
Collapse
|