1
|
Chowdhury T, Chakraborty T, Ghosh A, Das AK, Das D. ZnAl 2O 4 Nanomaterial as a Naked-Eye Arsenate Sensor: A Combined Experimental and Computational Mechanistic Approach. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32457-32473. [PMID: 35797477 DOI: 10.1021/acsami.2c04875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Raising public awareness over the emerging health risk due to intake of arsenic-contaminated potable water is a matter of great concern. Exploration of cost-effective, self-testing kits is a substantial way to reach out to the masses and detect the presence of arsenate in water. With this agenda, a photoluminescent Mannich base Zn(II) complex (ZnMC = [Zn2(ML)2]·(ClO4)2·(H2O); HML = Mannich base ligand) has been synthesized, and its dinuclearity was verified with single-crystal X-ray diffraction structural analysis. Among a range of anions, ZnMC was found to detect arsenate selectively by showing a turn-off emission with a color change from bright green to dark under UV light. The real-life applicability of the ZnMC probe is somewhat restricted to only sensing of arsenate, but not its removal owing to the fact of its homogeneity. Considering the efficacy of ZnMC as well as a need for its easy removal from water, slight modification has been done with chloride ions in the form of ZnMC″ (=[Zn2(ML)2(Cl)2]), and finally, an interface between homogeneous and heterogeneous solid support has been explored with a strategic fabrication of ZnMC″ grafted ZnAl2O4, named as ZAZ nanomaterial. This not only imparts successful segregation of arsenate from drinking water but also provides naked-eye detection under ambient light as well as UV light. Thermodynamic parameters associated with the binding of arsenate to ZnMC and ZAZ have been evaluated through isothermal calorimetric (ITC) measurements. Steady-state and time-resolved fluorescence titration study, absorption titration study, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and computational calculations have been performed to get deep insights into the sensing properties. Proper justification of the sensing mechanism is the highlight of this work. ZAZ nanomaterial has been exploited to produce a self-test paper kit for arsenate detection with a limit of 9.86 ppb, which potentially enables applications in environmental monitoring.
Collapse
Affiliation(s)
- Tania Chowdhury
- Department of Chemistry, University College of Science, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Tonmoy Chakraborty
- Department of Chemistry, University College of Science, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Avik Ghosh
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Abhijit K Das
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Debasis Das
- Department of Chemistry, University College of Science, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| |
Collapse
|
2
|
Biswas S, Chowdhury T, Ghosh A, Das AK, Das D. Effect of O-substitution in imidazole based Zn(II) dual fluorescent probes in the light of arsenate detection in potable water: a combined experimental and theoretical approach. Dalton Trans 2022; 51:7174-7187. [PMID: 35470835 DOI: 10.1039/d2dt00357k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Efficient detection of arsenate (AsO43-) from contaminated drinking water extracted from underground has become a matter of utmost necessity and an exquisite challenge owing to the growing public health issue due to arsenicosis. In order to combat this we planned to detect arsenate with the naked eye under UV light using a novel chemosensor material whose structure and functioning as a sensor could be certified mechanistically. Hence we were encouraged to synthesize two differently O-substituted imidazole based homologous ligands: C1 (HL1 = 2-((E)-(3-(1H-imidazole-1-yl)propylimino)methyl)-6-ethoxyphenol) and C2 (HL2 = 2-((E)-(3-(1H-imidazole-1-yl)propylimino)methyl)-6-methoxyphenol). To accomplish the purposeful exploration of the luminescent sensor, we considered Chelation Enhanced Fluorescence (CHEF) and kept on searching for a metal cation that would be able to turn on the fluorescence of the ligands. Considering Zn(II) as the most suitable candidate, luminescent complexes D1 and D2 ({[Zn2(L1)2(I)2](DMF)} and [Zn2(L2)2(I)2](DMF), respectively) were synthesized and characterized by SXRD, UV-Vis, FT-IR, and photoluminescence spectroscopy. In spite of the resemblance in the solid state structures of D1 and D2, the selective response of D1 towards arsenate with high quenching constants (2.13 × 106), unlike D2, has been demonstrated mechanistically with steady state and time resolved fluorescence titration, solution phase ESI-MS spectral analysis and DFT studies. The selectivity and sensitivity of the sensor D1 explicitly make this material a potent candidate for arsenate detection due to its very low detection limit (8.2 ppb), low cost and user friendly characteristics. Real life implementation of this work in a test strip is expected to prove beneficial for public health to identify arsenate polluted water.
Collapse
Affiliation(s)
- Sneha Biswas
- Department of Chemistry, University College of Science, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India.
| | - Tania Chowdhury
- Department of Chemistry, University College of Science, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India.
| | - Avik Ghosh
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Abhijit K Das
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Debasis Das
- Department of Chemistry, University College of Science, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India.
| |
Collapse
|
3
|
Banik D, Manna SK, Mahapatra AK. Recent development of chromogenic and fluorogenic chemosensors for the detection of arsenic species: Environmental and biological applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:119047. [PMID: 33070013 DOI: 10.1016/j.saa.2020.119047] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
Due to biological and environmental significance of highly toxic arsenic species, the design, synthesis and development of chemosensors for arsenic species has been a very active research field in recent times. In this review, we summarize recent works on the sensing mechanisms employed by fluorometric/colorimetric chemosensors and their applications in arsenic detection. Various types of sensing strategies can be categorized into six types including (i) chemosensors based on hydrogen bonding interactions; (ii) aggregation induced emission (AIE) based chemosensors; (iii) chemodosimetric approach (reaction-based chemosensors); (iv) metal coordination-based sensing strategy; (v) chemosensors based on metal complex displacement approach and (vi) metal complex as chemosensor. All these sensing strategies are very much simple and sensitive for use in the design of arsenic selective chromogenic and fluorogenic probes.
Collapse
Affiliation(s)
- Dipanjan Banik
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India
| | - Saikat Kumar Manna
- Department of Chemistry, Haldia Government College, Debhog, Purba Medinipur, Haldia 721657, West Bengal, India.
| | - Ajit Kumar Mahapatra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India.
| |
Collapse
|
4
|
Identification of intracellular cadmium transformation in HepG2 and MCF-7 cells. Talanta 2020; 218:121065. [PMID: 32797863 DOI: 10.1016/j.talanta.2020.121065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 01/14/2023]
Abstract
It is of significance to elucidate or understand the intracellular transformation & migration behaviors of heavy metals in specific cells. Herein, we report the fast and efficient separation of cadmium-metallothioneins (Cd-MTs) and Cd2+in cell lysate by a short column capillary electrophoresis (SC-CE), followed by coupling with inductively coupled plasma mass spectrometry (ICP-MS) to facilitate the speciation of intracellular cadmium species. The incorporation of sodium dodecyl sulfate (SDS) in running buffer significantly reduces the peak width of Cd2+from 170 s to 26 s in the electrophoretogram, causing a 5.3-fold improvement on the sensitivity. Linear ranges of 0.5-50 mg L-1,0.056-5.6 mg L-1 and 0.1-10 mg L-1 are achieved for MTs, Cd-MTs (Cd) and Cd2+, respectively, along with detection limits of 0.013 mg L-1 for Cd-MTs (Cd) and 0.020 mg L-1 for Cd2+. The transformation of cadmium in HepG2 and MCF-7 cells is evaluated after their incubation with Cd2+ reinforced culture medium. Intracellular free Cd2+ cation and Cd-MTs are identified, along with Cd2+ transformation to Cd-glutathione (GSH) adduct/complex, as further demonstrated by ESI-MS.
Collapse
|
5
|
DOLAI M, ALAM R, KATARKAR A, CHAUDHURI K, ALI M. Oxime Based Selective Fluorescent Sensor for Arsenate Ion in a Greener Way with Bio-Imaging Application. ANAL SCI 2016; 32:1295-1300. [DOI: 10.2116/analsci.32.1295] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Malay DOLAI
- Department of Chemistry, Jadavpur University
| | - Rabiul ALAM
- Department of Chemistry, Jadavpur University
| | - Atul KATARKAR
- Molecular & Human Genetics Division, CSIR-Indian Institute of Chemical Biology
| | - Keya CHAUDHURI
- Molecular & Human Genetics Division, CSIR-Indian Institute of Chemical Biology
| | | |
Collapse
|
6
|
Islam ASM, Alam R, Katarkar A, Chaudhuri K, Ali M. Di-oxime based selective fluorescent probe for arsenate and arsenite ions in a purely aqueous medium with living cell imaging applications and H-bonding induced microstructure formation. Analyst 2015; 140:2979-83. [DOI: 10.1039/c5an00236b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A 2-hydroxy-5-methyl-benzene-1,3-dicarboxaldehyde di-oxime based turn-on blue emission fluorescent probe was found to recognize both AsO2− and H2AsO4− in a purely aqueous medium in intra and extra-cellular conditions.
Collapse
Affiliation(s)
| | - Rabiul Alam
- Department of Chemistry
- Jadavpur University
- Kolkata 700 032
- India
| | - Atul Katarkar
- Molecular & Human Genetics Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata-700032
- India
| | - Keya Chaudhuri
- Molecular & Human Genetics Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata-700032
- India
| | - Mahammad Ali
- Department of Chemistry
- Jadavpur University
- Kolkata 700 032
- India
| |
Collapse
|
7
|
Campanella B, Bramanti E. Detection of proteins by hyphenated techniques with endogenous metal tags and metal chemical labelling. Analyst 2014; 139:4124-53. [DOI: 10.1039/c4an00722k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The absolute and relative quantitation of proteins plays a fundamental role in modern proteomics, as it is the key to understand still unresolved biological questions in medical and pharmaceutical applications.
Collapse
Affiliation(s)
- Beatrice Campanella
- National Research Council of Italy
- C.N.R
- Istituto di Chimica dei Composti Organo Metallici-ICCOM-UOS Pisa
- 56124 Pisa, Italy
| | - Emilia Bramanti
- National Research Council of Italy
- C.N.R
- Istituto di Chimica dei Composti Organo Metallici-ICCOM-UOS Pisa
- 56124 Pisa, Italy
| |
Collapse
|
8
|
Das S, Banerjee A, Lohar S, Sarkar B, Mukhopadhyay SK, Matalobos JS, Sahana A, Das D. 2-(2-Pyridyl) benzimidazole-based ternary Mn(ii) complex as an arsenate selective turn-on fluorescence probe: ppb level determination and cell imaging studies. NEW J CHEM 2014. [DOI: 10.1039/c3nj01514a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Krizkova S, Ryvolova M, Masarik M, Zitka O, Adam V, Hubalek J, Eckschlager T, Kizek R. Modern bioanalysis of proteins by electrophoretic techniques. Methods Mol Biol 2014; 1129:381-396. [PMID: 24648089 DOI: 10.1007/978-1-62703-977-2_28] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In 1957, protein rich in cysteine able to bind cadmium was isolated from horse kidney and named as metallothionein according to its structural properties. Further, this protein and metallothionein-like proteins have been found in tissues of other animal species, yeasts, fungi and plants. MT is as a potential cancer marker in the focus of interest, and its properties, functions, and behavior under various conditions are intensively studied. Our protocol describes separation of two major mammalian isoforms of MT (MT-1 and MT-2) using capillary electrophoresis (CE) coupled with UV detector. This protocol enables separation of MT isoforms and studying of their basic behavior as well as their quantification with detection limit in units of ng per μL. Sodium borate buffer (20 mM, pH 9.5) was optimized as a background electrolyte, and the separation was carried out in fused silica capillary with internal diameter of 75 μm and electric field intensity of 350 V/cm. Optimal detection wavelength was 254 nm.
Collapse
Affiliation(s)
- Sona Krizkova
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University, Brno, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Sahana A, Banerjee A, Lohar S, Panja S, Mukhopadhyay SK, Matalobos JS, Das D. Fluorescence sensing of arsenate at nanomolar level in a greener way: naphthalene based probe for living cell imaging. Chem Commun (Camb) 2013; 49:7231-3. [PMID: 23841111 DOI: 10.1039/c3cc43211d] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Naphthalene-salisaldehyde conjugate (NAPSAL) is established as a novel arsenate (H2AsO4(-)) selective 'turn-on' fluorescence probe. It can detect as low as 5 × 10(-9) M H2AsO4(-) in HEPES buffered EtOH : water (0.1 M, 1 : 9, v/v, pH 7.4). Trace level H2AsO4(-) in drinking water samples is measured using standard addition method. Intracellular arsenate in Candida albicans, grown in arsenic contaminated water of Purbasthali has successfully been detected under fluorescence microscope.
Collapse
Affiliation(s)
- Animesh Sahana
- Department of Chemistry, The University of Burdwan, 713104, Burdwan, West Bengal, India
| | | | | | | | | | | | | |
Collapse
|
11
|
|
12
|
Timerbaev AR. Element speciation analysis using capillary electrophoresis: twenty years of development and applications. Chem Rev 2012; 113:778-812. [PMID: 23057472 DOI: 10.1021/cr300199v] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Andrei R Timerbaev
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Kosygin Str. 19, 119991 Moscow, Russian Federation.
| |
Collapse
|
13
|
Ryvolova M, Adam V, Kizek R. Analysis of metallothionein by capillary electrophoresis. J Chromatogr A 2012; 1226:31-42. [DOI: 10.1016/j.chroma.2011.10.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 09/30/2011] [Accepted: 10/01/2011] [Indexed: 02/05/2023]
|
14
|
Karayünlü S, Ay Ü. Spectrophotometric determination of total inorganic arsenic with hexamethylene ammonium-hexamethylenedithiocarbamate in nonionic triton X-100 micellar media. JOURNAL OF ANALYTICAL CHEMISTRY 2010. [DOI: 10.1134/s1061934810030068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Capillary electrophoresis coupled to mass spectrometry for biospeciation analysis: critical evaluation. Trends Analyt Chem 2009. [DOI: 10.1016/j.trac.2009.02.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Yin XB, Li Y, Yan XP. CE-ICP-MS for studying interactions between metals and biomolecules. Trends Analyt Chem 2008. [DOI: 10.1016/j.trac.2008.04.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Timerbaev AR. Recent trends in CE of inorganic ions: From individual to multiple elemental species analysis. Electrophoresis 2007; 28:3420-35. [PMID: 17768723 DOI: 10.1002/elps.200600491] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The major methodological developments in CE related to inorganic analysis are overviewed. This is an update to a previous review article by the author (Timerbaev, A. R., Electrophoresis 2004, 25, 4008-4031) and it covers the review work and innovative research papers published between January 2004 and the first part of 2006. As was underlined in that review, a growing interest of analytical community in providing elemental speciation information found a sound response of the CE method developers. Presently, almost every second research paper in the field of interest deals with element species analysis, the use of inductively coupled plasma MS detection and biochemical applications being the topics of utmost research efforts. On the other hand, advances in general methodology traditionally centered on a CE system modernization for improvements in sensitivity and separation selectivity have attracted less attention over the review period. While there is no indication that inorganic ion applications would surpass by the developmental rate the more matured analysis of organic analytes, CE can now be seen as an analytical technique to be before long customary in a number of inorganic analysis arenas.
Collapse
Affiliation(s)
- Andrei R Timerbaev
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
18
|
Haselberg R, de Jong GJ, Somsen GW. Capillary electrophoresis–mass spectrometry for the analysis of intact proteins. J Chromatogr A 2007; 1159:81-109. [PMID: 17560583 DOI: 10.1016/j.chroma.2007.05.048] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 05/01/2007] [Accepted: 05/15/2007] [Indexed: 10/23/2022]
Abstract
Developments in the fields of protein chemistry, proteomics and biotechnology have increased the demand for suitable analytical techniques for the analysis of intact proteins. In 1989, capillary electrophoresis (CE) was combined with mass spectrometry (MS) for the first time and its potential usefulness for the analysis of intact (i.e. non-digested) proteins was shown. This article provides an overview of the applications of CE-MS within the field of intact protein analysis. The principles of the applied CE modes and ionization techniques used for CE-MS of intact proteins are shortly described. It is shown that separations are predominantly carried out by capillary zone electrophoresis and capillary isoelectric focusing, whereas electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI) are the most popular ionization techniques used for interfacing. The combination of CE with inductively coupled plasma (ICP) MS for the analysis of metalloproteins is also discussed. The various CE-MS combinations are systematically outlined and tables provide extensive overviews of the applications of each technique for intact protein analysis. Selected examples are given to illustrate the usefulness of the CE-MS techniques. Examples include protein isoform assignment, single cell analysis, metalloprotein characterization, proteomics and biomarker screening. Finally, chip-based electrophoresis combined with MS is shortly treated and some of its applications are described. It is concluded that CE-MS represents a powerful tool for the analysis of intact proteins yielding unique separations and information.
Collapse
Affiliation(s)
- Rob Haselberg
- Department of Biomedical Analysis, Utrecht University, 3508 TB Utrecht, The Netherlands.
| | | | | |
Collapse
|
19
|
Field speciation of chromium with a sequential injection lab-on-valve incorporating a bismuthate immobilized micro-column. Talanta 2007; 72:1710-6. [DOI: 10.1016/j.talanta.2007.01.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 01/09/2007] [Accepted: 01/09/2007] [Indexed: 11/22/2022]
|
20
|
Affiliation(s)
- Nicolas H Bings
- Institute of Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany.
| | | | | |
Collapse
|