1
|
Singh M, Indurthi DC, Mittal L, Auerbach A, Asthana S. Conformational dynamics of a nicotinic receptor neurotransmitter site. eLife 2024; 13:RP92418. [PMID: 39693137 DOI: 10.7554/elife.92418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024] Open
Abstract
Agonists enhance receptor activity by providing net-favorable binding energy to active over resting conformations, with efficiency (η) linking binding energy to gating. Previously, we showed that in nicotinic receptors, η-values are grouped into five structural pairs, correlating efficacy and affinity within each class, uniting binding with allosteric activation (Indurthi and Auerbach, 2023). Here, we use molecular dynamics (MD) simulations to investigate the low-to-high affinity transition (L→H) at the Torpedo α-δ nicotinic acetylcholine receptor neurotransmitter site. Using four agonists spanning three η-classes, the simulations reveal the structural basis of the L→H transition where: the agonist pivots around its cationic center ('flip'), loop C undergoes staged downward displacement ('flop'), and a compact, stable high-affinity pocket forms ('fix'). The η derived from binding energies calculated in silico matched exact values measured experimentally in vitro. Intermediate states of the orthosteric site during receptor activation are apparent only in simulations, but could potentially be observed experimentally via time-resolved structural studies.
Collapse
Affiliation(s)
- Mrityunjay Singh
- Computational Biophysics and CADD Group, Computational and Mathematical Biology Center,Translational Health Science and Technology Institute, Faridabad, India
| | - Dinesh C Indurthi
- Department of Physiology and Biophysics, University at Buffalo, State University of New York, Buffalo, United States
| | - Lovika Mittal
- Computational Biophysics and CADD Group, Computational and Mathematical Biology Center,Translational Health Science and Technology Institute, Faridabad, India
| | - Anthony Auerbach
- Department of Physiology and Biophysics, University at Buffalo, State University of New York, Buffalo, United States
| | - Shailendra Asthana
- Computational Biophysics and CADD Group, Computational and Mathematical Biology Center,Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|
2
|
Sisodia R, Sarmadhikari D, Mazumdar PA, Asthana S, Madhurantakam C. Molecular analysis of dUTPase of Helicobacter pylori for identification of novel inhibitors using in silico studies. J Biomol Struct Dyn 2024; 42:8598-8623. [PMID: 37587906 DOI: 10.1080/07391102.2023.2247080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/05/2023] [Indexed: 08/18/2023]
Abstract
The human gastric pathogen Helicobacter pylori chronically affects the gastric mucosal layer of approximately half of world's population. The emergence of resistant strains urges the need for identification of novel and selective drug against new molecular targets. A ubiquitous enzyme, Deoxyuridine 5'-triphosphate nucleotidohydrolase (dUTPase), is considered as first line of defense against uracil mis-incorporation into DNA, and essential for genome integrity. Lack of dUTPase triggers an elevated recombination frequency, DNA breaks and ultimately cell death. Hence, dUTPase can be considered as a promising target for development of novel lead inhibitor compounds in H. pylori treatment. Herein, we report the generation of three-dimensional model of the target protein using comparative modelling and its validation. To identify dUTPase inhibitors, a high throughput virtual screening approach utilizing Knowledge-based inhibitors and DrugBank database was implemented. Top ranked compounds were scrutinized based on investigations of the protein-ligand interaction fingerprints, molecular interaction maps and binding affinities and the drug potentiality. The best ligands were studied further for complex stability and intermolecular interaction profiling with respect to time under 100 ns classical molecular dynamic stimulation, establishing significant stability in dynamic states as observed from RMSD and RMSF parameters and interactions with the catalytic site residues. The binding free energy calculation computed using MM-GBSA method from the MD simulation trajectories demonstrated that our molecules possess strong binding affinity towards the Helicobacter pylori dUTPase protein. We conclude that our proposed molecules may be potential lead molecules for effective inhibition against the H. pylori dUTPase protein subject to experimental validation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rinki Sisodia
- Structural and Molecular Biology Laboratory (SMBL), Department of Biotechnology, TERI School of Advanced Studies (TERI SAS), New Delhi, India
| | - Debapriyo Sarmadhikari
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Faridabad, Haryana, India
| | | | - Shailendra Asthana
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Chaithanya Madhurantakam
- Structural and Molecular Biology Laboratory (SMBL), Department of Biotechnology, TERI School of Advanced Studies (TERI SAS), New Delhi, India
| |
Collapse
|
3
|
Gaur KK, Asuru TR, Srivastava M, Singh N, Purushotham N, Poojary B, Das B, Bhattacharyya S, Asthana S, Guchhait P. 7D, a small molecule inhibits dengue infection by increasing interferons and neutralizing-antibodies via CXCL4:CXCR3:p38:IRF3 and Sirt1:STAT3 axes respectively. EMBO Mol Med 2024; 16:2376-2401. [PMID: 39284947 PMCID: PMC11473809 DOI: 10.1038/s44321-024-00137-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 10/16/2024] Open
Abstract
There are a limited number of effective vaccines against dengue virus (DENV) and significant efforts are being made to develop potent anti-virals. Previously, we described that platelet-chemokine CXCL4 negatively regulates interferon (IFN)-α/β synthesis and promotes DENV2 replication. An antagonist to CXCR3 (CXCL4 receptor) reversed it and inhibited viral replication. In a concurrent search, we identified CXCR3-antagonist from our compound library, namely 7D, which inhibited all serotypes of DENV in vitro. With a half-life of ~2.85 h in plasma and no significant toxicity, 7D supplementation (8 mg/kg-body-weight) to DENV2-infected IFNα/β/γR-/-AG129 or wild-type C57BL6 mice increased synthesis of IFN-α/β and IFN-λ, and rescued disease symptoms like thrombocytopenia, leukopenia and vascular-leakage, with improved survival. 7D, having the property to inhibit Sirt-1 deacetylase, promoted acetylation and phosphorylation of STAT3, which in-turn increased plasmablast proliferation, germinal-center maturation and synthesis of neutralizing-antibodies against DENV2 in mice. A STAT3-inhibitor successfully inhibited these effects of 7D. Together, these observations identify compound 7D as a stimulator of IFN-α/β/λ synthesis via CXCL4:CXCR3:p38:IRF3 signaling, and a booster for neutralizing-antibody generation by promoting STAT3-acetylation in plasmablasts, capable of protecting dengue infection.
Collapse
Affiliation(s)
- Kishan Kumar Gaur
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana, India
| | - Tejeswara Rao Asuru
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana, India
| | - Mitul Srivastava
- Translational Health Science Technology Institute, National Capital Region Biotech Science Cluster, Faridabad, Haryana, India
| | - Nitu Singh
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana, India
| | - Nikil Purushotham
- Department of Studies in Chemistry, Mangalore University, Mangalagangotri, Karnataka, India
| | - Boja Poojary
- Department of Studies in Chemistry, Mangalore University, Mangalagangotri, Karnataka, India
| | - Bhabatosh Das
- Translational Health Science Technology Institute, National Capital Region Biotech Science Cluster, Faridabad, Haryana, India
| | - Sankar Bhattacharyya
- Translational Health Science Technology Institute, National Capital Region Biotech Science Cluster, Faridabad, Haryana, India
| | - Shailendra Asthana
- Translational Health Science Technology Institute, National Capital Region Biotech Science Cluster, Faridabad, Haryana, India.
| | - Prasenjit Guchhait
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana, India.
| |
Collapse
|
4
|
da Rocha MN, de Sousa DS, da Silva Mendes FR, Dos Santos HS, Marinho GS, Marinho MM, Marinho ES. Ligand and structure-based virtual screening approaches in drug discovery: minireview. Mol Divers 2024:10.1007/s11030-024-10979-6. [PMID: 39223358 DOI: 10.1007/s11030-024-10979-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The compilation of ligand and structure-based molecular modeling methods has become an important practice in virtual screening applied to drug discovery. This systematic review addresses and ranks various virtual screening strategies to drive the selection of the optimal method for studies that have as their starting point a multi-ligand investigation and investigation based on the protein structure of a therapeutic target. This study shows examples of applications and an evaluation based on the objective and problematic of a series of virtual screening studies present in the ScienceDirect® database. The results showed that the molecular docking technique is widely used in scientific production, indicating that approaches that use protein structure as a starting point are the most promising strategy for drug discovery that relies on virtual screening-based research.
Collapse
Affiliation(s)
- Matheus Nunes da Rocha
- Postgraduate Program in Natural Sciences, Sciences and Technology Center, State University of Ceará, Fortaleza, CE, Brazil.
| | - Damião Sampaio de Sousa
- Postgraduate Program in Natural Sciences, Sciences and Technology Center, State University of Ceará, Fortaleza, CE, Brazil
| | | | - Helcio Silva Dos Santos
- Postgraduate Program in Natural Sciences, Sciences and Technology Center, State University of Ceará, Fortaleza, CE, Brazil
- Chemistry Department, State University of Acaraú Valley, Sobral, CE, Brazil
| | - Gabrielle Silva Marinho
- Faculdade de Educação, Ciências e Letras de Iguatu, State University of Ceará, Fortaleza, CE, Brazil
| | | | - Emmanuel Silva Marinho
- Postgraduate Program in Natural Sciences, Sciences and Technology Center, State University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
5
|
Majumder S, Srivastava M, Alam P, Saha S, Kumari R, Chand AK, Asthana S, Sen S, Maiti TK. Hotspot site microenvironment in the deubiquitinase OTUB1 drives its stability and aggregation. J Biol Chem 2024; 300:107315. [PMID: 38663827 PMCID: PMC11154711 DOI: 10.1016/j.jbc.2024.107315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/30/2024] [Accepted: 04/15/2024] [Indexed: 05/30/2024] Open
Abstract
Lewy bodies (LB) are aberrant protein accumulations observed in the brain cells of individuals affected by Parkinson's disease (PD). A comprehensive analysis of LB proteome identified over a hundred proteins, many co-enriched with α-synuclein, a major constituent of LB. Within this context, OTUB1, a deubiquitinase detected in LB, exhibits amyloidogenic properties, yet the mechanisms underlying its aggregation remain elusive. In this study, we identify two critical sites in OTUB1-namely, positions 133 and 173-that significantly impact its amyloid aggregation. Substituting alanine at position 133 and lysine at position 173 enhances both thermodynamic and kinetic stability, effectively preventing amyloid aggregation. Remarkably, lysine at position 173 demonstrates the highest stability without compromising enzymatic activity. The increased stability and inhibition of amyloid aggregation are attributed mainly to the changes in the specific microenvironment at the hotspot. In our exploration of the in-vivo co-occurrence of α-synuclein and OTUB1 in LB, we observed a synergistic modulation of each other's aggregation. Collectively, our study unveils the molecular determinants influencing OTUB1 aggregation, shedding light on the role of specific residues in modulating aggregation kinetics and structural transition. These findings contribute valuable insights into the complex interplay of amino acid properties and protein aggregation, with potential implications for understanding broader aspects of protein folding and aggregation phenomena.
Collapse
Affiliation(s)
- Sushanta Majumder
- Functional Proteomics Laboratory, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Mitul Srivastava
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Parvez Alam
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sandhini Saha
- Functional Proteomics Laboratory, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Raniki Kumari
- Functional Proteomics Laboratory, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Ajay Kumar Chand
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Shailendra Asthana
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Sobhan Sen
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Tushar Kanti Maiti
- Functional Proteomics Laboratory, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India.
| |
Collapse
|
6
|
Xu J, Kong Y, Zhu P, Du M, Liang X, Tong Y, Li X, Dong C. Progress in small-molecule inhibitors targeting PD-L1. RSC Med Chem 2024; 15:1161-1175. [PMID: 38665838 PMCID: PMC11042164 DOI: 10.1039/d3md00655g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/29/2024] [Indexed: 04/28/2024] Open
Abstract
PD-L1 is a transmembrane protein overexpressed by tumor cells. It binds to PD-1 on the surface of T-cells, suppresses T-cell activity and hinders the immune response against cancer. Clinically, several monoclonal antibodies targeting PD-1/PD-L1 have achieved significant success in cancer immunotherapy. Nevertheless, their disadvantages, such as unchecked immune responses, high cost and long half-life, stimulated pharmacologists to develop small-molecule inhibitors targeting PD-1/PD-L1. After a batch of excellent inhibitors with a biphenyl core structure were firstly reported by BMS, more and more researchers focused on small-molecule inhibitors targeting PD-L1 rather than PD-1. Numerous small-molecule inhibitors were extensively designed and synthesized in the past few years. In this paper, the structural characteristics of PD-L1 and complexes of PD-L1 with its inhibitors are elaborated and small molecule inhibitors developed in the last decade are summarized as well. This paper aims to provide insights into further designing and synthesis of small molecule inhibitors targeting PD-L1.
Collapse
Affiliation(s)
- Jindan Xu
- Henan University of Chinese Medicine Zhengzhou 450046 Henan China
- Henan Polysaccharide Research Center Zhengzhou 450046 Henan China
- Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research Zhengzhou 450046 Henan China
| | - Yuanfang Kong
- Henan University of Chinese Medicine Zhengzhou 450046 Henan China
| | - Pengbo Zhu
- Henan University of Chinese Medicine Zhengzhou 450046 Henan China
- Henan Polysaccharide Research Center Zhengzhou 450046 Henan China
- Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research Zhengzhou 450046 Henan China
| | - Mingyan Du
- Henan University of Chinese Medicine Zhengzhou 450046 Henan China
- Henan Polysaccharide Research Center Zhengzhou 450046 Henan China
- Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research Zhengzhou 450046 Henan China
| | - Xuan Liang
- Henan University of Chinese Medicine Zhengzhou 450046 Henan China
| | - Yan Tong
- Henan University of Chinese Medicine Zhengzhou 450046 Henan China
| | - Xiaofei Li
- Henan University of Chinese Medicine Zhengzhou 450046 Henan China
- Henan Polysaccharide Research Center Zhengzhou 450046 Henan China
- Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research Zhengzhou 450046 Henan China
| | - Chunhong Dong
- Henan University of Chinese Medicine Zhengzhou 450046 Henan China
- Henan Polysaccharide Research Center Zhengzhou 450046 Henan China
- Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research Zhengzhou 450046 Henan China
| |
Collapse
|
7
|
Agarwal S, Saha S, Ghosh R, Sarmadhikari D, Asthana S, Maiti TK, Khadgawat R, Guchhait P. Elevated glycosylation of CD36 in platelets is a risk factor for oxLDL-mediated platelet activation in type 2 diabetes. FEBS J 2024; 291:376-391. [PMID: 37845743 DOI: 10.1111/febs.16976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/19/2023] [Accepted: 10/12/2023] [Indexed: 10/18/2023]
Abstract
Platelet activation and related cardiovascular complications are the hallmarks of type 2 diabetes (T2D). We investigated the mechanism of platelet activation in T2D using MS-based identification of differentially expressed platelet proteins with a focus on glycosylated forms. Glycosylation is considered one of the common post-translational modifications in T2D, and N/O-linked glycosylation of glycoproteins (GPs)/integrins is known to play crucial roles in platelet activation. Our platelet proteome data revealed elevated levels of GPs GPIbα, GPIIbIIIa, GPIV (CD36), GPV and integrins in T2D patients. T2D platelets had elevated N-linked glycosylation of CD36 at asparagine (Asn)408,417 . Enrichment analysis revealed a close association of glycosylated CD36 with thrombospondin-1, fibrinogen and SERPINA1 in T2D platelets. The glycosylation of CD36 has previously been reported to increase cellular uptake of long-chain fatty acids. Our in silico molecular docking data also showed a favorable binding of cholesterol with glycosylated Asn417 CD36 compared to the non-glycosylated form. We further investigated the CD36:LDL cholesterol axis in T2D. Elevated levels of oxidized-low density lipoprotein (oxLDL) were found to cause significant platelet activation via CD36-mediated stimulation of Lyn-JNK signaling. Sulfo-N-succinimidyl oleate, an inhibitor of CD36, effectively inhibited oxLDL-mediated platelet activation and adhesion in vitro. Our study suggests increased glycosylation of CD36 in T2D platelets as a potential route for oxLDL-mediated platelet activation. The oxLDL:CD36 axis may thus be exploited as a prospective target to develop therapeutics against thrombosis in T2D.
Collapse
Affiliation(s)
- Sakshi Agarwal
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Sandhini Saha
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Riya Ghosh
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Debapriyo Sarmadhikari
- Translational Health Science Technology Institute, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Shailendra Asthana
- Translational Health Science Technology Institute, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Tushar K Maiti
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | | | - Prasenjit Guchhait
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| |
Collapse
|
8
|
Mittal L, Tonk RK, Awasthi A, Asthana S. Harnessing the druggability at orthosteric and allosteric sites of PD-1 for small molecule discovery by an integrated in silico pipeline. Comput Biol Chem 2023; 107:107965. [PMID: 37826990 DOI: 10.1016/j.compbiolchem.2023.107965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/06/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023]
Abstract
The PD-1/PD-L1 interaction is a promising target for small molecule inhibitors in cancer immunotherapy, but targeting this interface has been challenging. While efforts have been made to identify compounds that target the orthosteric sites, no reports have explored the potential of small molecules to target the allosteric region of PD-1. Therefore, our study aims to establish a pipeline to identify small molecules that can effectively bind to either the orthosteric or allosteric pockets of PD-1. We categorized the PD-1 interface into two hot-spot zones (P-and N-zones) based on extensive analysis of its structural, dynamical, and energetic properties. These zones correspond to the orthosteric and allosteric PPI sites, respectively, targeted by monoclonal antibodies. We used a guided virtual screening workflow to identify hits from ∼7 million compounds library, which were then clustered based on structural similarity and assessed by interaction fingerprinting. The selective and diverse chemical representatives were subjected to MD simulations and binding energetics calculations to filter out false positives and identify actual binders. Binding poses metadynamics calculations confirmed the stability of the final hits in the pocket. This study emphasizes the need for an integrated pipeline that uses molecular dynamics simulations and binding energetics to identify potential binders for the dynamic PD-1/PD-L1 interface, due to the lack of small molecule co-crystals. Only a few potential binders were discovered from a large pool of molecules targeting both the allosteric and orthosteric zones. Our results suggest that the allosteric site has more potential than the orthosteric site for inhibitor design. The identified "computational hits" hold potential as starting points for in vitro evaluations followed by hit-to-lead optimization. Overall, this study represents an effort to establish a computational pipeline for exploring and enriching both the allosteric and orthosteric sites of PPI interfaces, "a tough but indispensable nut to crack".
Collapse
Affiliation(s)
- Lovika Mittal
- Computational Biophysics and CADD group, Computational and Mathematical Biology Center (CMBC), Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India; Delhi Pharmaceutical Science Research University (DPSRU), New Delhi, India
| | - Rajiv K Tonk
- Delhi Pharmaceutical Science Research University (DPSRU), New Delhi, India
| | - Amit Awasthi
- Computational Biophysics and CADD group, Computational and Mathematical Biology Center (CMBC), Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
| | - Shailendra Asthana
- Computational Biophysics and CADD group, Computational and Mathematical Biology Center (CMBC), Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India.
| |
Collapse
|
9
|
Khatri R, Lohiya B, Kaur G, Maithil V, Goswami A, Sarmadhikari D, Asthana S, Samal S. Understanding the role of conserved proline and serine residues in the SARS-CoV-2 spike cleavage sites in the virus entry, fusion, and infectivity. 3 Biotech 2023; 13:323. [PMID: 37663753 PMCID: PMC10469153 DOI: 10.1007/s13205-023-03749-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/27/2023] [Indexed: 09/05/2023] Open
Abstract
The spike (S) glycoprotein of the SARS-CoV-2 virus binds to the host cell receptor and promotes the virus's entry into the target host cell. This interaction is primed by host cell proteases like furin and TMPRSS2, which act at the S1/S2 and S2´ cleavage sites, respectively. Both cleavage sites have serine or proline residues flanking either the single or polybasic region and were found to be conserved in coronaviruses. Unravelling the effects of these conserved residues on the virus entry and infectivity might facilitate the development of novel therapeutics. Here, we have investigated the role of the conserved serine and proline residues in the SARS-CoV-2 spike mediated entry, fusogenicity, and viral infectivity by using the HIV-1/spike-based pseudovirus system. A conserved serine residue mutation to alanine (S2´S-A) at the S2´ cleavage site resulted in the complete loss of spike cleavage. Exogenous treatment with trypsin or overexpression of TMPRSS2 protease could not rescue the loss of spike cleavage and biological activity. The S2´S-A mutant showed no significant responses against E-64d, TMPRSS2 or other relevant inhibitors. Taken together, serine at the S2´ site in the spike protein was indispensable for spike protein cleavage and virus infectivity. Thus, novel interventions targeting the conserved serine at the S2´ cleavage site should be explored to reduce severe disease caused by SARS-CoV-2-and novel emerging variants. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03749-y.
Collapse
Affiliation(s)
- Ritika Khatri
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001 India
| | - Bharat Lohiya
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001 India
| | - Gurleen Kaur
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001 India
| | - Vikas Maithil
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001 India
| | - Abhishek Goswami
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001 India
| | - Debapriyo Sarmadhikari
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001 India
| | - Shailendra Asthana
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001 India
| | - Sweety Samal
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001 India
| |
Collapse
|
10
|
Krishnamoorthy HR, Karuppasamy R. A multitier virtual screening of antagonists targeting PD-1/PD-L1 interface for the management of triple-negative breast cancer. Med Oncol 2023; 40:312. [PMID: 37777635 DOI: 10.1007/s12032-023-02183-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/04/2023] [Indexed: 10/02/2023]
Abstract
Immunotherapies are promising therapeutic options for the management of triple-negative breast cancer because of its high mutation rate and genomic instability. Of note, the blockade of the immune checkpoint protein PD-1 and its ligand PD-L1 has been proven to be an efficient and potent strategy to combat triple-negative breast cancer. To date, various anti-PD-1/anti-PD-L1 antibodies have been approved. However, the intrinsic constraints of these therapeutic antibodies significantly limit their application, making small molecules a potentially significant option for PD-1/PD-L1 inhibition. In light of this, the current study aims to use a high-throughput virtual screening technique to identify potential repurposed candidates as PD-L1 inhibitors. Thus, the present study explored binding efficiency of 2509 FDA-approved compounds retrieved from the drug bank database against PD-L1 protein. The binding affinity of the compounds was determined using the glide XP docking programme. Furthermore, prime-MM/GBSA, DFT calculations, and RF score were used to precisely re-score the binding free energy of the docked complexes. In addition, the ADME and toxicity profiles for the lead compounds were also examined to address PK/PD characteristics. Altogether, the screening process identified three molecules, namely DB01238, DB06016 and DB01167 as potential therapeutics for the PD-L1 protein. To conclude, a molecular dynamic simulation of 100 ns was run to characterise the stability and inhibitory action of the three lead compounds. The results from the simulation study confirm the robust structural and thermodynamic stability of DB01238 than other investigated molecules. Thus, our findings hypothesize that DB01238 could serve as potential PD-L1 inhibitor in the near future for triple-negative breast cancer patients.
Collapse
Affiliation(s)
| | - Ramanathan Karuppasamy
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
11
|
Wang Y, Sharma A, Ge F, Chen P, Yang Y, Liu H, Liu H, Zhao C, Mittal L, Asthana S, Schmidt-Wolf IGH. Non-oncology drug (meticrane) shows anti-cancer ability in synergy with epigenetic inhibitors and appears to be involved passively in targeting cancer cells. Front Oncol 2023; 13:1157366. [PMID: 37274234 PMCID: PMC10235775 DOI: 10.3389/fonc.2023.1157366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/05/2023] [Indexed: 06/06/2023] Open
Abstract
Emerging evidence suggests that chemotherapeutic agents and targeted anticancer drugs have serious side effects on the healthy cells/tissues of the patient. To overcome this, the use of non-oncology drugs as potential cancer therapies has been gaining momentum. Herein, we investigated one non-oncology drug named meticrane (a thiazide diuretic used to treat essential hypertension), which has been reported to indescribably improve the therapeutic efficacy of anti-CTLA4 in mice with AB1 HA tumors. In our hypothesis-driven study, we tested anti-cancer potential meticrane in hematological malignance (leukemia and multiple myeloma) and liver cancer cell lines. Our analysis showed that: 1) Meticrane induced alteration in the cell viability and proliferation in leukemia cells (Jurkat and K562 cells) and liver cancer (SK-hep-1), however, no evidence of apoptosis was detectable. 2) Meticrane showed additive/synergistic effects with epigenetic inhibitors (DNMT1/5AC, HDACs/CUDC-101 and HDAC6/ACY1215). 3) A genome-wide transcriptional analysis showed that meticrane treatment induces changes in the expression of genes associated with non-cancer associated pathways. Of importance, differentially expressed genes showed favorable correlation with the survival-related genes in the cancer genome. 4) We also performed molecular docking analysis and found considerable binding affinity scores of meticrane against PD-L1, TIM-3, CD73, and HDACs. Additionally, we tested its suitability for immunotherapy against cancers, but meticrane showed no response to the cytotoxicity of cytokine-induced killer (CIK) cells. To our knowledge, our study is the first attempt to identify and experimentally confirm the anti-cancer potential of meticrane, being also the first to test the suitability of any non-oncology drug in CIK cell therapy. Beyond that, we have expressed some concerns confronted during testing meticrane that also apply to other non-oncology drugs when considered for future clinical or preclinical purposes. Taken together, meticrane is involved in some anticancer pathways that are passively targeting cancer cells and may be considered as compatible with epigenetic inhibitors.
Collapse
Affiliation(s)
- Yulu Wang
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, Bonn, Germany
| | - Amit Sharma
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, Bonn, Germany
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Fangfang Ge
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, Bonn, Germany
| | - Peng Chen
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, Bonn, Germany
| | - Yu Yang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Hongjia Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Hongde Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Chunxia Zhao
- School of Nursing, Nanchang University, Nanchang, China
| | - Lovika Mittal
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Shailendra Asthana
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Ingo G. H. Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, Bonn, Germany
| |
Collapse
|
12
|
Raj S, Vishwakarma P, Saxena S, Kumar V, Khatri R, Kumar A, Singh M, Mishra S, Asthana S, Ahmed S, Samal S. Intradermal Immunization of Soluble Influenza HA Derived from a Lethal Virus Induces High Magnitude and Breadth of Antibody Responses and Provides Complete Protection In Vivo. Vaccines (Basel) 2023; 11:780. [PMID: 37112692 PMCID: PMC10141624 DOI: 10.3390/vaccines11040780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 04/05/2023] Open
Abstract
Immunogens mimicking the native-like structure of surface-exposed viral antigens are considered promising vaccine candidates. Influenza viruses are important zoonotic respiratory viruses with high pandemic potential. Recombinant soluble hemagglutinin (HA) glycoprotein-based protein subunit vaccines against Influenza have been shown to induce protective efficacy when administered intramuscularly. Here, we have expressed a recombinant soluble trimeric HA protein in Expi 293F cells and purified the protein derived from the Inf A/Guangdong-Maonan/ SWL1536/2019 virus which was found to be highly virulent in the mouse. The trimeric HA protein was found to be in the oligomeric state, highly stable, and the efficacy study in the BALB/c mouse challenge model through intradermal immunization with the prime-boost regimen conferred complete protection against a high lethal dose of homologous and mouse-adapted InfA/PR8 virus challenge. Furthermore, the immunogen induced high hemagglutinin inhibition (HI) titers and showed cross-protection against other Inf A and Inf B subtypes. The results are promising and warrant trimeric HA as a suitable vaccine candidate.
Collapse
Affiliation(s)
- Sneha Raj
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Preeti Vishwakarma
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Shikha Saxena
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Varun Kumar
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Ritika Khatri
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Amit Kumar
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Mrityunjay Singh
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Surbhi Mishra
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Shailendra Asthana
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Shubbir Ahmed
- Centralized Core Research Facility (CCRF), All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sweety Samal
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| |
Collapse
|
13
|
Sobral PS, Luz VCC, Almeida JMGCF, Videira PA, Pereira F. Computational Approaches Drive Developments in Immune-Oncology Therapies for PD-1/PD-L1 Immune Checkpoint Inhibitors. Int J Mol Sci 2023; 24:ijms24065908. [PMID: 36982981 PMCID: PMC10054797 DOI: 10.3390/ijms24065908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/16/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Computational approaches in immune-oncology therapies focus on using data-driven methods to identify potential immune targets and develop novel drug candidates. In particular, the search for PD-1/PD-L1 immune checkpoint inhibitors (ICIs) has enlivened the field, leveraging the use of cheminformatics and bioinformatics tools to analyze large datasets of molecules, gene expression and protein-protein interactions. Up to now, there is still an unmet clinical need for improved ICIs and reliable predictive biomarkers. In this review, we highlight the computational methodologies applied to discovering and developing PD-1/PD-L1 ICIs for improved cancer immunotherapies with a greater focus in the last five years. The use of computer-aided drug design structure- and ligand-based virtual screening processes, molecular docking, homology modeling and molecular dynamics simulations methodologies essential for successful drug discovery campaigns focusing on antibodies, peptides or small-molecule ICIs are addressed. A list of recent databases and web tools used in the context of cancer and immunotherapy has been compilated and made available, namely regarding a general scope, cancer and immunology. In summary, computational approaches have become valuable tools for discovering and developing ICIs. Despite significant progress, there is still a need for improved ICIs and biomarkers, and recent databases and web tools have been compiled to aid in this pursuit.
Collapse
Affiliation(s)
- Patrícia S Sobral
- LAQV and REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Vanessa C C Luz
- UCIBIO, Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - João M G C F Almeida
- UCIBIO, Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Paula A Videira
- UCIBIO, Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Florbela Pereira
- LAQV and REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
14
|
Maddipati VC, Mittal L, Kaur J, Rawat Y, Koraboina CP, Bhattacharyya S, Asthana S, Gundla R. Discovery of non-nucleoside oxindole derivatives as potent inhibitors against dengue RNA-dependent RNA polymerase. Bioorg Chem 2023; 131:106277. [PMID: 36444792 DOI: 10.1016/j.bioorg.2022.106277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/20/2022] [Accepted: 11/12/2022] [Indexed: 11/21/2022]
Abstract
A series of thiazole linked Oxindole-5-Sulfonamide (OSA) derivatives were designed as inhibitors of RNA-dependent RNA polymerase (RdRp) activity of Dengue virus. These were synthesized and then evaluated for their efficacy in ex-vivo virus replication assay using human cell lines. Among 20 primary compounds in the series, OSA-15 was identified as a hit. A series of analogues were synthesized by replacing the difluoro benzyl group of OSA-15 with different substituted benzyl groups. The efficacy of OSA-15derivatives was less than that of the parent compound, except OSA-15-17, which has shown improved efficacy than OSA-15. The further optimization was carried out by adding dimethyl (DM) groups to both the sulfonamide and oxindole NH's to produce OSA-15-DM and OSA-15-17-DM. These two compounds were showing no detectable cytotoxicity and the latter was more efficacious. Further, both these compounds were tested for inhibition in all the serotypes of the Dengue virus using an ex-vivo assay. The EC50 of OSA-15-17-DM was observed in a low micromolar range between 2.5 and 5.0 µg/ml. Computation docking and molecular dynamics simulation studies confirmed the binding of identified hits to DENV RdRp. OSA15-17-DM blocks the RNA entrance and elongation site for their biological activity with high binding affinity. Overall, the identified oxindole derivatives are novel compounds that can inhibit Dengue replication, working as non-nucleoside inhibitors (NNI) to explore as anti-viral RdRp activity.
Collapse
Affiliation(s)
| | - Lovika Mittal
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3(rd)Milestone, Faridabad-Gurugram Expressway, Faridabad 121001, Haryana, India
| | - Jaskaran Kaur
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3(rd)Milestone, Faridabad-Gurugram Expressway, Faridabad 121001, Haryana, India
| | - Yogita Rawat
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3(rd)Milestone, Faridabad-Gurugram Expressway, Faridabad 121001, Haryana, India
| | - Chandra Prakash Koraboina
- Department of Chemistry, School of Science, GITAM (Deemed to be University) Hyderabad, Telangana 502 329, India
| | - Sankar Bhattacharyya
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3(rd)Milestone, Faridabad-Gurugram Expressway, Faridabad 121001, Haryana, India.
| | - Shailendra Asthana
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3(rd)Milestone, Faridabad-Gurugram Expressway, Faridabad 121001, Haryana, India.
| | - Rambabu Gundla
- Department of Chemistry, School of Science, GITAM (Deemed to be University) Hyderabad, Telangana 502 329, India.
| |
Collapse
|
15
|
Kumari A, Mittal L, Srivastava M, Pathak DP, Asthana S. Deciphering the Structural Determinants Critical in Attaining the FXR Partial Agonism. J Phys Chem B 2023; 127:465-485. [PMID: 36609158 DOI: 10.1021/acs.jpcb.2c06325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Elucidation of structural determinants is pivotal for structure-based drug discovery. The Farnesoid X receptor (FXR) is a proven target for NASH; however, its full agonism causes certain clinical complications. Therefore, partial agonism (PA) appears as a viable alternative for improved therapeutics. Since the agonist and PA both share the same binding site, i.e., ligand-binding pocket (LBP), which is highly dynamic and has synergy with the substrate binding site, the selective designing of PA is challenging. The identification of structural and conformational determinants is critical for PA compared with an agonist. Furthermore, the mechanism by which PA modulates the structural dynamics of FXR at the residue level, a prerequisite for PA designing, is still elusive. Here, by using ∼4.5 μs of MD simulations and residue-wise communication network analysis, we identified the structural regions which are flexible with PA but frozen with an agonist. Also, the network analysis identified the considerable changes between an agonist and PA in biologically essential zones of FXR such as helix H10/H11 and loop L:H11/H12, which lead to the modulation of synergy between LBP and the substrate binding site. Furthermore, the thermodynamic profiling suggested the methionine residues, mainly M328, M365, and M450, seem to be responsible for the recruitment of PA. The other residues I357, Y361, L465, F308, Q316, and K321 are also identified, exclusively interacting with PA. This study offers novel structural and mechanistic insights that are critical for FXR targeted drug discovery for PA designing.
Collapse
Affiliation(s)
- Anita Kumari
- Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana121001, India.,Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi110017, India
| | - Lovika Mittal
- Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana121001, India
| | - Mitul Srivastava
- Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana121001, India
| | - Dharam Pal Pathak
- Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), New Delhi110017, India
| | - Shailendra Asthana
- Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana121001, India
| |
Collapse
|
16
|
Kumar S, Sarmah DT, Asthana S, Chatterjee S. konnect2prot: a web application to explore the protein properties in a functional protein-protein interaction network. Bioinformatics 2022; 39:6955601. [PMID: 36545703 PMCID: PMC9848060 DOI: 10.1093/bioinformatics/btac815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/30/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION The regulation of proteins governs the biological processes and functions and, therefore, the organisms' phenotype. So there is an unmet need for a systematic tool for identifying the proteins that play a crucial role in information processing in a protein-protein interaction (PPI) network. However, the current protein databases and web servers still lag behind to provide an end-to-end pipeline that can leverage the topological understanding of a context-specific PPI network to identify the influential spreaders. Addressing this, we developed a web application, 'konnect2prot' (k2p), which can generate context-specific directional PPI network from the input proteins and detect their biological and topological importance in the network. RESULTS We pooled together a large amount of ontological knowledge, parsed it down into a functional network, and gained insight into the molecular underpinnings of the disease development by creating a one-stop junction for PPI data. k2p contains both local and global information about a protein, such as protein class, disease mutations, ligands and PDB structure, enriched processes and pathways, multi-disease interactome and hubs and bottlenecks in the directional network. It also identifies spreaders in the network and maps them to disease hallmarks to determine whether they can affect the disease state or not. AVAILABILITY AND IMPLEMENTATION konnect2prot is freely accessible using the link https://konnect2prot.thsti.in. The code repository is https://github.com/samrat-lab/k2p_bioinfo-2022.
Collapse
Affiliation(s)
| | | | - Shailendra Asthana
- Non-communicable Disease Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | | |
Collapse
|
17
|
Srivastava M, Mittal L, Kumari A, Agrahari AK, Singh M, Mathur R, Asthana S. Characterizing (un)binding mechanism of USP7 inhibitors to unravel the cause of enhanced binding potencies at allosteric checkpoint. Protein Sci 2022; 31:e4398. [PMID: 36629250 PMCID: PMC9835771 DOI: 10.1002/pro.4398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 01/21/2023]
Abstract
The ability to predict the intricate mechanistic behavior of ligands and associated structural determinants during protein-ligand (un)binding is of great practical importance in drug discovery. Ubiquitin specific protease-7 (USP7) is a newly emerging attractive cancer therapeutic target with bound allosteric inhibitors. However, none of the inhibitors have reached clinical trials, allowing opportunities to examine every aspect of allosteric modulation. The crystallographic insights reveal that these inhibitors have common properties such as chemical scaffolds, binding site and interaction fingerprinting. However, they still possess a broader range of binding potencies, ranging from 22 nM to 1,300 nM. Hence, it becomes more critical to decipher the structural determinants guiding the enhanced binding potency of the inhibitors. In this regard, we elucidated the atomic-level insights from both interacting partners, that is, protein-ligand perspective, and established the structure-activity link between USP7 inhibitors by using classical and advanced molecular dynamics simulations combined with linear interaction energy and molecular mechanics-Poisson Boltzmann surface area. We revealed the inhibitor potency differences by examining the contributions of chemical moieties and USP7 residues, the involvement of water-mediated interactions, and the thermodynamic landscape alterations. Additionally, the dissociation profiles aided in the establishment of a correlation between experimental potencies and structural determinants. Our study demonstrates the critical role of blocking loop 1 in allosteric inhibition and enhanced binding affinity. Comprehensively, our findings provide a constructive expansion of experimental outcomes and show the basis for varying binding potency using in-silico approaches. We expect this atomistic approach to be useful for effective drug design.
Collapse
Affiliation(s)
- Mitul Srivastava
- Translational Health Science and Technology Institute (THSTI)FaridabadIndia
- Delhi Pharmaceutical Sciences and Research University (DPSRU)New DelhiIndia
| | - Lovika Mittal
- Translational Health Science and Technology Institute (THSTI)FaridabadIndia
| | - Anita Kumari
- Translational Health Science and Technology Institute (THSTI)FaridabadIndia
| | | | - Mrityunjay Singh
- Translational Health Science and Technology Institute (THSTI)FaridabadIndia
| | - Rajani Mathur
- Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR)New DelhiIndia
| | - Shailendra Asthana
- Translational Health Science and Technology Institute (THSTI)FaridabadIndia
| |
Collapse
|
18
|
Mao D, Xu M, Jiang Q, Sun H, Sun F, Yang R, Chai Y, Li X, Li B, Li Y. A Single Nucleotide Mixture Enhances the Antitumor Activity of Molecular-Targeted Drugs Against Hepatocellular Carcinoma. Front Pharmacol 2022; 13:951831. [PMID: 35833031 PMCID: PMC9271877 DOI: 10.3389/fphar.2022.951831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/06/2022] [Indexed: 12/13/2022] Open
Abstract
New strategies for molecular-targeted drug therapy for advanced hepatocellular carcinoma (HCC) ignore the contribution of the nutritional status of patients and nutritional support to improve physical status and immunity. We aimed to elucidate the role of a single nucleotide mixture (SNM) in the anti-tumor therapy of HCC, and to explore the importance of a SNM as adjuvant therapy for HCC. Compared with a lipid emulsion (commonly used nutritional supplement for HCC patients), the SNM could not induce metabolic abnormalities in HCC cells (Warburg effect), and did not affect expression of metabolic abnormality-related factors in HCC cells. The SNM could also attenuate the lymphocyte injury induced by antitumor drugs in vitro and in vivo, and promote the recruitment and survival of lymphocytes in HCC tissues. Using HCC models in SCID (server combined immune-deficiency) mice or BalB/c mice, the SNM had anti-tumor activity, and could significantly upregulate the antitumor activity of molecular-targeted drugs (tyrosine-kinase inhibitors [TKI] and immune-checkpoint inhibitors [ICI]) against HCC. We employed research models in vivo and in vitro to reveal the anti-tumor activity of the SNM on HCC. Our findings expand understanding of the SNM and contribute to HCC (especially nutritional support) therapy.
Collapse
Affiliation(s)
- Da Mao
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, China
| | - Meihong Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
| | - Qiyu Jiang
- Department of Infectious Disease, Institute of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Huiwei Sun
- Department of Infectious Disease, Institute of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Fang Sun
- Department of Infectious Disease, Institute of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ruichuang Yang
- Department of Infectious Disease, Institute of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yantao Chai
- Department of Clinical Laboratory, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaojuan Li
- Department of Infectious Disease, Institute of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Boan Li
- Department of Clinical Laboratory, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- *Correspondence: Yong Li, ; Boan Li,
| | - Yong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
- *Correspondence: Yong Li, ; Boan Li,
| |
Collapse
|