1
|
Du X, Zhang Q, Ma X, Xu G, Li J, Song P, Xia L. Dual detection and quantification of hypochlorite and sulfite ions via SERS spectroscopy by utilizing the redox reaction of tetramethylbenzidine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 312:124051. [PMID: 38368820 DOI: 10.1016/j.saa.2024.124051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/25/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
We developed a highly efficient, ultra-sensitive, and selective dual detection sensor for hypochlorite (ClO-) and sulfite (SO32-) ions based on surface-enhanced Raman scattering (SERS) spectroscopy. 3,3',5,5'-Tetramethylbenzidine (TMB) is oxidized by ClO- under acidic conditions to diazotized oxTMB that, when electrostatically adsorbed onto Au nanoparticles (NPs), produces a strong Raman signal at 1605 cm-1. Meanwhile, oxTMB is reduced to TMB by SO32-, which significantly reduces the Raman signal. The linear detection range of the proposed sensor is 10-10 to 10-6 M with a detection limit of 59 pM for ClO- and 10-9 to 10-5 M with a detection limit of 5.4 nM for SO32-. In addition, the sensor was successfully applied to detect ClO- and SO32- in water samples.
Collapse
Affiliation(s)
- Xiaoyu Du
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Qijia Zhang
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Xiaodi Ma
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Guangda Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jia Li
- College of Physics, Liaoning University, Shenyang 110036, China
| | - Peng Song
- College of Physics, Liaoning University, Shenyang 110036, China.
| | - Lixin Xia
- College of Chemistry, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
2
|
Kitaw SL, Birhan YS, Tsai HC. Plasmonic surface-enhanced Raman scattering nano-substrates for detection of anionic environmental contaminants: Current progress and future perspectives. ENVIRONMENTAL RESEARCH 2023; 221:115247. [PMID: 36640935 DOI: 10.1016/j.envres.2023.115247] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/26/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Surface-enhanced Raman scattering spectroscopy (SERS) is a powerful technique of vibrational spectroscopy based on the inelastic scattering of incident photons by molecular species. It has unique properties such as ultra-sensitivity, selectivity, non-destructivity, speed, and fingerprinting properties for analytical and sensing applications. This enables SERS to be widely used in real-world sample analysis and basic plasmonic mechanistic studies. However, the desirable properties of SERS are compromised by the high cost and low reproducibility of the signals. The development of multifunctional, stable and reusable nano-engineered SERS substrates is a viable solution to circumvent these drawbacks. Recently, plasmonic SERS active nano-substrates with various morphologies have attracted the attention of researchers due to promising properties such as the formation of dense hot spots, additional stability, tunable and controlled morphology, and surface functionalization. This comprehensive review focused on the current advances in the field of SERS active nanosubstrates suitable for the detection and quantification of anionic environmental pollutants. The common fabrication methods, including the techniques for morphological adjustments and surface modification, substrate categories, and the design of nanotechnologically fabricated plasmonic SERS substrates for anion detection are systematically presented. Here, the need for the design, synthesis, and functionalization of SERS nano-substrates for anions of great environmental importance is explained in detail. In addition, the broad categories of SERS nano-substrates, namely colloid-based SERS substrates and solid-support SERS substrates are discussed. Moreover, a brief discussion of SERS detection of certain anionic pollutants in the environment is presented. Finally, the prospects in the fabrication and commercialization of pilot-scale handheld SERS sensors and the construction of smart nanosubstrates integrated with novel amplifying materials for the detection of anions of environmental and health concern are proposed.
Collapse
Affiliation(s)
- Sintayehu Leshe Kitaw
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 106, Taiwan, ROC
| | - Yihenew Simegniew Birhan
- Department of Chemistry, College of Natural and Computational Sciences, Debre Markos University, P.O. Box 269, Debre Markos, Ethiopia
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 106, Taiwan, ROC; Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei, 106, Taiwan, ROC; R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan, 320, Taiwan, ROC.
| |
Collapse
|
3
|
Manivannan B, Nallathambi G, Devasena T. Alternative methods of monitoring emerging contaminants in water: a review. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:2009-2031. [PMID: 36128976 DOI: 10.1039/d2em00237j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Anthropogenic activities have steadily increased the release of emerging contaminants (ECs) in aquatic bodies, and these ECs may have adverse effects on humans even at their trace (μg L-1) levels. Their occurrence in wastewater systems is more common, and the current wastewater treatment facilities are inefficient in eliminating many of such persistent ECs. "Gold standard" techniques such as chromatography, mass spectrometry, and other high-resolution mass spectrometers are used for the quantification of ECs of various kinds, but they all have significant limitations. This paper reviews the alternative methods for EC detection, which include voltammetry, potentiometry, amperometry, electrochemical impedance spectroscopy (EIS) based electrochemical methods, colorimetry, surface-enhanced Raman spectroscopy (SERS), fluorescence probes, and fluorescence spectroscopy-based optical techniques. These alternative techniques have several advantages over conventional techniques, including low sample volume, excludes solid phase extraction procedure, high sensitivity, selectivity, portability, reproducibility, rapidity, low cost, and the ability to monitor ECs in real time. This review summarises each of the alternative methods for detecting ECs in water samples and their respective limits of detection (LODs). The sensitivity of each technique varied depending on the type of EC measured, type of electrochemical probe and electrode, substrates, type of nanoparticle (NP), the physicochemical parameters of water samples tested, and more. Nevertheless, this paper also focuses on some of the current challenges encountered by these alternative methods in monitoring ECs.
Collapse
Affiliation(s)
| | - Gobi Nallathambi
- Department of Textile Technology, Anna University, Chennai, Tamil Nadu, India.
| | | |
Collapse
|
4
|
Wang N, Zhang Y, Yuan J, Hu L, Sun M, Li Z, Yao X, Weng X, Jia C. A Synergistic Strategy of Organic Molecules Introduced a High Zn 2+ Flux Solid Electrolyte Interphase for Stable Aqueous Zinc-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48081-48090. [PMID: 36222419 DOI: 10.1021/acsami.2c12118] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Aqueous rechargeable zinc-ion batteries (ARZIBs) are considered as attractive candidates for the next generation of high-safety and low-cost energy storage in large-scale power grids. However, challenges such as the dendrites and the corrosion on the zinc (Zn) surface result in short battery life and low reversibility of Zn plating/stripping. In this work, a method of preconditioning of a zinc anode in hybrid electrolytes (based on poly(ethylene glycol)-200 and H2O) to form a solid electrolyte interphase (SEI) that prevents anode corrosion and dendrites is proposed. Though surface composition analysis and density functional theory calculation, this SEI has dense organic and inorganic components due to the induction of organic molecules and anions and has rapid kinetic and high-throughput properties for the transport of zinc ions. As a result, the SEI-modified Zn anode can maintain a low-voltage hysteresis stable cycle for more than 1600 h in aqueous electrolyte. The anode also exhibits impressive reversibility with a high Coulomobic efficiency of 99.23% over 1300 cycles. Furthermore, the ARZIB encapsulated by this anode and Mn-doped V6O13 cathode enables an outstanding electrochemical stability (181.8 mAh g-1 after 800 cycles at room temperature, 102.2 mAh g-1 after 1000 cycles at -15 °C). This work provides an intriguing idea for the stability maintenance of the anode for ARZIBs or other metal-ion batteries.
Collapse
Affiliation(s)
- Nengze Wang
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen518110, P. R. China
| | - Yunpeng Zhang
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen518110, P. R. China
| | - Junyu Yuan
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen518110, P. R. China
| | - Lei Hu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu610054, P. R. China
| | - Mengxuan Sun
- School of Physics, University of Electronic Science and Technology of China, Chengdu610054, P. R. China
| | - Zhijie Li
- School of Physics, University of Electronic Science and Technology of China, Chengdu610054, P. R. China
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou730000, P. R. China
| | - Xiaolong Weng
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen518110, P. R. China
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu610054, P. R. China
| | - Chunyang Jia
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen518110, P. R. China
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu610054, P. R. China
| |
Collapse
|
5
|
Keskin B, Üzer A, Apak R. Ionic Liquid-Modified Gold Nanoparticle-Based Colorimetric Sensor for Perchlorate Detection via Anion-π Interaction. ACS OMEGA 2022; 7:28065-28075. [PMID: 35990460 PMCID: PMC9386817 DOI: 10.1021/acsomega.2c02078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
A rapid and convenient nanoparticle(NP)-based colorimetric sensor was developed for determining the propellant oxidant, ammonium perchlorate (AP). The sensing element was manufactured by modifying gold nanoparticles (AuNPs) with [(1-methyl-1H-imidazol-2-yl)sulfanyl]acetic acid, which is an imidazolium-based ionic liquid (IL), to produce the IL@AuNP nanosensor stabilized by polyvinylpyrrolidone. The used IL is an exceptional IL which can attach to AuNPs through the sulfanyl-S atom. The sensing principle was based on observing the red shift in the surface plasmon resonance band of AuNPs leading to NP aggregation as a result of anion-π interaction of perchlorate anion with the zwitterionic form of IL@AuNPs so as to bring opposite charges face-to-face, thereby reducing the overall surface charge of NPs. The surface plasmon resonance band of AuNPs at 540 nm shifted to 700 nm as a result of aggregation. The ratiometric sensing was performed by dividing the absorbance at 700 nm to the absorbance at 540 nm and correlating this ratio to the AP concentration. The limit of detection and limit of quantification of the sensor for AP were 1.50 and 4.95 μM, respectively. Possible interferences of other energetic substances and common soil ions in synthetic mixtures were also investigated to achieve acceptable recoveries of analyte. This work may pioneer similar sensing systems where the overall anionic charges of IL-functionalized AuNPs are exceptionally reduced by an analyte anion (perchlorate), thereby forcing NPs to aggregate.
Collapse
Affiliation(s)
- Büşra Keskin
- Institute
of Graduate Studies, Istanbul University-Cerrahpaşa, Avcilar, 34320 Istanbul, Turkey
- Department
of Chemistry, Faculty of Engineering, Istanbul
University-Cerrahpaşa, Avcilar, 34320 Istanbul, Turkey
| | - Ayşem Üzer
- Department
of Chemistry, Faculty of Engineering, Istanbul
University-Cerrahpaşa, Avcilar, 34320 Istanbul, Turkey
| | - Reşat Apak
- Department
of Chemistry, Faculty of Engineering, Istanbul
University-Cerrahpaşa, Avcilar, 34320 Istanbul, Turkey
- Turkish
Academy of Sciences (TUBA), Bayraktar Neighborhood, Vedat Dalokay Street No: 112, Çankaya, 06690 Ankara, Turkey
| |
Collapse
|
6
|
Thakur A, Devi P. A Comprehensive Review on Water Quality Monitoring Devices: Materials Advances, Current Status, and Future Perspective. Crit Rev Anal Chem 2022; 54:193-218. [PMID: 35522585 DOI: 10.1080/10408347.2022.2070838] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Water quality monitoring has become more critical in recent years to ensure the availability of clean and safe water from natural aquifers and to understand the evolution of water contaminants across time and space. The conventional water monitoring techniques comprise of sample collection, preservation, preparation, tailed by laboratory testing and analysis with cumbersome wet chemical routes and expensive instrumentation. Despite the high accuracy of these methods, the high testing costs, laborious procedures, and maintenance associated with them don't make them lucrative for end end-users and field testing. As the participation of ultimate stakeholders, that is, common man for water quality and quantity can play a pivotal role in ensuring the sustainability of our aquifers, thus it is essential to develop and deploy portable and user-friendly technical systems for monitoring water sources in real-time or on-site. The present review emphasizes here on possible approaches including optical (absorbance, fluorescence, colorimetric, X-ray fluorescence, chemiluminescence), electrochemical (ASV, CSV, CV, EIS, and chronoamperometry), electrical, biological, and surface-sensing (SPR and SERS), as candidates for developing such platforms. The existing developments, their success, and bottlenecks are discussed in terms of various attributes of water to escalate the essentiality of water quality devices development meeting ASSURED criterion for societal usage. These platforms are also analyzed in terms of their market potential, advancements required from material science aspects, and possible integration with IoT solutions in alignment with Industry 4.0 for environmental application.
Collapse
Affiliation(s)
- Anupma Thakur
- Materials Science and Sensor Application, CSIR-Central Scientific Instruments Organisation, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pooja Devi
- Materials Science and Sensor Application, CSIR-Central Scientific Instruments Organisation, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
7
|
Perchlorate Solid-Contact Ion-Selective Electrode Based on Dodecabenzylbambus[6]uril. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10030115] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Dodecabenzylbambus[6]uril (Bn12BU[6]) is an anion receptor that binds the perchlorate ion the most tightly (stability constant ~1010 M−1) of all anions due to the excellent match between the ion size in relation to the receptor cavity. This new bambusuril compound was used as an ionophore in the ion-selective membrane (ISM) to develop ion selective electrodes (ISEs) for determination of perchlorate concentration utilizing the poly(3,4-ethylenedioxythiophene) (PEDOT) polymer film as a solid-contact material. Variation of the content of Bn12BU[6] and tridodecylmethylammonium chloride (TDMACl) in the plasticized poly(vinyl chloride)-based ISM was also tested. All the prepared solid-contact ISEs and their analytical performance were characterized by potentiometry, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and chronopotentiometry. The ISEs showed rapid response and a sub-Nernstian slope (~57 mV/decade) during potentiometric measurements in perchlorate solutions in the concentration range from 10−1 to 10−6 M simultaneously with their high stability and sufficient selectivity to other common inorganic anions like bromide, chloride, nitrate and sulphate. The function of the ISE was further verified by analysis of real water samples (lake, sea, and mineral water), which gave accurate and precise results.
Collapse
|
8
|
Turino M, Pazos-Perez N, Guerrini L, Alvarez-Puebla RA. Positively-charged plasmonic nanostructures for SERS sensing applications. RSC Adv 2021; 12:845-859. [PMID: 35425123 PMCID: PMC8978927 DOI: 10.1039/d1ra07959j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/17/2021] [Indexed: 12/15/2022] Open
Abstract
Surface-enhanced Raman (SERS) spectroscopy has been establishing itself as an ultrasensitive analytical technique with a cross-disciplinary range of applications, which scientific growth is triggered by the continuous improvement in the design of advanced plasmonic materials with enhanced multifunctional abilities and tailorable surface chemistry. In this regard, conventional synthetic procedures yield negatively-charged plasmonic materials which can hamper the adhesion of negatively-charged species. To tackle this issue, metallic surfaces have been modified via diverse procedures with a broad array of surface ligands to impart positive charges. Cationic amines have been preferred because of their ability to retain a positive zeta potential even at alkaline pH as well as due to their wide accessibility in terms of structural features and cost. In this review, we will describe and discuss the different approaches for generating positively-charged plasmonic platforms and their applications in SERS sensing.
Collapse
Affiliation(s)
- Mariacristina Turino
- Department of Physical and Inorganic Chemistry - EMaS, Universitat Rovira I Virgili Carrer de Marcel·lí Domingo s/n 43007 Tarragona Spain
| | - Nicolas Pazos-Perez
- Department of Physical and Inorganic Chemistry - EMaS, Universitat Rovira I Virgili Carrer de Marcel·lí Domingo s/n 43007 Tarragona Spain
| | - Luca Guerrini
- Department of Physical and Inorganic Chemistry - EMaS, Universitat Rovira I Virgili Carrer de Marcel·lí Domingo s/n 43007 Tarragona Spain
| | - Ramon A Alvarez-Puebla
- Department of Physical and Inorganic Chemistry - EMaS, Universitat Rovira I Virgili Carrer de Marcel·lí Domingo s/n 43007 Tarragona Spain
- ICREA Passeig Lluís Companys 23 08010 Barcelona Spain
| |
Collapse
|
9
|
Hermann JM, Müller H, Daccache L, Adler C, Keller S, Metzler M, Jacob T, Kibler LA. Formic acid oxidation reaction on Au(111) electrodes modified with 4-mercaptopyridine SAM. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Hu J, Xian Y, Wu Y, Chen R, Dong H, Hou X, Liang M, Wang B, Wang L. Perchlorate occurrence in foodstuffs and water: Analytical methods and techniques for removal from water - A review. Food Chem 2021; 360:130146. [PMID: 34034057 DOI: 10.1016/j.foodchem.2021.130146] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/12/2021] [Accepted: 05/16/2021] [Indexed: 11/15/2022]
Abstract
Perchlorate (ClO4-), a type of contaminant with high diffusivity and durability, has been widely detected in water and foodstuffs, arousing a global concern. It can interfere with normal function of the human thyroid gland, affecting human health. Therefore, determination of perchlorate in water and foodstuffs, and removal from water are important. This review focuses on the occurrence of perchlorate, mainly in water and foodstuffs, and provides an overview of analytical methods for determination of perchlorate over the last two decades. In addition, merits and drawbacks of the various methods have been considered. This review also highlights the most commonly used approaches for removal of perchlorate from water. Finally, current trends and future perspectives in determination of perchlorate and removal from water are proposed. This review provided a comprehensive understanding of perchlorate occurrence and its removal from water, and had practical significance in reducing the harm of perchlorate to human.
Collapse
Affiliation(s)
- Junpeng Hu
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| | - Yanping Xian
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| | - Yuluan Wu
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| | - Rongqiao Chen
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| | - Hao Dong
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xiangchang Hou
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| | - Ming Liang
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| | - Bin Wang
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| | - Li Wang
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| |
Collapse
|
11
|
Shiue A, Chen JH, Chang CY, Chang SM, Hwa KY, Chin KY, Leggett G. Synthesis and cytotoxic analysis of thiolated xylose derivatives decorated on gold nanoparticles. ACTA ACUST UNITED AC 2020; 28:e00549. [PMID: 33240795 PMCID: PMC7674290 DOI: 10.1016/j.btre.2020.e00549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/20/2020] [Accepted: 10/29/2020] [Indexed: 11/29/2022]
Abstract
Nanoparticles covered with carbohydrates constitute a good bio-mimetic model. D-xylose gold nanoparticles with linkages of alkyl or polyethylene glycol synthesized via D-xylosethiols. Forming self-assembled monolayers on gold nanoparticles. The potential use of intact or thiolated xylose derivatives decorated on AuNPs.
The rapid development of metal nanoparticles capped by an organic monolayer offers the possibility to create a whole new variety of products with novel characteristic, functions and applications. Among these, nanoparticles covered with carbohydrates (glyconanoparticles) constitute a good bio-mimetic model of carbohydrate presentation at the cell surface and are currently centered on many glycobiological and biomedical applications. In this study, a series of novel D-xylose gold nanoparticles (AuNPs) with linkages of alkyl or polyethylene glycol have been synthesized via D-xylosethiols, forming self-assembled monolayers on gold nanoparticles. The nano-gold solution, two carbohydrate derivatives and modified nano-gold solution were tested for cytotoxicity to check the biocompatibility. The MTT assay on NIH 3T3 cell lines confirmed that all the test materials showed no toxicity with the more than 90 % of cell viability in both low concentration (1 μM) and high concentration (100 μM), compared with the control.
Collapse
Affiliation(s)
- Angus Shiue
- Graduate Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei, Taiwan
| | - Jenn-Han Chen
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Ying Chang
- Graduate Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei, Taiwan
| | - Shu-Mei Chang
- Graduate Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei, Taiwan.,Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei, Taiwan.,Research and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei, Taiwan
| | - Kuo-Yuan Hwa
- Graduate Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei, Taiwan.,Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei, Taiwan.,Center for Biomedical Industry, National Taipei University of Technology, Taipei, Taiwan
| | - Kai-Yen Chin
- Graduate Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei, Taiwan
| | | |
Collapse
|
12
|
Maggiori C, Stromberg J, Blanco Y, Goordial J, Cloutis E, García-Villadangos M, Parro V, Whyte L. The Limits, Capabilities, and Potential for Life Detection with MinION Sequencing in a Paleochannel Mars Analog. ASTROBIOLOGY 2020; 20:375-393. [PMID: 31976742 DOI: 10.1089/ast.2018.1964] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
No instrument capable of direct life detection has been included on a mission payload to Mars since NASA's Viking missions in the 1970s. This prevents us from discovering whether life is or ever was present on Mars. DNA is an ideal target biosignature since it is unambiguous, nonspecific, and readily detectable with nanopore sequencing. Here, we present a proof-of-concept utilization of the Oxford Nanopore Technologies (ONT) MinION sequencer for direct life detection and show how it can complement results from established space mission instruments. We used nanopore sequencing data from the MinION to detect and characterize the microbial life in a set of paleochannels near Hanksville, UT, with supporting data from X-ray diffraction, reflectance spectroscopy, Raman spectroscopy, and Life Detector Chip (LDChip) microarray immunoassay analyses. These paleochannels are analogs to martian sinuous ridges. The MinION-generated metagenomes reveal a rich microbial community dominated by bacteria and containing radioresistant, psychrophilic, and halophilic taxa. With spectral data and LDChip immunoassays, these metagenomes were linked to the surrounding Mars analog environment and potential metabolisms (e.g., methane production and perchlorate reduction). This shows a high degree of synergy between these techniques for detecting and characterizing biosignatures. We also resolved a prospective lower limit of ∼0.001 ng of DNA required for successful sequencing. This work represents the first determination of the MinION's DNA detection limits beyond ONT recommendations and the first whole metagenome analysis of a sinuous ridge analog.
Collapse
Affiliation(s)
- Catherine Maggiori
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Quebec, Canada
| | | | - Yolanda Blanco
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | - Jacqueline Goordial
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Quebec, Canada
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine
| | - Edward Cloutis
- Department of Geography, Faculty of Science, University of Winnipeg, Winnipeg, Canada
| | | | - Victor Parro
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | - Lyle Whyte
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Quebec, Canada
| |
Collapse
|
13
|
Hemolysis tendency of anticancer nanoparticles changes with type of blood group antigen: An insight into blood nanoparticle interactions. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110645. [PMID: 32228982 DOI: 10.1016/j.msec.2020.110645] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/22/2019] [Accepted: 01/03/2020] [Indexed: 12/23/2022]
Abstract
Different blood groups of ABO system have specific antigen which bestows them with different biochemical properties and hence they can show different hemolytic activity. In this report, hemolytic activity of thiol-functionalized Fe3O4-Au nanoparticles were studied in presence and absence of doxorubicin and the effect of various thiol coatings were correlated towards their hemolysis tendency. The nanoparticles were functionalized with four different amino thiols, cysteamine (CEA), cystamine (CA), cysteine (Cys) and cystine (Cyt) to form Fe3O4-Au CEA, Fe3O4-Au CA, Fe3O4-Au Cys and Fe3O4-Au Cyt nanoparticles which were loaded with anticancer drug, doxorubicin. The functionalization was characterized using ATR-FTIR, HR-TEM, XPS and other spectroscopic methods. Maximum drug encapsulation efficiency of 83% was observed with Fe3O4-Au CA nanoparticles. In-vitro experiments were performed on HeLa cells to check the cellular uptake and cytotoxicity using MTT assay. Hemolytic activity was then analyzed with all the blood groups (positive and negative). The amino acid functionalized, Fe3O4-Au Cys and Fe3O4-Au Cyt nanoparticles, shows lesser hemolysis compared to amino thiol functionalized Fe3O4-Au CEA, and Fe3O4-Au CA nanoparticles. In positive blood groups, the Fe3O4-Au CA nanoparticles shows the highest rate of hemolysis followed by Fe3O4-Au CEA, while the lowest hemolysis rate was observed for Fe3O4-Au Cyt nanoparticles. For negative blood groups, the thiol coated nanoparticles show more abrupt hemolysis rate depending upon the type of antigen.
Collapse
|
14
|
Keskin B, Üzer A, Apak R. Colorimetric sensing of ammonium perchlorate using methylene Blue−Modified gold nanoparticles. Talanta 2020; 206:120240. [DOI: 10.1016/j.talanta.2019.120240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 11/25/2022]
|
15
|
Gherman AMR, Dina NE, Chiș V, Wieser A, Haisch C. Yeast cell wall - Silver nanoparticles interaction: A synergistic approach between surface-enhanced Raman scattering and computational spectroscopy tools. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 222:117223. [PMID: 31177002 DOI: 10.1016/j.saa.2019.117223] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 06/09/2023]
Abstract
Candida species are becoming one of the pathogens developing antifungal resistance due to inappropriate treatment and overuse of antimycotic drugs in building construction and agriculture. Further, fungal infections are often difficult to detect, also due to slow in vitro growth of the organisms from clinical specimens. Thus, fast detection and discrimination of yeast cells in direct patient materials is essential for an adequate treatment and success rate. In this work, we investigated Candida species isolated from patients, by using surface-enhanced Raman scattering (SERS) combined with computational spectroscopy tools, aiming to detect and discriminate between the three considered species, Candida albicans, Candida glabrata, and Candida parapsilosis. Density functional theory (DFT) was used to calculate Raman spectra of yeasts' main cell wall components for elucidating the origin of the observed bands. Accurate assignments of normal modes helped for a better understanding of the interaction between silver nanoparticles with yeasts' cell wall. Further, SERS spectra were used as samples in a database on which we performed multivariate analyses. By Principal component analysis (PCA), we obtained a maximum variation of 79% between the three samples. Linear discriminant analysis (LDA) was successfully used to discriminate between the three species.
Collapse
Affiliation(s)
- Ana Maria Raluca Gherman
- Department of Molecular and Biomolecular Physics, National Institute of R&D of Isotopic and Molecular Technologies, Donat 67-103, 400293 Cluj-Napoca, Romania; Faculty of Physics, Babeș-Bolyai University, Kogălniceanu 1, 400084 Cluj-Napoca, Romania
| | - Nicoleta Elena Dina
- Department of Molecular and Biomolecular Physics, National Institute of R&D of Isotopic and Molecular Technologies, Donat 67-103, 400293 Cluj-Napoca, Romania.
| | - Vasile Chiș
- Faculty of Physics, Babeș-Bolyai University, Kogălniceanu 1, 400084 Cluj-Napoca, Romania
| | - Andreas Wieser
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-University, Marchinoninistr. 17, 82377 Munich, Germany; Division of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich (LMU), Leopoldstr. 5, 80802 Munich, Germany; German Center for Infection Research (DZIF), Partner Site Munich, D-80802 Munich, Germany
| | - Christoph Haisch
- Chair for Analytical Chemistry, Institute of Hydrochemistry, Technische Universität München, Marchioninistrasse 17, 81377 Munich, Germany
| |
Collapse
|
16
|
Chen Z, Jiang S, Kang G, Nguyen D, Schatz GC, Van Duyne RP. Operando Characterization of Iron Phthalocyanine Deactivation during Oxygen Reduction Reaction Using Electrochemical Tip-Enhanced Raman Spectroscopy. J Am Chem Soc 2019; 141:15684-15692. [DOI: 10.1021/jacs.9b07979] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Jiang J, Zhao F, Shi S, Du Y, Chen J, Wang S, Xu J, Li C, Liao J. In Situ Surface-Enhanced Raman Spectroscopy Detection of Uranyl Ions with Silver Nanorod-Decorated Tape. ACS OMEGA 2019; 4:12319-12324. [PMID: 31460349 PMCID: PMC6682048 DOI: 10.1021/acsomega.9b01574] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/05/2019] [Indexed: 05/25/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has been utilized for rapid analysis of uranyl ions (UO2 2+) on account of its fast response and high sensitivity. However, the difficulty of fabricating a suitable SERS substrate for in situ analysis of uranyl ions severely restricts its practical application. Hence, we proposed flexible and adhesive SERS tape decorated with silver nanorod (AgNR) arrays for in situ detection of UO2 2+. The SERS tape was fabricated through a simple "paste & peel off" procedure by transferring the slanted AgNR arrays from silicon to the transparent tape surface. UO2 2+ can be easily in situ detected by placing the AgNR SERS tape into an aqueous solution or pasting it onto the solid matrix surface due to the excellent transparent feature of the tape. The proposed SERS tape with well-distributed AgNRs effectively improved the reproducibility and sensitivity for UO2 2+ analysis. UO2 2+ with concentration as low as 100 nM was easily detected. Besides, UO2 2+ adsorbed on an iron disc and rock surface also can be rapidly in situ detected. With its simplicity and convenience, the AgNR SERS tape-based SERS technique offers a promising approach for environmental monitoring and nuclear accident emergency detection.
Collapse
Affiliation(s)
- Jiaolai Jiang
- Institute
of Materials, China Academy of Engineering
Physics, P. O. Box No.9-11, Mianyang, Sichuan 621907, P. R. China
| | - Fengtong Zhao
- Key
Laboratory of Advanced Materials (MOE), School of Materials Science
and Engineering, Tsinghua University, Beijing 100084, P.R. China
| | - Siwei Shi
- Institute
of Materials, China Academy of Engineering
Physics, P. O. Box No.9-11, Mianyang, Sichuan 621907, P. R. China
| | - Yunfeng Du
- Institute
of Materials, China Academy of Engineering
Physics, P. O. Box No.9-11, Mianyang, Sichuan 621907, P. R. China
| | - Jun Chen
- Institute
of Materials, China Academy of Engineering
Physics, P. O. Box No.9-11, Mianyang, Sichuan 621907, P. R. China
| | - Shaofei Wang
- Institute
of Materials, China Academy of Engineering
Physics, P. O. Box No.9-11, Mianyang, Sichuan 621907, P. R. China
| | - Jingsong Xu
- Institute
of Materials, China Academy of Engineering
Physics, P. O. Box No.9-11, Mianyang, Sichuan 621907, P. R. China
| | - Changmao Li
- Institute
of Materials, China Academy of Engineering
Physics, P. O. Box No.9-11, Mianyang, Sichuan 621907, P. R. China
| | - Junsheng Liao
- Institute
of Materials, China Academy of Engineering
Physics, P. O. Box No.9-11, Mianyang, Sichuan 621907, P. R. China
| |
Collapse
|
18
|
Gu X, Trujillo MJ, Olson JE, Camden JP. SERS Sensors: Recent Developments and a Generalized Classification Scheme Based on the Signal Origin. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2018; 11:147-169. [PMID: 29547340 DOI: 10.1146/annurev-anchem-061417-125724] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Owing to its extreme sensitivity and easy execution, surface-enhanced Raman spectroscopy (SERS) now finds application for a wide variety of problems requiring sensitive and targeted analyte detection. This widespread application has prompted a proliferation of different SERS-based sensors, suggesting the need for a framework to classify existing methods and guide the development of new techniques. After a brief discussion of the general SERS modalities, we classify SERS-based sensors according the origin of the signal. Three major categories emerge from this analysis: surface-affinity strategy, SERS-tag strategy, and probe-mediated strategy. For each case, we describe the mechanism of action, give selected examples, and point out general misconceptions to aid the construction of new devices. We hope this review serves as a useful tutorial guide and helps readers to better classify and design practical and effective SERS-based sensors.
Collapse
Affiliation(s)
- Xin Gu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA;
| | - Michael J Trujillo
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA;
| | - Jacob E Olson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA;
| | - Jon P Camden
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA;
| |
Collapse
|
19
|
Dina NE, Gherman AMR, Chiş V, Sârbu C, Wieser A, Bauer D, Haisch C. Characterization of Clinically Relevant Fungi via SERS Fingerprinting Assisted by Novel Chemometric Models. Anal Chem 2018; 90:2484-2492. [PMID: 29356512 DOI: 10.1021/acs.analchem.7b03124] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Nonculture-based tests are gaining popularity and upsurge in the diagnosis of invasive fungal infections (IFI) fostered by their main asset, the reduced analysis time, which enables a more rapid diagnosis. In this project, three different clinical isolates of relevant filamentous fungal species were discriminated by using a rapid (less than 5 min) and sensitive surface-enhanced Raman scattering (SERS)-based detection method, assisted by chemometrics. The holistic evaluation of the SERS spectra was performed by employing appropriate chemometric tools-classical and fuzzy principal component analysis (FPCA) in combination with linear discriminant analysis (LDA) applied to the first relevant principal components. The efficiency of the proposed robust algorithm is illustrated on the data set including three fungal isolates (Aspergillus fumigatus sensu stricto, cryptic A. fumigatus complex species, and Rhizomucor pusillus) that were isolated from patient materials. The accurate and reliable discrimination between species of common fungal pathogen strains suggest that the developed method has the potential as an alternative, spectroscopic-based routine analysis tool in IFI diagnosis.
Collapse
Affiliation(s)
- Nicoleta Elena Dina
- Department of Molecular and Biomolecular Physics, National Institute of R&D of Isotopic and Molecular Technologies , 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Ana Maria Raluca Gherman
- Department of Molecular and Biomolecular Physics, National Institute of R&D of Isotopic and Molecular Technologies , 67-103 Donat, 400293 Cluj-Napoca, Romania.,Faculty of Physics, Babeş-Bolyai University , 1 Kogălniceanu, 400084 Cluj-Napoca, Romania
| | - Vasile Chiş
- Faculty of Physics, Babeş-Bolyai University , 1 Kogălniceanu, 400084 Cluj-Napoca, Romania
| | - Costel Sârbu
- Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University , 11 Arany Janos, 400028 Cluj-Napoca, Romania
| | - Andreas Wieser
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-University ; Marchioninistrasse 17, 82377 Munich, Germany.,Division of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich (LMU) , Leopoldstrasse 5, 80802 Munich, Germany.,German Center for Infection Research (DZIF) , partner site Munich, 80802 Munich, Germany
| | - David Bauer
- Chair for Analytical Chemistry, Institute of Hydrochemistry, Technische Universität München , Marchioninistrasse 17, 81377 Munich, Germany
| | - Christoph Haisch
- Chair for Analytical Chemistry, Institute of Hydrochemistry, Technische Universität München , Marchioninistrasse 17, 81377 Munich, Germany
| |
Collapse
|
20
|
Physicochemical properties and cytotoxicity of cysteine-functionalized silver nanoparticles. Colloids Surf B Biointerfaces 2017; 160:429-437. [DOI: 10.1016/j.colsurfb.2017.09.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/06/2017] [Accepted: 09/17/2017] [Indexed: 01/20/2023]
|
21
|
Oćwieja M, Maciejewska-Prończuk J, Adamczyk Z, Roman M. Formation of positively charged gold nanoparticle monolayers on silica sensors. J Colloid Interface Sci 2017; 501:192-201. [DOI: 10.1016/j.jcis.2017.04.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/11/2017] [Accepted: 04/11/2017] [Indexed: 12/29/2022]
|
22
|
Review of SERS Substrates for Chemical Sensing. NANOMATERIALS 2017; 7:nano7060142. [PMID: 28594385 PMCID: PMC5485789 DOI: 10.3390/nano7060142] [Citation(s) in RCA: 262] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/02/2017] [Accepted: 06/06/2017] [Indexed: 12/21/2022]
Abstract
The SERS effect was initially discovered in the 1970s. Early research focused on understanding the phenomenon and increasing enhancement to achieve single molecule detection. From the mid-1980s to early 1990s, research started to move away from obtaining a fundamental understanding of the phenomenon to the exploration of analytical applications. At the same time, significant developments occurred in the field of photonics that led to the advent of inexpensive, robust, compact, field-deployable Raman systems. The 1990s also saw rapid development in nanoscience. This convergence of technologies (photonics and nanoscience) has led to accelerated development of SERS substrates to detect a wide range of chemical and biological analytes. It would be a monumental task to discuss all the different kinds of SERS substrates that have been explored. Likewise, it would be impossible to discuss the use of SERS for both chemical and biological detection. Instead, a review of the most common metallic (Ag, Cu, and Au) SERS substrates for chemical detection only is discussed, as well as SERS substrates that are commercially available. Other issues with SERS for chemical detection have been selectivity, reversibility, and reusability of the substrates. How these issues have been addressed is also discussed in this review.
Collapse
|
23
|
|
24
|
Liu Z, Wang L, Bian W, Zhang M, Zhan J. Porous silver coating fiber for rapidly screening organotin compounds by solid phase microextraction coupled with surface enhanced Raman spectroscopy. RSC Adv 2017. [DOI: 10.1039/c6ra25491h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rapidly screening organotin by solid phase microextraction coupled with surface enhanced Raman spectroscopy.
Collapse
Affiliation(s)
- Zhen Liu
- Key Laboratory of Colloid and Interface Chemistry
- Ministry of Education
- Department of Chemistry
- Shandong University
- Jinan 250100
| | - Le Wang
- Center of Technology
- Jinan Entry-Exit Inspection and Quarantine Bureau of the People's Republic of China
- Jinan 250014
- China
| | - Weiwei Bian
- Key Laboratory of Colloid and Interface Chemistry
- Ministry of Education
- Department of Chemistry
- Shandong University
- Jinan 250100
| | - Min Zhang
- Key Laboratory of Colloid and Interface Chemistry
- Ministry of Education
- Department of Chemistry
- Shandong University
- Jinan 250100
| | - Jinhua Zhan
- Key Laboratory of Colloid and Interface Chemistry
- Ministry of Education
- Department of Chemistry
- Shandong University
- Jinan 250100
| |
Collapse
|
25
|
Kong X, Squire K, Li E, LeDuff P, Rorrer GL, Tang S, Chen B, McKay CP, Navarro-Gonzalez R, Wang AX. Chemical and Biological Sensing Using Diatom Photonic Crystal Biosilica With In-Situ Growth Plasmonic Nanoparticles. IEEE Trans Nanobioscience 2016; 15:828-834. [PMID: 27959817 DOI: 10.1109/tnb.2016.2636869] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In this paper, we described a new type of bioenabled nano-plasmonic sensors based on diatom photonic crystal biosilica with in-situ growth silver nanoparticles and demonstrated label-free chemical and biological sensing based on surface-enhanced Raman scattering (SERs) from complex samples. Diatoms are photosynthetic marine micro-organisms that create their own skeletal shells of hydrated amorphous silica, called frustules, which possess photonic crystal-like hierarchical micro- & nanoscale periodic pores. Our research shows that such hybrid plasmonic-biosilica nanostructures formed by cost-effective and eco-friendly bottom-up processes can achieve ultra-high limit of detection for medical applications, food sensing, water/air quality monitoring and geological/space research. The enhanced sensitivity comes from the optical coupling of the guided-mode resonance of the diatom frustules and the localized surface plasmons of the silver nanoparticles. Additionally, the nanoporous, ultra-hydrophilic diatom biosilica with large surface-to-volume ratio can concentrate more analyte molecules to the surface of the SERS substrates, which can help to detect biomolecules that cannot be easily adsorbed by metallic nanoparticles.
Collapse
|
26
|
Jubb AM, Jiao Y, Eres G, Retterer ST, Gu B. Elevated gold ellipse nanoantenna dimers as sensitive and tunable surface enhanced Raman spectroscopy substrates. NANOSCALE 2016; 8:5641-8. [PMID: 26893035 DOI: 10.1039/c5nr08920d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We demonstrate large area arrays of elevated gold ellipse dimers with precisely controlled gaps for use as sensitive and highly controllable surface enhanced Raman scattering (SERS) substrates. The enhanced Raman signal observed with SERS arises from both localized and long range plasmonic effects. By controlling the geometry of a SERS substrate, in this case the size and aspect ratio of individual ellipses, the plasmon resonance can be tuned in a broad wavelength range, providing a method for designing the response of SERS substrates at different excitation wavelengths. Plasmon effects exhibited by the elevated gold ellipse dimer substrates are also demonstrated and confirmed through finite difference time domain (FDTD) simulations. A plasmon resonance red shift with an increase of the ellipse aspect ratio is observed, allowing systematic control of the resulting SERS signal intensity. Optimized elevated ellipse dimer substrates with 10 ± 2 nm gaps exhibit uniform SERS enhancement factors on the order of 10(9) for adsorbed p-mercaptoaniline molecules.
Collapse
Affiliation(s)
- A M Jubb
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | - Y Jiao
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | - G Eres
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA and Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - S T Retterer
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - B Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| |
Collapse
|
27
|
Hao J, Han MJ, Meng X, Weimer W, Wang QK. Surface-enhanced Raman scattering of perchlorate on cationic-modified silver nanofilms - Effect of inorganic anions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 136 Pt C:1593-1599. [PMID: 25459720 DOI: 10.1016/j.saa.2014.10.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/12/2014] [Accepted: 10/16/2014] [Indexed: 06/04/2023]
Abstract
Surface-enhanced Raman scattering (SERS) has emerged as one of the most sensitive spectroscopic analysis methods for the detection of environmental contaminants in water, including perchlorate (ClO4(-)). However, as with other commonly used analytical techniques, analysis of realistic environmental samples by SERS presents a challenge due to complex chemical components coexisting in the samples. In this work, we investigated the influence of inorganic anions (particularly oxyanions) on SERS spectra of ClO4(-) using a cationic thiol modified silver nanofilm substrate (Cys-Ag/rCu). The results show that the anions present in the samples did not shift the ClO4(-) characteristic band positions, but did decrease signal intensities due to their competitive binding with the -NH3(+) groups of cationic thiol molecules immobilized on the substrates. The pH changes caused by both the dissociation of H2PO4(-) and the hydrolysis of HCO3(-) may also play a non-negligible role. The selectivity of the Cys-Ag/rCu substrate towards these anions was determined to be in the following order: ClO4(-)>SO4(2-)>HCO3(-), NO3(-)>Cl(-)>H2PO4(-), indicating preferential adsorption of ClO4(-) ions. In the solutions with multiple anions present, the ClO4(-) SERS spectra were affected simultaneously by all the coexisting anions. Calibration curves with very good linear relationships were successfully obtained, demonstrating the great potential of quantitative detection of aqueous ClO4(-) in the matrix.
Collapse
Affiliation(s)
- Jumin Hao
- Center for Environmental Systems, Stevens Institute of Technology, Hoboken, NJ 07030, USA; Agiltron Inc., 15 Presidential Way, Woburn, MA 01801, USA
| | - Mei-Juan Han
- Center for Environmental Systems, Stevens Institute of Technology, Hoboken, NJ 07030, USA.
| | - Xiaoguang Meng
- Center for Environmental Systems, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Wayne Weimer
- Agiltron Inc., 15 Presidential Way, Woburn, MA 01801, USA
| | - Qingwu K Wang
- Agiltron Inc., 15 Presidential Way, Woburn, MA 01801, USA
| |
Collapse
|
28
|
Stewart A, Murray S, Bell SEJ. Simple preparation of positively charged silver nanoparticles for detection of anions by surface-enhanced Raman spectroscopy. Analyst 2015; 140:2988-94. [DOI: 10.1039/c4an02305f] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Modification of Ag colloids with thiocholine bromide switches the zeta potential from ca. −50 mV to ca. +50 mV, giving SERS substrates which promote adsorption of anions.
Collapse
Affiliation(s)
- A. Stewart
- School of Chemistry & Chemical Engineering
- Queen's University of Belfast
- Belfast BT9 5AG
- UK
| | - S. Murray
- School of Chemistry & Chemical Engineering
- Queen's University of Belfast
- Belfast BT9 5AG
- UK
| | - S. E. J. Bell
- School of Chemistry & Chemical Engineering
- Queen's University of Belfast
- Belfast BT9 5AG
- UK
| |
Collapse
|
29
|
Raman spectroscopy for in-line water quality monitoring--instrumentation and potential. SENSORS 2014; 14:17275-303. [PMID: 25230309 PMCID: PMC4208224 DOI: 10.3390/s140917275] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/07/2014] [Accepted: 09/09/2014] [Indexed: 02/07/2023]
Abstract
Worldwide, the access to safe drinking water is a huge problem. In fact, the number of persons without safe drinking water is increasing, even though it is an essential ingredient for human health and development. The enormity of the problem also makes it a critical environmental and public health issue. Therefore, there is a critical need for easy-to-use, compact and sensitive techniques for water quality monitoring. Raman spectroscopy has been a very powerful technique to characterize chemical composition and has been applied to many areas, including chemistry, food, material science or pharmaceuticals. The development of advanced Raman techniques and improvements in instrumentation, has significantly improved the performance of modern Raman spectrometers so that it can now be used for detection of low concentrations of chemicals such as in-line monitoring of chemical and pharmaceutical contaminants in water. This paper briefly introduces the fundamentals of Raman spectroscopy, reviews the development of Raman instrumentations and discusses advanced and potential Raman techniques for in-line water quality monitoring.
Collapse
|
30
|
Liu Q, Zhou Q, Jiang G. Nanomaterials for analysis and monitoring of emerging chemical pollutants. Trends Analyt Chem 2014. [DOI: 10.1016/j.trac.2014.02.014] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
31
|
Li M, Lu J, Qi J, Zhao F, Zeng J, Yu JCC, Shih WC. Stamping surface-enhanced Raman spectroscopy for label-free, multiplexed, molecular sensing and imaging. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:050501. [PMID: 24805805 DOI: 10.1117/1.jbo.19.5.050501] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 04/08/2014] [Indexed: 06/03/2023]
Abstract
We report stamping surface-enhanced Raman spectroscopy (S-SERS) for label-free, multiplexed, molecular sensing and large-area, high-resolution molecular imaging on a flexible, nonplasmonic surface without solution-phase molecule transfer. In this technique, a polydimethylsiloxane (PDMS) thin film and nanoporous gold disk SERS substrate play the roles as molecule carrier and Raman signal enhancer, respectively. After stamping the SERS substrate onto the PDMS film, SERS measurements can be directly taken from the "sandwiched" target molecules. The performance of S-SERS is evaluated by the detection of Rhodamine 6G, urea, and its mixture with acetaminophen, in a physiologically relevant concentration range, along with the corresponding SERS spectroscopic maps. S-SERS features simple sample preparation, low cost, and high reproducibility, which could lead to SERS-based sensing and imaging for point-of-care and forensics applications.
Collapse
Affiliation(s)
- Ming Li
- University of Houston, Department of Electrical and Computer Engineering, 4800 Calhoun Road, Houston, Texas 77204
| | - Jing Lu
- University of Houston, Department of Electrical and Computer Engineering, 4800 Calhoun Road, Houston, Texas 77204
| | - Ji Qi
- University of Houston, Department of Electrical and Computer Engineering, 4800 Calhoun Road, Houston, Texas 77204
| | - Fusheng Zhao
- University of Houston, Department of Electrical and Computer Engineering, 4800 Calhoun Road, Houston, Texas 77204
| | - Jianbo Zeng
- University of Houston, Department of Electrical and Computer Engineering, 4800 Calhoun Road, Houston, Texas 77204
| | - Jorn Chi-Chung Yu
- Sam Houston State University, Forensic Science Program, 1003 Bowers Boulevard, Huntsville, Texas 77341
| | - Wei-Chuan Shih
- University of Houston, Department of Electrical and Computer Engineering, 4800 Calhoun Road, Houston, Texas 77204
| |
Collapse
|
32
|
Nuntawong N, Eiamchai P, Limwichean S, Wong-ek B, Horprathum M, Patthanasettakul V, Leelapojanaporn A, Nakngoenthong S, Chindaudom P. Trace detection of perchlorate in industrial-grade emulsion explosive with portable surface-enhanced Raman spectroscopy. Forensic Sci Int 2013; 233:174-8. [DOI: 10.1016/j.forsciint.2013.09.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 09/01/2013] [Accepted: 09/07/2013] [Indexed: 10/26/2022]
|
33
|
De Bleye C, Dumont E, Rozet E, Sacré PY, Chavez PF, Netchacovitch L, Piel G, Hubert P, Ziemons E. Determination of 4-aminophenol in a pharmaceutical formulation using surface enhanced Raman scattering: From development to method validation. Talanta 2013; 116:899-905. [DOI: 10.1016/j.talanta.2013.07.084] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 07/26/2013] [Accepted: 07/31/2013] [Indexed: 11/28/2022]
|
34
|
Mosier-Boss PA, Putnam MD. The evaluation of two commercially available, portable Raman systems. ANALYTICAL CHEMISTRY INSIGHTS 2013; 8:83-97. [PMID: 24115834 PMCID: PMC3782334 DOI: 10.4137/aci.s11870] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Raman spectroscopy and surface enhanced Raman spectroscopy (SERS) have many attributes that make them attractive for field detection of environmental contaminants, industrial process control, as well as materials detection/identification in agriculture, pharmaceuticals, law enforcement/first responders, geology, and archeology. However, portable, robust, inexpensive Raman systems are required for these applications. In this communication, the performances of two commercially available, portable Raman systems are evaluated.
Collapse
|
35
|
Zhang K, Hu Y, Li G. Diazotization-coupling reaction-based selective determination of nitrite in complex samples using shell-isolated nanoparticle-enhanced Raman spectroscopy. Talanta 2013; 116:712-8. [PMID: 24148465 DOI: 10.1016/j.talanta.2013.07.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/06/2013] [Accepted: 07/09/2013] [Indexed: 11/29/2022]
Abstract
A simple, rapid and selective method based on diazotization-coupling reaction for determination of nitrite ion in complex samples using shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) was developed. Based on diazotization-coupling reaction, nitrite was transformed into azo dye, which has strong SHINERS activity. Subsequently the concentration of nitrite ion can be determined indirectly from the SHINERS of azo dye. The SHINERS active substrate was composed of gold nanoparticle as core with an ultrathin silica shell having pinhole on the surface. Various factors that influence reaction and SHINERS intensity were investigated. Under the optimal conditions, the linearity was observed in the range of 0.5-6.0 mg L(-1) with good correlation coefficient (r(2)>0.9793). The relative standard deviations (RSDs) for five replicate measurements were less than 14.5%. The limit of detections of the method (S/N=3) were 0.07, 0.08 and 0.10 mg L(-1) at 1137, 1395 and 1432 cm(-1), respectively, without sample preconcentration. The selectivity of the proposed method was also tested. The performance of SHINERS to determine the concentration of nitrite in food, biological and environmental samples was evaluated. The results indicate that SHINERS shows great potential as a useful analytical tool for trace analysis of nitrite in real samples. This proposed method provides a practical protocol for determination of compounds with weak Raman response, and can be expanded for the indirect detection of iodate ion, phenols and aromatic amines.
Collapse
Affiliation(s)
- Kaige Zhang
- School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, PR China
| | | | | |
Collapse
|
36
|
Alvarez-Puebla RA, Liz-Marzán LM. SERS Detection of Small Inorganic Molecules and Ions. Angew Chem Int Ed Engl 2012; 51:11214-23. [DOI: 10.1002/anie.201204438] [Citation(s) in RCA: 215] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Indexed: 01/21/2023]
|
37
|
Alvarez-Puebla RA, Liz-Marzán LM. Nachweis kleiner anorganischer Moleküle durch oberflächenverstärkte Raman-Streuung (SERS). Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201204438] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Hao J, Han MJ, Li J, Meng X. Surface modification of silver nanofilms for improved perchlorate detection by surface-enhanced Raman scattering. J Colloid Interface Sci 2012; 377:51-7. [DOI: 10.1016/j.jcis.2012.03.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 02/20/2012] [Accepted: 03/14/2012] [Indexed: 10/28/2022]
|
39
|
Tang H, Fang D, Li Q, Cao P, Geng J, Sui T, Wang X, Iqbal J, Du Y. Determination of Tricyclazole Content in Paddy Rice by Surface Enhanced Raman Spectroscopy. J Food Sci 2012; 77:T105-9. [DOI: 10.1111/j.1750-3841.2012.02665.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Gao J, Huang X, Liu H, Zan F, Ren J. Colloidal stability of gold nanoparticles modified with thiol compounds: bioconjugation and application in cancer cell imaging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:4464-71. [PMID: 22276658 DOI: 10.1021/la204289k] [Citation(s) in RCA: 194] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Gold nanoparticles (GNPs) are attractive alternative optical probes and good biocompatible materials due to their special physical and chemical properties. However, GNPs have a tendency to aggregate particularly in the presence of high salts and certain biological molecules such as nucleic acids and proteins. How to improve the stability of GNPs and their bioconjugates in aqueous solution is a critical issue in bioapplications. In this study, we first synthesized 17 nm GNPs in aqueous solution and then modified them with six thiol compounds, including glutathione, mercaptopropionic acid (MPA), cysteine, cystamine, dihydrolipoic acid, and thiol-ending polyethylene glycol (PEG-SH), via a Au-S bond. We systematically investigated the effects of the thiol ligands, buffer pH, and salt concentrations of the solutions on the colloidal stability of GNPs using UV-vis absorption spectroscopy. We found that GNPs modified with PEG-SH were the most stable in aqueous solution compared to other thiol compounds. On the basis of the above results, we developed a simple and efficient approach for modification of GNPs using a mixture of PEG-SH and MPA as ligands. These biligand-modified GNPs were facilely conjugated to antibody using 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide and N-hydroxysulfosuccinimide as linkage reagents. We conjugated GNPs to epidermal growth factor receptor antibodies and successfully used the antibody-GNP conjugates as targeting probes for imaging of cancer cells using the illumination of a dark field. Compared to current methods for modification and conjugation of GNPs, our method described here is simple, has a low cost, and has potential applications in bioassays and cancer diagnostics and studies.
Collapse
Affiliation(s)
- Jie Gao
- College of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|
41
|
Surface enhanced Raman spectroscopy signals of mixed pesticides and their identification. CHINESE CHEM LETT 2011. [DOI: 10.1016/j.cclet.2011.07.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Zhu G, Hu Y, Gao J, Zhong L. Highly sensitive detection of clenbuterol using competitive surface-enhanced Raman scattering immunoassay. Anal Chim Acta 2011; 697:61-6. [PMID: 21641419 DOI: 10.1016/j.aca.2011.04.031] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 04/13/2011] [Accepted: 04/15/2011] [Indexed: 10/18/2022]
Abstract
In this report, we present a novel approach to detect clenbuterol based on competitive surface-enhanced Raman scattering (SERS) immunoassay. Herein, a SERS nanoprobe that relies on gold nanoparticle (GNP) is labeled by 4,4'-dipyridyl (DP) and clenbuterol antibody, respectively. The detection of clenbuterol is carried out by competitive binding between free clenbuterol and clenbuterol-BSA fastened on the substrate with their antibody labeled on SERS nanoprobes. The present method allows us to detect clenbuterol over a much wider concentration range (0.1-100 pg mL(-1)) with a lower limit of detection (ca. 0.1 pg mL(-1)) than the conventional methods. Furthermore, by the use of this new competitive SERS immunoassay, the clenbuterol-BSA (antigen) is chosen to fasten on the substrate instead of the clenbuterol antibody, which could reduce the cost of the assay. Results demonstrate that the proposed method has the wide potential applications in food safety and agonist control.
Collapse
Affiliation(s)
- Guichi Zhu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | | | | | | |
Collapse
|
43
|
Han MJ, Hao J, Xu Z, Meng X. Surface-enhanced Raman scattering for arsenate detection on multilayer silver nanofilms. Anal Chim Acta 2011; 692:96-102. [DOI: 10.1016/j.aca.2011.02.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 02/17/2011] [Accepted: 02/24/2011] [Indexed: 10/18/2022]
|
44
|
Hao J, Han MJ, Xu Z, Li J, Meng X. Fabrication and evolution of multilayer silver nanofilms for surface-enhanced Raman scattering sensing of arsenate. NANOSCALE RESEARCH LETTERS 2011; 6:263. [PMID: 21711772 PMCID: PMC3211326 DOI: 10.1186/1556-276x-6-263] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 03/28/2011] [Indexed: 05/29/2023]
Abstract
Surface-enhanced Raman scattering (SERS) has recently been investigated extensively for chemical and biomolecular sensing. Multilayer silver (Ag) nanofilms deposited on glass slides by a simple electroless deposition process have been fabricated as active substrates (Ag/GL substrates) for arsenate SERS sensing. The nanostructures and layer characteristics of the multilayer Ag films could be tuned by varying the concentrations of reactants (AgNO3/BuNH2) and reaction time. A Ag nanoparticles (AgNPs) double-layer was formed by directly reducing Ag+ ions on the glass surfaces, while a top layer (3rd-layer) of Ag dendrites was deposited on the double-layer by self-assembling AgNPs or AgNPs aggregates which had already formed in the suspension. The SERS spectra of arsenate showed that characteristic SERS bands of arsenate appear at approximately 780 and 420 cm-1, and the former possesses higher SERS intensity. By comparing the peak heights of the approximately 780 cm-1 band of the SERS spectra, the optimal Ag/GL substrate has been obtained for the most sensitive SERS sensing of arsenate. Using this optimal substrate, the limit of detection (LOD) of arsenate was determined to be approximately 5 μg·l-1.
Collapse
Affiliation(s)
- Jumin Hao
- Center for Environmental Systems, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Mei-Juan Han
- Center for Environmental Systems, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Zhonghou Xu
- Center for Environmental Systems, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Jinwei Li
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Xiaoguang Meng
- Center for Environmental Systems, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| |
Collapse
|
45
|
Hatab NA, Rouleau CM, Retterer ST, Eres G, Hatzinger PB, Gu B. An integrated portable Raman sensor with nanofabricated gold bowtie array substrates for energetics detection. Analyst 2011; 136:1697-702. [DOI: 10.1039/c0an00982b] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
46
|
Surface-enhanced Raman scattering analysis of perchlorate using silver nanofilms deposited on copper foils. Colloids Surf A Physicochem Eng Asp 2010. [DOI: 10.1016/j.colsurfa.2010.06.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
47
|
|
48
|
Sayin I, Kahraman M, Sahin F, Yurdakul D, Culha M. Characterization of yeast species using surface-enhanced Raman scattering. APPLIED SPECTROSCOPY 2009; 63:1276-1282. [PMID: 19891836 DOI: 10.1366/000370209789806849] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is used for the characterization of six yeast species and six isolates. The sample for SERS analysis is prepared by mixing the yeast cells with a four times concentrated silver colloidal suspension. The scanning electron microscopy (SEM) images show that the strength of the interaction between silver nanoparticles and the yeast cells depends on the biochemical structure of the cell wall. The SERS spectra are used to identify the biochemical structures on the yeast cell wall. It is found that the density of -SH and -NH2 groups might be higher on certain yeast cell walls. Finally, the obtained SERS spectra from yeast is used for the classification of the yeast.
Collapse
Affiliation(s)
- Ismail Sayin
- Yeditepe University, Faculty of Engineering and Architecture, Genetics and Bioengineering Department, Kayisdagi, Istanbul, Turkey
| | | | | | | | | |
Collapse
|
49
|
Gu B, Ruan C, Wang W. Perchlorate detection at nanomolar concentrations by surface-enhanced Raman scattering. APPLIED SPECTROSCOPY 2009; 63:98-102. [PMID: 19146725 DOI: 10.1366/000370209787169894] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Perchlorate (ClO4-) has emerged as a widespread environmental contaminant and has been detected in various food products and even in human breast milk and urine. This research developed a sensing technique based on surface-enhanced Raman scattering (SERS) for rapid screening and monitoring of this contaminant in groundwater and surface water. The technique was found to be capable of detecting ClO4- at concentrations as low as 10(-9) M (or approximately 0.1 microg/L) by using 2-dimethylaminoethanethiol (DMAE) modified gold nanoparticles as a SERS substrate. Quantitative analysis of ClO4- was validated with good reproducibility by using both simulated and contaminated groundwater samples. When coupled with a portable Raman spectrometer, this technique has the potential to be used as an in situ, rapid screening tool for perchlorate in the environment.
Collapse
Affiliation(s)
- Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
| | | | | |
Collapse
|
50
|
Rapid and selective detection of cysteine based on its induced aggregates of cetyltrimethylammonium bromide capped gold nanoparticles. Anal Chim Acta 2008; 626:37-43. [DOI: 10.1016/j.aca.2008.07.037] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2007] [Revised: 07/19/2008] [Accepted: 07/21/2008] [Indexed: 11/20/2022]
|