1
|
Niu X, Zhang J, Xue X, Wang D, Wang L, Gao Q. Deacetoxycephalosporin C synthase (expandase): Research progress and application potential. Synth Syst Biotechnol 2021; 6:396-401. [PMID: 34901478 PMCID: PMC8626558 DOI: 10.1016/j.synbio.2021.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/02/2022] Open
Abstract
Cephalosporins play an indispensable role against bacterial infections. Deacetyloxycephalosporin C synthase (DAOCS), also called expandase, is a key enzyme in cephalosporin biosynthesis that epoxides penicillin to form the hexavalent thiazide ring of cephalosporin. DAOCS in fungus Acremonium chrysogenum was identified as a bifunctional enzyme with both ring expansion and hydroxylation, whereas two separate enzymes in bacteria catalyze these two reactions. In this review, we briefly summarize its source and function, improvement of the conversion rate of penicillin to deacetyloxycephalosporin C through enzyme modification, crystallography features, the prediction of the active site, and application perspective.
Collapse
Affiliation(s)
- Xiaofan Niu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jian Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.,Tianjin Microbial Metabolism and Fermentation Process Control Technology Engineering Center, Tianjin, 300457, China
| | - Xianli Xue
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.,Tianjin Microbial Metabolism and Fermentation Process Control Technology Engineering Center, Tianjin, 300457, China
| | - Depei Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.,National Demonstration Center for Experimental Bioengineering Education (Tianjin University of Science and Technology), Tianjin, 300457, China.,Tianjin Microbial Metabolism and Fermentation Process Control Technology Engineering Center, Tianjin, 300457, China
| | - Lin Wang
- College of Artificial Intelligence, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Qiang Gao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.,National Demonstration Center for Experimental Bioengineering Education (Tianjin University of Science and Technology), Tianjin, 300457, China.,Tianjin Microbial Metabolism and Fermentation Process Control Technology Engineering Center, Tianjin, 300457, China
| |
Collapse
|
2
|
Development and validation of an immunochromatographic assay for rapid multi-residues detection of cephems in milk. Anal Chim Acta 2009; 634:129-33. [DOI: 10.1016/j.aca.2008.12.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 11/22/2008] [Accepted: 12/01/2008] [Indexed: 11/22/2022]
|