1
|
Ashley BK, Hassan U. Digital filtering dissemination for optimizing impedance cytometry signal quality and counting accuracy. Biomed Microdevices 2022; 24:36. [PMID: 36305954 PMCID: PMC9635870 DOI: 10.1007/s10544-022-00636-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2022] [Indexed: 11/29/2022]
Abstract
Improving biosensor performance which utilize impedance cytometry is a highly interested research topic for many clinical and diagnostic settings. During development, a sensor's design and external factors are rigorously optimized, but improvements in signal quality and interpretation are usually still necessary to produce a sensitive and accurate product. A common solution involves digital signal processing after sample analysis, but these methods frequently fall short in providing meaningful signal outcome changes. This shortcoming may arise from a lack of investigative research into selecting and using signal processing functions, as many choices in current sensors are based on either theoretical results or estimated hypotheses. While a ubiquitous condition set is improbable across diverse impedance cytometry designs, there lies a need for a streamlined and rapid analytical method for discovering those conditions for unique sensors. Herein, we present a comprehensive dissemination of digital filtering parameters applied on experimental impedance cytometry data for determining the limits of signal processing on signal quality improvements. Various filter orders, cutoff frequencies, and filter types are applied after data collection for highest achievable noise reduction. After designing and fabricating a microfluidic impedance cytometer, 9 µm polystyrene particles were measured under flow and signal quality improved by 6.09 dB when implementing digital filtering. This approached was then translated to isolated human neutrophils, where similarly, signal quality improved by 7.50 dB compared to its unfiltered original data. By sweeping all filtering conditions and devising a system to evaluate filtering performance both by signal quality and object counting accuracy, this may serve as a framework for future systems to determine their appropriately optimized filtering configuration.
Collapse
Affiliation(s)
- Brandon K Ashley
- Department of Biomedical Engineering, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Umer Hassan
- Department of Electrical Engineering, Department of Biomedical Engineering, and Global Health Institute Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
2
|
|
3
|
Broad-specificity ELISA with a heterogeneous strategy for sensitive detection of microcystins and nodularin. Toxicon 2019; 175:44-48. [PMID: 32056695 DOI: 10.1016/j.toxicon.2019.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/29/2019] [Accepted: 12/05/2019] [Indexed: 11/20/2022]
Abstract
A highly sensitive and broadly specific competitive indirect enzyme-linked immunosorbent assay (ciELISA) method was developed for the simultaneous detection of nine microcystins (MCs) and nodularin (NOD) using MC-LR-keyhole limpet hemocyanin (KLH) for New Zealand white rabbit immunization to produce antibodies. The MC-LR-bovine serum albumin (BSA) and NOD-BSA coating antigens were compared and heterogeneous coating strategy was found to significantly improve the sensitivity of detection, as evident from the appropriate structure. Comparison of the half-maximum inhibitory concentration (IC50) with MC-LR and MC-LR-BSA coating techniques (0.29 ng/mL) revealed the superior performance of 0.054 ng/mL for NOD-BSA coating. NOD-BSA was selected as the coating antigen, because it showed ultrahigh sensitivity for the detection of MC-LR with a limit of detection (LOD) of 0.0016 ng/mL, which was below the maximum residue level (MRL) of 1 ng/mL. In addition, high reproducibility, good stability, and acceptable spiked sample detection, as validated by liquid chromatography tandem mass spectrometry (LC-MS/MS), indicated the possible application of this method for the analysis of MCs and NOD in water sample.
Collapse
|
4
|
Hobbs RJ, Thomas CA, Halliwell J, Gwenin CD. Rapid Detection of Botulinum Neurotoxins-A Review. Toxins (Basel) 2019; 11:E418. [PMID: 31319550 PMCID: PMC6669533 DOI: 10.3390/toxins11070418] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/15/2019] [Accepted: 07/15/2019] [Indexed: 12/13/2022] Open
Abstract
A toxin is a poisonous substance produced within living cells or organisms. One of the most potent groups of toxins currently known are the Botulinum Neurotoxins (BoNTs). These are so deadly that as little as 62 ng could kill an average human; to put this into context that is approximately 200,000 × less than the weight of a grain of sand. The extreme toxicity of BoNTs leads to the need for methods of determining their concentration at very low levels of sensitivity. Currently the mouse bioassay is the most widely used detection method monitoring the activity of the toxin; however, this assay is not only lengthy, it also has both cost and ethical issues due to the use of live animals. This review focuses on detection methods both existing and emerging that remove the need for the use of animals and will look at three areas; speed of detection, sensitivity of detection and finally cost. The assays will have wide reaching interest, ranging from the pharmaceutical/clinical industry for production quality management or as a point of care sensor in suspected cases of botulism, the food industry as a quality control measure, to the military, detecting BoNT that has been potentially used as a bio warfare agent.
Collapse
Affiliation(s)
- Robert J Hobbs
- Applied Research in Chemistry and Health (ARCH) Research Group, School of Natural Sciences, Bangor University, Bangor, Gwynedd, Wales LL57 2UW, UK
| | - Carol A Thomas
- Applied Research in Chemistry and Health (ARCH) Research Group, School of Natural Sciences, Bangor University, Bangor, Gwynedd, Wales LL57 2UW, UK
| | - Jennifer Halliwell
- Applied Research in Chemistry and Health (ARCH) Research Group, School of Natural Sciences, Bangor University, Bangor, Gwynedd, Wales LL57 2UW, UK
| | - Christopher D Gwenin
- Applied Research in Chemistry and Health (ARCH) Research Group, School of Natural Sciences, Bangor University, Bangor, Gwynedd, Wales LL57 2UW, UK.
| |
Collapse
|
5
|
Su DS, Chen PY, Chiu HC, Han CC, Yen TJ, Chen HM. Disease antigens detection by silicon nanowires with the efficiency optimization of their antibodies on a chip. Biosens Bioelectron 2019; 141:111209. [PMID: 31357174 DOI: 10.1016/j.bios.2019.03.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/12/2019] [Accepted: 03/20/2019] [Indexed: 10/27/2022]
Abstract
Enhancing the efficiency of antibody protein immobilized on a silicon nanowire-based chip for their antigens detection is reported. An external electric field (EEF) is applied to direct the orientation of antibodies during their immobilization on a chip. Atomic force microscopy (AFM) is used to measure the binding forces between immobilized antibody and targeting antigen under the influence of EEF at different angles. The maximum binding force under a specific angle (optimal angle; oa) of EEF (maxEEFoa) implies the optimal orientation of the antibodies on the chip. In this report, two different cancer carcinoembryonic antigen (CEA)-related cell adhesion molecules 5 (CEACAM5) & 1 (CEACAM1) were used for the examples of disease antigen detection. maxEEFoa of anti-CEACAM5 or anti-CEACAM1 immobilized on a general chip was firstly determined. Spectroscopy of AFM revealed that both binding forces were the largest ones with their antigens when maxEEFoa was applied as compared with no or other angles of EEF. These antibody proteins accompanied with the application of EEF were secondly immobilized on silicon-nanowires (n = 1000) and the field effects were measured (∆I) as their target antigens were approached. Results showed that ∆I was the largest ones when maxEEFoas (225°/270° and 135°/180° for anti-CEACAM5 and anti-CEACAM1, respectively) were applied as compared with other angles of EEF. These observations imply that the silicon nanowires together with the application of maxEEFoa as detection tools could be applied for the cancer diagnostics in the future.
Collapse
Affiliation(s)
- Dong-Sheng Su
- National Applied Research Laboratories,Taiwan Semiconductor Research Institute, Hsinchu, Taiwan; Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Po-Yen Chen
- National Applied Research Laboratories,Taiwan Semiconductor Research Institute, Hsinchu, Taiwan; Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsiang-Chih Chiu
- Department of Physics, National Taiwan Normal University, Taipei, Taiwan.
| | - Chien-Chung Han
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan.
| | - Ta-Jen Yen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan; Center for Nanotechnology, Materials Science, and Microsystems, National Tsing Hua University, Hsinchu, Taiwan.
| | - Hueih-Min Chen
- National Applied Research Laboratories,Taiwan Semiconductor Research Institute, Hsinchu, Taiwan.
| |
Collapse
|
6
|
Lim CY, Granger JH, Porter MD. SERS detection of Clostridium botulinum neurotoxin serotypes A and B in buffer and serum: Towards the development of a biodefense test platform. Anal Chim Acta X 2018; 1:100002. [PMID: 33186413 PMCID: PMC7587037 DOI: 10.1016/j.acax.2018.100002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/10/2018] [Indexed: 01/30/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) are classified at a highest degree of threat in biodefense, due largely to their high lethality. With the growing risk of biowarfare, the shortcomings of the gold standard test for these neurotoxins, the mouse bioassay, have underscored the need to develop alternative diagnostic testing strategies. This paper reports on the detection of inactivated Clostridium botulinum neurotoxin serotype A (BoNT-A) and serotype B (BoNT-B), the two most important markers of botulism infection, by using a sandwich immunoassay, gold nanoparticle labels, and surface-enhanced Raman scattering (SERS) within the context of two threat scenarios. The first scenario mimics part of the analysis needed in response to a “white powder” threat by measuring both neurotoxins in phosphate-buffered saline (PBS), a biocompatible solvent often used to recover markers dispersed in a powdered matrix. The second scenario detects the two neurotoxins in spiked human serum to assess the clinical potential of the platform. The overall goal is to develop a test applicable to both scenarios in terms of projections of required levels of detection. We demonstrate the ability to measure BoNT-A and BoNT-B in PBS at a limit of detection (LoD) of 700 pg/mL (5 pM) and 84 pg/mL (0.6 pM), respectively, and in human serum at 1200 pg/mL (8 pM) and 91 pg/mL (0.6 pM), respectively, with a time to result under 24 h. The steps required to transform this platform into an onsite biodefense screening tool that can simultaneously and rapidly detect (<1 h) these and other agents are briefly discussed. Raman-based immunoassays can successfully detect botulism neurotoxins. Limits of detection for botulism neurotoxins A/B rival those of the mouse bioassay. Serum and liquid extracts are suitable sample matrices for the Raman assay.
Collapse
Affiliation(s)
- China Y Lim
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT, 84112-5001, USA
| | - Jennifer H Granger
- Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112-5001, USA
| | - Marc D Porter
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT, 84112-5001, USA.,Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112-5001, USA.,Department of Chemistry, University of Utah, Salt Lake City, UT, 84112-5001, USA
| |
Collapse
|
7
|
Eivazzadeh-Keihan R, Pashazadeh-Panahi P, Baradaran B, Guardia MDL, Hejazi M, Sohrabi H, Mokhtarzadeh A, Maleki A. Recent progress in optical and electrochemical biosensors for sensing of Clostridium botulinum neurotoxin. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.03.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Performance Characterization of Two-Dimensional Paper Chromatography-based Biosensors for Biodefense, Exemplified by Detection of Bacillus anthracis Spores. BIOCHIP JOURNAL 2018. [DOI: 10.1007/s13206-017-2108-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Duan D, Fan K, Zhang D, Tan S, Liang M, Liu Y, Zhang J, Zhang P, Liu W, Qiu X, Kobinger GP, Fu Gao G, Yan X. Nanozyme-strip for rapid local diagnosis of Ebola. Biosens Bioelectron 2015; 74:134-41. [DOI: 10.1016/j.bios.2015.05.025] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/04/2015] [Accepted: 05/09/2015] [Indexed: 01/08/2023]
|
10
|
Saravanan P, Rajaseger G, Eric YPH, Moochhala S. Botulinum Toxin: Present Knowledge and Threats. BIOLOGICAL TOXINS AND BIOTERRORISM 2015. [DOI: 10.1007/978-94-007-5869-8_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
11
|
Cho JH, Kim MH, Mok RS, Jeon JW, Lim GS, Chai CY, Paek SH. Two-dimensional paper chromatography-based fluorescent immunosensor for detecting acute myocardial infarction markers. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 967:139-46. [DOI: 10.1016/j.jchromb.2014.07.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/15/2014] [Accepted: 07/17/2014] [Indexed: 10/25/2022]
|
12
|
Rapid immuno-analytical system physically integrated with lens-free CMOS image sensor for food-borne pathogens. Biosens Bioelectron 2014; 52:384-90. [DOI: 10.1016/j.bios.2013.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/17/2013] [Accepted: 09/04/2013] [Indexed: 11/18/2022]
|
13
|
Safronova VA, Samsonova JV, Grigorenko VG, Osipov AP. Lateral flow immunoassay for progesterone detection. ACTA ACUST UNITED AC 2012. [DOI: 10.3103/s0027131412050045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Singh AK, Stanker LH, Sharma SK. Botulinum neurotoxin: where are we with detection technologies? Crit Rev Microbiol 2012; 39:43-56. [PMID: 22676403 DOI: 10.3109/1040841x.2012.691457] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Because of its high toxicity, botulinum neurotoxin (BoNT) poses a significant risk to humans and it represents a possible biological warfare agent. Nevertheless, BoNT serotypes A and B are considered an effective treatment for a variety of neurological disorders. The growing applicability of BoNT as a drug, and its potential use as a biological threat agent, highlight the urgent need to develop sensitive detection assays and therapeutic counter measures. In the last decade, significant progress has been made in BoNT detection technologies but none have fully replaced the mouse lethality assay, the current "gold standard". Recently, new advances in robotics and the availability of new reagents have allowed development of methods for rapid toxin analysis. These technologies while promising need further refinement.
Collapse
Affiliation(s)
- Ajay K Singh
- Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD 20740, USA
| | | | | |
Collapse
|
15
|
In situ immuno-magnetic concentration-based biosensor systems for the rapid detection of Listeria monocytogenes. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2012. [DOI: 10.1016/j.msec.2011.10.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
A bioanalytical platform for simultaneous detection and quantification of biological toxins. SENSORS 2012; 12:2324-39. [PMID: 22438766 PMCID: PMC3304168 DOI: 10.3390/s120202324] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 02/09/2012] [Accepted: 02/20/2012] [Indexed: 12/17/2022]
Abstract
Prevalent incidents support the notion that toxins, produced by bacteria, fungi, plants or animals are increasingly responsible for food poisoning or intoxication. Owing to their high toxicity some toxins are also regarded as potential biological warfare agents. Accordingly, control, detection and neutralization of toxic substances are a considerable economic burden to food safety, health care and military biodefense. The present contribution describes a new versatile instrument and related procedures for array-based simultaneous detection of bacterial and plant toxins using a bioanalytical platform which combines the specificity of covalently immobilized capture probes with a dedicated instrumentation and immuno-based microarray analytics. The bioanalytical platform consists of a microstructured polymer slide serving both as support of printed arrays and as incubation chamber. The platform further includes an easy-to-operate instrument for simultaneous slide processing at selectable assay temperature. Cy5 coupled streptavidin is used as unifying fluorescent tracer. Fluorescence image analysis and signal quantitation allow determination of the toxin's identity and concentration. The system's performance has been investigated by immunological detection of Botulinum Neurotoxin type A (BoNT/A), Staphylococcal enterotoxin B (SEB), and the plant toxin ricin. Toxins were detectable at levels as low as 0.5-1 ng · mL(-1) in buffer or in raw milk.
Collapse
|
17
|
Dorner MB, Schulz KM, Kull S, Dorner BG. Complexity of Botulinum Neurotoxins: Challenges for Detection Technology. Curr Top Microbiol Immunol 2012. [DOI: 10.1007/978-3-662-45790-0_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
18
|
Upadhyayula VKK. Functionalized gold nanoparticle supported sensory mechanisms applied in detection of chemical and biological threat agents: a review. Anal Chim Acta 2011; 715:1-18. [PMID: 22244163 DOI: 10.1016/j.aca.2011.12.008] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 12/05/2011] [Accepted: 12/06/2011] [Indexed: 01/19/2023]
Abstract
There is a great necessity for development of novel sensory concepts supportive of smart sensing capabilities in defense and homeland security applications for detection of chemical and biological threat agents. A smart sensor is a detection device that can exhibit important features such as speed, sensitivity, selectivity, portability, and more importantly, simplicity in identifying a target analyte. Emerging nanomaterial based sensors, particularly those developed by utilizing functionalized gold nanoparticles (GNPs) as a sensing component potentially offer many desirable features needed for threat agent detection. The sensitiveness of physical properties expressed by GNPs, e.g. color, surface plasmon resonance, electrical conductivity and binding affinity are significantly enhanced when they are subjected to functionalization with an appropriate metal, organic or biomolecular functional groups. This sensitive nature of functionalized GNPs can be potentially exploited in the design of threat agent detection devices with smart sensing capabilities. In the presence of a target analyte (i.e., a chemical or biological threat agent) a change proportional to concentration of the analyte is observed, which can be measured either by colorimetric, fluorimetric, electrochemical or spectroscopic means. This article provides a review of how functionally modified gold colloids are applied in the detection of a broad range of threat agents, including radioactive substances, explosive compounds, chemical warfare agents, biotoxins, and biothreat pathogens through any of the four sensory means mentioned previously.
Collapse
|
19
|
Dykman L, Khlebtsov N. Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem Soc Rev 2011; 41:2256-82. [PMID: 22130549 DOI: 10.1039/c1cs15166e] [Citation(s) in RCA: 1157] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gold nanoparticles (GNPs) with controlled geometrical, optical, and surface chemical properties are the subject of intensive studies and applications in biology and medicine. To date, the ever increasing diversity of published examples has included genomics and biosensorics, immunoassays and clinical chemistry, photothermolysis of cancer cells and tumors, targeted delivery of drugs and antigens, and optical bioimaging of cells and tissues with state-of-the-art nanophotonic detection systems. This critical review is focused on the application of GNP conjugates to biomedical diagnostics and analytics, photothermal and photodynamic therapies, and delivery of target molecules. Distinct from other published reviews, we present a summary of the immunological properties of GNPs. For each of the above topics, the basic principles, recent advances, and current challenges are discussed (508 references).
Collapse
Affiliation(s)
- Lev Dykman
- Institute of Biochemistry and Physiology of Plants and Microorganisms, RAS, 13 Pr. Entuziastov, Saratov 410049, Russian Federation
| | | |
Collapse
|
20
|
Liang A, Tang M, Tang Y, Liu Q, Wen G, Li T, Jiang Z. A New Immunonanogold Graphite Furnace Atomic Absorption Spectral Assay for Human Chorionic Gonadotrophin. ANAL LETT 2011. [DOI: 10.1080/00032719.2010.546028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
21
|
Pena-Abaurrea M, Ramos L. Miniaturization of Analytical Methods. CHALLENGES IN GREEN ANALYTICAL CHEMISTRY 2011. [DOI: 10.1039/9781849732963-00107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
This chapter highlights miniaturization in sample preparation as a valuable alternative for green analytical chemistry. The current state of the art is discussed on the basis of examples selected from representative application areas, including biomedical, environmental and food analysis, and involving conventional instrumental techniques for final determination of the target compounds. The emphasis is on those techniques and approaches that have already demonstrated their practicality by the analysis of real-life samples, and in particular on those dealing with the accurate determination of minor organic components. The potential of recent developments in this field for sample treatment simplification and complete hyphenation of analytical processes are discussed and the most pressing remaining limitations evaluated.
Collapse
Affiliation(s)
- Miren Pena-Abaurrea
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry CSIC, Juan de la Cierva 3, 28006 Madrid Spain
| | - Lourdes Ramos
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry CSIC, Juan de la Cierva 3, 28006 Madrid Spain
| |
Collapse
|
22
|
Frisk ML, Lin G, Johnson EA, Beebe DJ. Synaptotagmin II peptide-bead conjugate for botulinum toxin enrichment and detection in microchannels. Biosens Bioelectron 2011; 26:1929-35. [DOI: 10.1016/j.bios.2010.06.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2010] [Revised: 05/27/2010] [Accepted: 06/23/2010] [Indexed: 11/29/2022]
|
23
|
Tang Y, Jiang C, Liang A, Li J, Jiang Z. A new atomic absorption spectral assay for the determination of trace IgG using immunonanogold. Bioprocess Biosyst Eng 2010; 34:471-6. [DOI: 10.1007/s00449-010-0490-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Accepted: 11/15/2010] [Indexed: 10/18/2022]
|
24
|
Seo SM, Cho IH, Jeon JW, Cho HK, Oh EG, Yu HS, Shin SB, Lee HJ, Paek SH. An ELISA-on-a-chip biosensor system coupled with immunomagnetic separation for the detection of Vibrio parahaemolyticus within a single working day. J Food Prot 2010; 73:1466-73. [PMID: 20819356 DOI: 10.4315/0362-028x-73.8.1466] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this study, we constructed a rapid detection system for a foodborne pathogen, Vibrio parahaemolyticus, by using enzyme-linked immunosorbent assay (ELISA)-on-a-chip (EOC) biosensor technology to minimize the risk of infection by the microorganism. The EOC results showed a detection capability of approximately 6.2x10(5) cells per ml, which was significantly higher than that of the conventional rapid test kit. However, this high level of sensitivity required cultivation of the pathogen prior to analysis, which typically exceeded a day. To shorten the test period, we combined the EOC technology with immunomagnetic separation (IMS), which could enhance the sensitivity of the biosensor. IMS was carried out with magnetic particles coated with a monoclonal antibody specific to the microbe. To test the performance of the IMS-EOC method, fish intestine samples were prepared by artificially inoculating less than 1 or 5 CFU/10 g, allowing for enrichment over predetermined times, and analyzing the sample by using the EOC sensor after concentrating the culture 86-fold via IMS. Using this approach, the bacterium was detected after (at most) 9 h, which approximately corresponds to standard working hours. Thus, the IMS-EOC method allowed for the rapid detection of V. parahaemolyticus, which is responsible for foodborne diseases, and this method could be used for early isolation of contaminated foods before distribution.
Collapse
Affiliation(s)
- Sung-Min Seo
- Program for Bio-Microsystem Technology, Korea University, 1, 5-ka, Anam-dong, Seongbuk-Gu, Seoul 136-701, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Sensitive and rapid detection of botulinum neurotoxins (BoNTs), the most poisonous substances known to date, is essential for studies of medical applications of BoNTs and detection of poisoned food, as well as for response to potential bioterrorist threats. Currently, the most common method of BoNT detection is the mouse bioassay. While this assay is sensitive, it is slow, quite expensive, has limited throughput and requires sacrificing animals. Herein, we discuss and compare recently developed alternative in vitro detection methods and assess their ability to supplement or replace the mouse bioassay in the analysis of complex matrix samples.
Collapse
Affiliation(s)
- Petr Čapek
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA;
| | - Tobin J. Dickerson
- Department of Chemistry and Worm Institute for Research and Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
- Author to whom correspondence should be addressed; ; Tel.: +1-858-784-2522; Fax: +1-858-784-2590
| |
Collapse
|
26
|
Čapek P, Dickerson TJ. Sensing the deadliest toxin: technologies for botulinum neurotoxin detection. Toxins (Basel) 2010; 2:24-53. [PMID: 22069545 PMCID: PMC3206617 DOI: 10.3390/toxins2020024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 12/17/2009] [Accepted: 12/22/2009] [Indexed: 11/16/2022] Open
Abstract
Sensitive and rapid detection of botulinum neurotoxins (BoNTs), the most poisonous substances known to date, is essential for studies of medical applications of BoNTs and detection of poisoned food, as well as for response to potential bioterrorist threats. Currently, the most common method of BoNT detection is the mouse bioassay. While this assay is sensitive, it is slow, quite expensive, has limited throughput and requires sacrificing animals. Herein, we discuss and compare recently developed alternative in vitro detection methods and assess their ability to supplement or replace the mouse bioassay in the analysis of complex matrix samples.
Collapse
Affiliation(s)
- Petr Čapek
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA;
| | - Tobin J. Dickerson
- Department of Chemistry and Worm Institute for Research and Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
27
|
Cho IH, Seo SM, Paek EH, Paek SH. Immunogold–silver staining-on-a-chip biosensor based on cross-flow chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878:271-7. [DOI: 10.1016/j.jchromb.2009.07.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 07/05/2009] [Accepted: 07/13/2009] [Indexed: 11/25/2022]
|
28
|
Seo SM, Cho IH, Kim JH, Jeon JW, Oh EG, Yu HS, Shin SB, Lee HJ, Paek SH. An ELISA-on-a-Chip Biosensor System for Early Screening of Listeria monocytogenes in Contaminated Food Products. B KOREAN CHEM SOC 2009. [DOI: 10.5012/bkcs.2009.30.12.2993] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Sun S, Ossandon M, Kostov Y, Rasooly A. Lab-on-a-chip for botulinum neurotoxin a (BoNT-A) activity analysis. LAB ON A CHIP 2009; 9:3275-81. [PMID: 19865736 PMCID: PMC2849933 DOI: 10.1039/b912097a] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A Lab-on-a-chip (LOC) was designed, fabricated and tested for the in vitro detection of botulinum neurotoxin serotype A (BoNT-A) activity using an assay that measures cleavage of a fluorophore-tagged peptide substrate specific for BoNT-A (SNAP-25) by the toxin light chain (LcA). LcA cleavage was detected by Förster Resonance Energy Transfer (FRET) fluorescence. FRET fluorescence was measured by a newly developed portable charge-coupled device (CCD) fluorescent detector equipped with multi-wavelength light-emitting diodes (LED) illumination. An eight V-junction microchannel device for BoNTs activity assays was constructed using Laminated Object Manufacturing (LOM) technology. The six-layer device was fabricated with a Poly(methyl methacrylate (PMMA) core and five polycarbonate (PC) layers micromachined by CO2 laser. The LOC is operated by syringe and is equipped with reagents, sample wells, reaction wells, diffusion traps (to avoid cross contamination among channels) and waste reservoirs. The system was detected LcA at concentrations as low as 0.5 nM, which is the reported sensitivity of the SNAP-25 in vitro cleavage assay. Combined with our CCD detector, the simple point of care system enables the detection of BoNTs activity and may be useful for the performance of other complex medical assays without a laboratory. This approach may realize the potential to enhance the quality of health care delivery for underserved populations.
Collapse
Affiliation(s)
- Steven Sun
- Division of Biology, Office of Science and Engineering Laboratories, FDA, NIH/NCI, Silver Spring, MD, 20993, USA6130 Executive Blvd. EPN, Room 6035A Rockville, 20852; Fax: (+301) 402-7819; Tel: (+301) 402-4185
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, MD, 21250
| | - Miguel Ossandon
- Cancer Diagnosis Program, National Cancer Institute, Rockville, MD, 20892
| | - Yordan Kostov
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, MD, 21250
| | - Avraham Rasooly
- Division of Biology, Office of Science and Engineering Laboratories, FDA, NIH/NCI, Silver Spring, MD, 20993, USA6130 Executive Blvd. EPN, Room 6035A Rockville, 20852; Fax: (+301) 402-7819; Tel: (+301) 402-4185
- Cancer Diagnosis Program, National Cancer Institute, Rockville, MD, 20892
| |
Collapse
|
30
|
Ozanich RM, Bruckner-Lea CJ, Warner MG, Miller K, Antolick KC, Marks JD, Lou J, Grate JW. Rapid multiplexed flow cytometric assay for botulinum neurotoxin detection using an automated fluidic microbead-trapping flow cell for enhanced sensitivity. Anal Chem 2009; 81:5783-93. [PMID: 19530657 DOI: 10.1021/ac9006914] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A bead-based sandwich immunoassay for botulinum neurotoxin serotype A (BoNT/A) has been developed and demonstrated using a recombinant 50 kDa fragment (BoNT/A-HC-fragment) of the BoNT/A heavy chain (BoNT/A-HC) as a structurally valid simulant. Three different anti-BoNT/A antibodies were attached to three different fluorescent dye encoded flow cytometry beads for multiplexing. The assay was conducted in two formats: a manual microcentrifuge tube format and an automated fluidic system format. Flow cytometry detection was used for both formats. The fluidic system used a novel microbead-trapping flow cell to capture antibody-coupled beads with subsequent sequential perfusion of sample, wash, dye-labeled reporter antibody, and final wash solutions. After the reaction period, the beads were collected for analysis by flow cytometry. Sandwich assays performed on the fluidic system gave median fluorescence intensity signals on the flow cytometer that were 2-4 times higher than assays performed manually in the same amount of time. Limits of detection were estimated at 1 pM (approximately 50 pg/mL for BoNT/A-HC-fragment) for the 15 min fluidic assay in buffer.
Collapse
Affiliation(s)
- Richard M Ozanich
- Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Quantum dot immunoassays in renewable surface column and 96-well plate formats for the fluorescence detection of botulinum neurotoxin using high-affinity antibodies. Biosens Bioelectron 2009; 25:179-84. [PMID: 19643593 DOI: 10.1016/j.bios.2009.06.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 06/03/2009] [Accepted: 06/22/2009] [Indexed: 11/20/2022]
Abstract
A fluorescence sandwich immunoassay using high-affinity antibodies and quantum dot (QD) reporters has been developed for detection of botulinum neurotoxin serotype A (BoNT/A) using a nontoxic recombinant fragment of the holotoxin (BoNT/A-H(C)-fragment) as a structurally valid simulant for the full toxin molecule. The antibodies used, AR4 and RAZ1, bind to nonoverlapping epitopes present on both the full toxin and on the recombinant fragment. In one format, the immunoassay is carried out in a 96-well plate with detection in a standard plate reader using AR4 as the capture antibody and QD-coupled RAZ1 as the reporter. Detection to 31 pM with a total incubation time of 3 h was demonstrated. In a second format, the AR4 capture antibody was coupled to Sepharose beads, and the reactions were carried out in microcentrifuge tubes with an incubation time of 1 h. The beads were subsequently captured and concentrated in a rotating rod "renewable surface" flow cell equipped with a fiber optic system for fluorescence measurements. In PBS buffer, the BoNT/A-H(C)-fragment was detected to concentrations as low as 5 pM using the fluidic measurement approach.
Collapse
|
32
|
Grate JW, Warner MG, Ozanich RM, Miller KD, Colburn HA, Dockendorff B, Antolick KC, Anheier NC, Lind MA, Lou J, Marks JD, Bruckner-Lea CJ. Renewable surface fluorescence sandwich immunoassay biosensor for rapid sensitive botulinum toxin detection in an automated fluidic format. Analyst 2009; 134:987-96. [PMID: 19381395 DOI: 10.1039/b900794f] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A renewable surface biosensor for rapid detection of botulinum neurotoxin serotype A is described based on fluidic automation of a fluorescence sandwich immunoassay, using a recombinant protein fragment of the toxin heavy chain ( approximately 50 kDa) as a structurally valid simulant. Monoclonal antibodies AR4 and RAZ1 bind to separate non-overlapping epitopes of the full botulinum holotoxin ( approximately 150 kDa). Both of the targeted epitopes are located on the recombinant fragment. The AR4 antibody was covalently bound to Sepharose beads and used as the capture antibody. A rotating rod flow cell was used to capture these beads delivered as a suspension by a sequential injection flow system, creating a 3.6 microL column. After perfusing the bead column with sample and washing away the matrix, the column was perfused with Alexa 647 dye-labeled RAZ1 antibody as the reporter. Optical fibers coupled to the rotating rod flow cell at a 90 degrees angle to one another delivered excitation light from a HeNe laser (633 nm) using one fiber and collected fluorescent emission light for detection with the other. After each measurement, the used Sepharose beads are released and replaced with fresh beads. In a rapid screening approach to sample analysis, the toxin simulant was detected to concentrations of 10 pM in less than 20 minutes using this system.
Collapse
Affiliation(s)
- Jay W Grate
- Pacific Northwest National Laboratory, P. O. Box 999, Richland, WA 99352, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
JIANG Z, WEI L, LIANG A. Rapid Assay of Trace Ceruloplasmin Using an Immunonanogold Resonance Scattering Spectral Probe. ANAL SCI 2009; 25:463-7. [DOI: 10.2116/analsci.25.463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Zhiliang JIANG
- School of Environment and Resource, Guangxi Normal University
- Department of Material and Chemical Engineering, Guilin University of Technology
| | - Lili WEI
- School of Environment and Resource, Guangxi Normal University
| | - Aihui LIANG
- Department of Material and Chemical Engineering, Guilin University of Technology
| |
Collapse
|
34
|
Chemiluminometric enzyme-linked immunosorbent assays (ELISA)-on-a-chip biosensor based on cross-flow chromatography. Anal Chim Acta 2009; 632:247-55. [DOI: 10.1016/j.aca.2008.11.019] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 11/02/2008] [Accepted: 11/04/2008] [Indexed: 11/17/2022]
|
35
|
Khlebtsov B, Khlebtsov N. Enhanced solid-phase immunoassay using gold nanoshells: effect of nanoparticle optical properties. NANOTECHNOLOGY 2008; 19:435703. [PMID: 21832707 DOI: 10.1088/0957-4484/19/43/435703] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Plasmon-resonant nanoparticle-labeled immunoassays provide a simple, low-cost and effective way of detecting target molecules in solutions. The optical mechanisms behind their efficiency, however, have not been addressed until now. We present the first theoretical description of nanoparticle-labeled dot immunoassay and its experimental verification with functionalized 15 nm colloidal gold nanospheres and silica/gold nanoshells (GNs). Three types of GNs, with silica core diameters of 100, 140 and 180 nm and a gold shell thickness of about 15 nm, were studied in our experiments. The fabricated markers were characterized by electron and atomic-force microscopy, UV-vis spectroscopy and dynamic light scattering. A normal rabbit serum (the target IgG molecules) and sheep antirabbit antibodies (the probing molecules) were used as a biospecific model. The minimal detection limit for IgG target molecules was about 15 ng in the case of a standard dot-assay protocol based on 15 nm colloidal gold particles conjugated with probing molecules. In contrast to this observation, a simple replacement of 15 nm gold labels by GN conjugates resulted in a drastic increase in detection sensitivity of up to 0.25 ng in the case of 180/15 nm GNs and of up to 0.5-1 ng for 100/15 and 140/15 GNs. By using the theory developed, we explained the dependences of the low detection limit, the maximal-color intensity and the probe-load saturation limit on the particle parameters.
Collapse
Affiliation(s)
- Boris Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov 410049, Russia
| | | |
Collapse
|
36
|
|
37
|
Khlebtsov BN, Khanadeev VA, Bogatyrev VA, Dykman LA, Khlebtsov NG. Use of gold nanoshells in solid-phase immunoassay. ACTA ACUST UNITED AC 2008. [DOI: 10.1134/s1995078008070057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
38
|
A fluorescence detection platform using spatial electroluminescent excitation for measuring botulinum neurotoxin A activity. Biosens Bioelectron 2008; 24:618-25. [PMID: 18644709 DOI: 10.1016/j.bios.2008.06.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 04/23/2008] [Accepted: 06/04/2008] [Indexed: 11/22/2022]
Abstract
Current biodetection illumination technologies (laser, LED, tungsten lamp, etc.) are based on spot illumination with additional optics required when spatial excitation is required. Herein we describe a new approach of spatial illumination based on electroluminescence (EL) semiconductor strips available in several wavelengths, greatly simplifying the biosensor design by eliminating the need for additional optics. This work combines EL excitation with charge-coupled device (CCD) based detection (EL-CCD detector) of fluorescence for developing a simple portable detector for botulinum neurotoxin A (BoTN-A) activity analysis. A Förster Resonance Energy Transfer (FRET) activity assay for BoTN-A was used to both characterize and optimize the EL-CCD detector. The system consists of two modules: (1) the detection module which houses the CCD camera and emission filters, and (2) the excitation and sample module, containing the EL strip, the excitation filter and the 9-well sample chip. The FRET activity assay used in this study utilized a FITC/DABCYL-SNAP-25 peptide substrate in which cleavage of the substrate by BoTN-A, or its light chain derivative (LcA), produced an increase in fluorescence emission. EL-CCD detector measured limits of detection (LODs) were similar to those measured using a standard fluorescent plate reader with valves between 0.625 and 1.25 nM (31-62 ng/ml) for LcA and 0.313 nM (45 ng/ml) for the full toxin, BoTN-A. As far as the authors are aware this is the first demonstration of phosphor-based EL strips being used for the spatial illumination/excitation of a surface, coupled with CCD for point of care detection.
Collapse
|
39
|
CREVILLEN A, HERVAS M, LOPEZ M, GONZALEZ M, ESCARPA A. Real sample analysis on microfluidic devices☆. Talanta 2007; 74:342-57. [DOI: 10.1016/j.talanta.2007.10.019] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 09/27/2007] [Accepted: 10/01/2007] [Indexed: 10/22/2022]
|