1
|
Mohammad-Sadik Ali N, Karam A, Mukhopadhyay I. A comprehensive approach in perceiving the chelation of Cu(II) and Zn(II) with Alizarin Red S using pH-oscillotitrimetric and volumetric-oscillographic methods. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
2
|
Construction of eco-biosensor and its potential application for highly selective, sensitive and fast detection of viscumin. Anal Chim Acta 2020; 1107:213-224. [DOI: 10.1016/j.aca.2020.02.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/15/2020] [Accepted: 02/17/2020] [Indexed: 11/23/2022]
|
3
|
Zhang H, Zhang Y, Wang H, Wen H, Yan Z, Huang A, Bie Z, Chen Y. Preparing molecularly imprinted nanoparticles of saponins via cooperative imprinting strategy. J Sep Sci 2020; 43:2162-2171. [DOI: 10.1002/jssc.202000019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Hao Zhang
- School of PharmacyBengbu Medical University Bengbu P. R. China
- Department of PharmacyFirst Affiliated Hospital of Bengbu Medical University Bengbu P. R. China
| | - Yanan Zhang
- School of PharmacyBengbu Medical University Bengbu P. R. China
| | - Hailing Wang
- School of PharmacyBengbu Medical University Bengbu P. R. China
| | - Han Wen
- School of PharmacyBengbu Medical University Bengbu P. R. China
| | - Zhifeng Yan
- Department of ChemistryBengbu Medical University Bengbu P. R. China
| | - Ailan Huang
- Department of ChemistryBengbu Medical University Bengbu P. R. China
| | - Zijun Bie
- School of PharmacyBengbu Medical University Bengbu P. R. China
- Department of ChemistryBengbu Medical University Bengbu P. R. China
| | - Yang Chen
- School of PharmacyBengbu Medical University Bengbu P. R. China
- Department of ChemistryBengbu Medical University Bengbu P. R. China
| |
Collapse
|
4
|
Jadda R, Madhumanchi S, Suedee R. Novel adsorptive materials by adenosine 5'-triphosphate imprinted-polymer over the surface of polystyrene nanospheres for selective separation of adenosine 5'-triphosphate biomarker from urine. J Sep Sci 2019; 42:3662-3678. [PMID: 31591808 DOI: 10.1002/jssc.201900583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 01/07/2023]
Abstract
In this study, we have developed a method to assess adenosine 5'-triphosphate by adsorptive extraction using surface adenosine 5'-triphosphate-imprinted polymer over polystyrene nanoparticles (412 ± 16 nm) for selective recognition/separation from urine. Molecularly imprinted polymer was synthesized by emulsion copolymerization reaction using adenosine 5'-triphosphate as a template, functional monomers (methacrylic acid, N-isopropyl acrylamide, and dimethylamino ethylmethacrylate) and a crosslinker, methylenebisacrylamide. The binding capacities of imprinted and non-imprinted polymers were measured using high-performance liquid chromatography with UV detection with a detection limit of 1.6 ± 0.02 µM of adenosine 5'-triphosphate in the urine. High binding affinity (QMIP , 42.65 µmol/g), and high selectivity and specificity to adenosine 5'-triphosphate compared to other competitive nucleotides including adenosine 5'-diphosphate, adenosine 5'-monophosphate, and analogs such as adenosine, adenine, uridine, uric acid, and creatinine were observed. The imprinting efficiency of imprinted polymer is 2.11 for urine (QMIP , 100.3 µmol/g) and 2.51 for synthetic urine (QMIP , 48.5 µmol/g). The extraction protocol was successfully applied to the direct extraction of adenosine 5'-triphosphate from spiked human urine indicating that this synthesized molecularly imprinted polymer allowed adenosine 5'-triphosphate to be preconcentrated while simultaneously interfering compounds were removed from the matrix. These submicron imprinted polymers over nano polystyrene spheres have a potential in the pharmaceutical industries and clinical analysis applications.
Collapse
Affiliation(s)
- Ramana Jadda
- Molecular Recognition Materials Research Unit, Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Thailand
| | - Sreenu Madhumanchi
- Molecular Recognition Materials Research Unit, Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Thailand
| | - Roongnapa Suedee
- Molecular Recognition Materials Research Unit, Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Thailand
| |
Collapse
|
5
|
Synthesis of imprinted hydrogel microbeads by inverse Pickering emulsion to controlled release of adenosine 5'‑monophosphate. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 101:254-263. [PMID: 31029318 DOI: 10.1016/j.msec.2019.03.102] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 11/23/2022]
Abstract
Herein, we propose the synthesis of a microspherical imprinted hydrogel meant for the controlled release of a nucleotide, adenosine 5'-monophosphate (5'-AMP). Indeed, molecularly imprinted polymers-based (MIPs) materials possess remarkable selective molecular recognition ability that mimicks biological systems. MIPs have been used in numerous applications and hold great promise for the vectorization and/or controlled release of therapeutics and cosmetics. But, the conception of imprinted hydrogels-based drug delivery systems that are able to release polar bioactive compounds is explored weakly. Herein, the synthesis of imprinted hydrogel microbeads by inverse Pickering emulsion is detailed. Microspheres showed a large 5'-AMP loading capacity, around 300 mg·g-1, and a high binding capacity comparatively to the non-imprinted counterpart. The MIP had a thermo-responsive release behavior providing sustained release of adenosine 5'-monophosphate in an aqueous buffer simulating both human skin pH and temperature.
Collapse
|
6
|
Mourão CA, Bokeloh F, Xu J, Prost E, Duma L, Merlier F, Bueno SMA, Haupt K, Tse Sum Bui B. Dual-Oriented Solid-Phase Molecular Imprinting: Toward Selective Artificial Receptors for Recognition of Nucleotides in Water. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01782] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Cecília A. Mourão
- Sorbonne
Universités, Université de Technologie de Compiègne, CNRS Enzyme and Cell Engineering Laboratory, Rue Roger Couttolenc, CS 60319, 60203 Cedex Compiègne, France
- School
of Chemical Engineering, University of Campinas, Rua Albert Einstein, 500, Campinas, São Paulo, Brazil
| | - Frank Bokeloh
- Sorbonne
Universités, Université de Technologie de Compiègne, CNRS Enzyme and Cell Engineering Laboratory, Rue Roger Couttolenc, CS 60319, 60203 Cedex Compiègne, France
| | - Jingjing Xu
- Sorbonne
Universités, Université de Technologie de Compiègne, CNRS Enzyme and Cell Engineering Laboratory, Rue Roger Couttolenc, CS 60319, 60203 Cedex Compiègne, France
| | - Elise Prost
- Sorbonne
Universités, Université de Technologie de Compiègne, CNRS Enzyme and Cell Engineering Laboratory, Rue Roger Couttolenc, CS 60319, 60203 Cedex Compiègne, France
| | - Luminita Duma
- Sorbonne
Universités, Université de Technologie de Compiègne, CNRS Enzyme and Cell Engineering Laboratory, Rue Roger Couttolenc, CS 60319, 60203 Cedex Compiègne, France
| | - Franck Merlier
- Sorbonne
Universités, Université de Technologie de Compiègne, CNRS Enzyme and Cell Engineering Laboratory, Rue Roger Couttolenc, CS 60319, 60203 Cedex Compiègne, France
| | - Sônia M. A. Bueno
- School
of Chemical Engineering, University of Campinas, Rua Albert Einstein, 500, Campinas, São Paulo, Brazil
| | - Karsten Haupt
- Sorbonne
Universités, Université de Technologie de Compiègne, CNRS Enzyme and Cell Engineering Laboratory, Rue Roger Couttolenc, CS 60319, 60203 Cedex Compiègne, France
| | - Bernadette Tse Sum Bui
- Sorbonne
Universités, Université de Technologie de Compiègne, CNRS Enzyme and Cell Engineering Laboratory, Rue Roger Couttolenc, CS 60319, 60203 Cedex Compiègne, France
| |
Collapse
|
7
|
Synthesis of surface molecularly imprinting polymers for cordycepin and its application in separating cordycepin. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
8
|
Li D, Chen Y, Liu Z. Boronate affinity materials for separation and molecular recognition: structure, properties and applications. Chem Soc Rev 2015; 44:8097-123. [PMID: 26377373 DOI: 10.1039/c5cs00013k] [Citation(s) in RCA: 382] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Boronate affinity materials, as unique sorbents, have emerged as important media for the selective separation and molecular recognition of cis-diol-containing compounds. With the introduction of boronic acid functionality, boronate affinity materials exhibit several significant advantages, including broad-spectrum selectivity, reversible covalent binding, pH-controlled capture/release, fast association/desorption kinetics, and good compatibility with mass spectrometry. Because cis-diol-containing biomolecules, including nucleosides, saccharides, glycans, glycoproteins and so on, are the important targets in current research frontiers such as metabolomics, glycomics and proteomics, boronate affinity materials have gained rapid development and found increasing applications in the last decade. In this review, we critically survey recent advances in boronate affinity materials. We focus on fundamental considerations as well as important progress and new boronate affinity materials reported in the last decade. We particularly discuss on the effects of the structure of boronate ligands and supporting materials on the properties of boronate affinity materials, such as binding pH, affinity, selectivity, binding capacity, tolerance for interference and so on. A variety of promising applications, including affinity separation, proteomics, metabolomics, disease diagnostics and aptamer selection, are introduced with main emphasis on how boronate affinity materials can solve the issues in the applications and what merits boronate affinity materials can provide.
Collapse
Affiliation(s)
- Daojin Li
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 22 Hankou Road, Nanjing 210093, China.
| | | | | |
Collapse
|
9
|
Chen Y, Li X, Yin D, Li D, Bie Z, Liu Z. Dual-template docking oriented molecular imprinting: a facile strategy for highly efficient imprinting within mesoporous materials. Chem Commun (Camb) 2015; 51:10929-32. [DOI: 10.1039/c5cc03207e] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular imprinting within mesoporous materials is a challenging task. Herein, we present a new strategy, called dual-template docking oriented molecular imprinting (DTD-OMI), for facile and highly efficient imprinting within mesoporous materials.
Collapse
Affiliation(s)
- Yang Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- China
| | - Xinglin Li
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- China
| | - Danyang Yin
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- China
| | - Daojin Li
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- China
| | - Zijun Bie
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- China
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- China
| |
Collapse
|
10
|
Whitcombe MJ, Kirsch N, Nicholls IA. Molecular imprinting science and technology: a survey of the literature for the years 2004-2011. J Mol Recognit 2014; 27:297-401. [PMID: 24700625 DOI: 10.1002/jmr.2347] [Citation(s) in RCA: 275] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/28/2013] [Accepted: 12/01/2013] [Indexed: 12/11/2022]
Abstract
Herein, we present a survey of the literature covering the development of molecular imprinting science and technology over the years 2004-2011. In total, 3779 references to the original papers, reviews, edited volumes and monographs from this period are included, along with recently identified uncited materials from prior to 2004, which were omitted in the first instalment of this series covering the years 1930-2003. In the presentation of the assembled references, a section presenting reviews and monographs covering the area is followed by sections describing fundamental aspects of molecular imprinting including the development of novel polymer formats. Thereafter, literature describing efforts to apply these polymeric materials to a range of application areas is presented. Current trends and areas of rapid development are discussed.
Collapse
|
11
|
Evaluation of molecularly imprinted polymers using 2′,3′,5′-tri-O-acyluridines as templates for pyrimidine nucleoside recognition. Anal Bioanal Chem 2014; 406:6275-84. [DOI: 10.1007/s00216-014-8017-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/02/2014] [Accepted: 07/01/2014] [Indexed: 11/25/2022]
|
12
|
Sharma PS, Dabrowski M, Noworyta K, Huynh TP, Kc CB, Sobczak JW, Pieta P, D'Souza F, Kutner W. Fullerene derived molecularly imprinted polymer for chemosensing of adenosine-5'-triphosphate (ATP). Anal Chim Acta 2014; 844:61-9. [PMID: 25172817 DOI: 10.1016/j.aca.2014.07.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 07/04/2014] [Accepted: 07/08/2014] [Indexed: 11/18/2022]
Abstract
For molecular imprinting of oxidatively electroactive analytes by electropolymerization, we used herein reductively electroactive functional monomers. As a proof of concept, we applied C60 fullerene adducts as such for the first time. For that, we derivatized C60 to bear either an uracil or an amide, or a carboxy addend for recognition of the adenosine-5'-triphosphate (ATP) oxidizable analyte with the ATP-templated molecularly imprinted polymer (MIP-ATP). Accordingly, the ATP complex with all of the functional monomers formed in solution was potentiodynamically electropolymerized to deposit an MIP-ATP film either on an Au electrode of the quartz crystal resonator or on a Pt disk electrode for the piezoelectric microgravimetry (PM) or capacitive impedimetry (CI) determination of ATP, respectively, under the flow-injection analysis (FIA) conditions. The apparent imprinting factor for ATP was ∼4.0. After extraction of the ATP template, analytical performance of the resulting chemosensors, including detectability, sensitivity, and selectivity, was characterized. The limit of detection was 0.3 and 0.03mM ATP for the PM and CI chemosensor, respectively. The MIP-ATP film discriminated structural analogues of ATP quite well. The Langmuir, Freundlich, and Langmuir-Freundlich isotherms were fitted to the experimental data of the ATP sorption and sorption stability constants appeared to be nearly independent of the adopted sorption model.
Collapse
Affiliation(s)
- Piyush S Sharma
- Department of Physical Chemistry of Supramolecular Complexes, Institute of Physical Chemistry, Polish Academy of Sciences (IPC PAS), Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Marcin Dabrowski
- Department of Physical Chemistry of Supramolecular Complexes, Institute of Physical Chemistry, Polish Academy of Sciences (IPC PAS), Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Krzysztof Noworyta
- Department of Physical Chemistry of Supramolecular Complexes, Institute of Physical Chemistry, Polish Academy of Sciences (IPC PAS), Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Tan-Phat Huynh
- Department of Physical Chemistry of Supramolecular Complexes, Institute of Physical Chemistry, Polish Academy of Sciences (IPC PAS), Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Chandra B Kc
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX 76203-5017, USA
| | - Janusz W Sobczak
- Department of Physical Chemistry of Supramolecular Complexes, Institute of Physical Chemistry, Polish Academy of Sciences (IPC PAS), Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Piotr Pieta
- Department of Physical Chemistry of Supramolecular Complexes, Institute of Physical Chemistry, Polish Academy of Sciences (IPC PAS), Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX 76203-5017, USA.
| | - Wlodzimierz Kutner
- Department of Physical Chemistry of Supramolecular Complexes, Institute of Physical Chemistry, Polish Academy of Sciences (IPC PAS), Kasprzaka 44/52, 01-224 Warsaw, Poland; Faculty of Mathematics and Natural Sciences, School of Science, Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego 1/3, 01-815 Warsaw, Poland.
| |
Collapse
|
13
|
Lakka A, Tsakalof A. Molecular Imprinting of Tri-O-Acetyladenosine for the Synthetic Imitation of an ATP-Binding Cleft in Protein Kinases. Chempluschem 2013; 78:808-815. [PMID: 31986680 DOI: 10.1002/cplu.201300101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Indexed: 12/21/2022]
Abstract
A number of diseases, including cancer, diabetes, and inflammation, are linked to deregulation of cell signaling pathways controlled by protein kinases. Inhibition of the kinases involved can interrupt aberrant signaling and have a specific therapeutic effect. Protein kinases are recognized as validated therapeutic targets for the treatment of a number of diseases and there are considerable efforts to discover new kinase inhibitors suitable for drug development. The main goal of this study was to fabricate the synthetic imitations of the adenosine triphosphate (ATP) binding cleft in protein kinases and thus produce polymers suitable for screening and isolation of new protein kinase ATP-mimetic inhibitors from different sources. Such polymers were created by the imprinting of tri-O-acetyladenosine in acrylic polymer matrix with the use of methacrylic acid (MAA) or 3-vinylbenzoic acid (VBA) as a functional monomer and ethylene glycol dimethacrylate as a cross-linking agent. The imprints prepared with the use of VBA demonstrate substantially better binding efficiency than that with MAA and particularly high affinity to the initial template (Kd as low as 1.2 μM), sufficient concentration of binding sites N (up to 32 μmol g-1 ), and pronounced specificity (imprinting factor up to 11). Under flow conditions, the fabricated polymers also demonstrate high capacity and template affinity. The produced imprints reproduce spatially noncovalent interactions present in the ATP binding site of protein kinases and can be anticipated as approximate synthetic imitations of the binding cleft.
Collapse
Affiliation(s)
- Achillia Lakka
- Faculty of Medicine, University of Thessaly, Biopolis, 41110 Larisa (Greece)
| | - Andreas Tsakalof
- Laboratory of Chemistry, Faculty of Medicine, University of Thessaly, Biopolis, 41110 Larisa (Greece), Fax: (+30) 2410-685545
| |
Collapse
|
14
|
Junjie L, Mei Y, Danqun H, Changjun H, Xianliang L, Guomin W, Dan F. Molecularly imprinted polymers on the surface of silica microspheres via sol-gel method for the selective extraction of streptomycin in aqueous samples. J Sep Sci 2013; 36:1142-8. [DOI: 10.1002/jssc.201200869] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 12/27/2012] [Accepted: 12/30/2012] [Indexed: 11/10/2022]
Affiliation(s)
- Li Junjie
- College of Bioengineering; Chongqing University; Chongqing P. R. China
| | - Yang Mei
- College of Bioengineering; Chongqing University; Chongqing P. R. China
| | - Huo Danqun
- College of Bioengineering; Chongqing University; Chongqing P. R. China
| | - Hou Changjun
- College of Bioengineering; Chongqing University; Chongqing P. R. China
| | - Li Xianliang
- Chongqing Engineering Research Center for Import and Export Food Safety; Chongqing P. R. China
| | - Wang Guomin
- Chongqing Engineering Research Center for Import and Export Food Safety; Chongqing P. R. China
| | - Feng Dan
- College of Bioengineering; Chongqing University; Chongqing P. R. China
| |
Collapse
|
15
|
Mergola L, Scorrano S, Del Sole R, Lazzoi MR, Vasapollo G. Developments in the synthesis of a water compatible molecularly imprinted polymer as artificial receptor for detection of 3-nitro-l-tyrosine in neurological diseases. Biosens Bioelectron 2013; 40:336-41. [DOI: 10.1016/j.bios.2012.07.074] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 07/18/2012] [Accepted: 07/23/2012] [Indexed: 10/28/2022]
|
16
|
Yang HH, Lu KH, Lin YF, Tsai SH, Chakraborty S, Zhai WJ, Tai DF. Depletion of albumin and immunoglobulin G from human serum using epitope-imprinted polymers as artificial antibodies. J Biomed Mater Res A 2012; 101:1935-42. [PMID: 23225785 DOI: 10.1002/jbm.a.34491] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 07/19/2012] [Accepted: 10/16/2012] [Indexed: 11/06/2022]
Abstract
Serum is a readily available source for noninvasive studies in clinical research, but it contains abundant proteins such as albumin and immunoglobulin G that can hinder the presence of low-abundant proteins as well as decrease sample loading capacity of analytical methods. Therefore, depletion of these two proteins is required to observe low-abundance serum proteins. Molecularly imprinted polymers are template-induced artificial antibodies with the ability to recognize and selectively bind the target molecule. In this study, artificial albumin and immunoglobulin G antibodies were developed by using two epitopes of human serum albumin and immunoglobulin G as templates. Acrylic acid, acrylamide, and N-acryl tyramine were the corresponding monomers; N,N'-ethylene bisacrylamide served as a cross-linker, and cellulosic fibers were used as a supporting matrix. The adsorption capacity of these artificial antibodies was 15.2 mg, 10 mg, and 15 μL per gram for human serum albumin, immunoglobulin G, and human serum, respectively. The dissociation constant (Kd ) of these artificial antibodies toward the human serum albumin and immunoglobulin G was 1 μM and 0.6 μM, respectively. The biomimetic properties of these artificial antibodies, coupled with their economical and rapid production, high specificity and their reusability, make them attractive for protein separation and analysis.
Collapse
Affiliation(s)
- Hsueh-Hui Yang
- Department of Medical Research, Buddhist Tzu-Chi General Hospital, Hualien 970, Taiwan; General Education Center, Tzu-Chi College of Technology, Hualien 970, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
17
|
Preparation of molecularly imprinted polymers for organophosphates and their application to the recognition of organophosphorus compounds and phosphopeptides. Anal Chim Acta 2012; 748:1-8. [DOI: 10.1016/j.aca.2012.08.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 07/28/2012] [Accepted: 08/14/2012] [Indexed: 11/23/2022]
|
18
|
Henry N, Delépée R, Seigneuret JM, Agrofoglio LA. Synthesis of water-compatible imprinted polymers of in situ produced fructosazine and 2,5-deoxyfructosazine. Talanta 2012; 99:816-23. [DOI: 10.1016/j.talanta.2012.07.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 07/10/2012] [Accepted: 07/15/2012] [Indexed: 10/28/2022]
|
19
|
Luo X, Dong R, Luo S, Zhan Y, Tu X, Yang L. Preparation of water-compatible molecularly imprinted polymers for caffeine with a novel ionic liquid as a functional monomer. J Appl Polym Sci 2012. [DOI: 10.1002/app.36792] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
20
|
|
21
|
Schumacher S, Nagel T, Scheller FW, Gajovic-Eichelmann N. Alizarin Red S as an electrochemical indicator for saccharide recognition. Electrochim Acta 2011. [DOI: 10.1016/j.electacta.2011.04.081] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Debarge S, Balzarini J, Maguire AR. Design and synthesis of α-carboxy phosphononucleosides. J Org Chem 2010; 76:105-26. [PMID: 21121618 DOI: 10.1021/jo101738e] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rhodium catalyzed O-H insertion reactions employing α-diazophosphonate 20 with appropriately protected thymidine, uridine, cytosine, adenosine and guanosine derivatives leads to novel 5'-phosphononucleoside derivatives. Deprotection led to a novel series of phosphono derivatives bearing a carboxylic acid moiety adjacent to the phosphonate group with potential antiviral and/or anticancer activity. The phosphononucleosides bearing an α-carboxylic acid group are envisaged as potential diphosphate mimics. Conversion to mono- and diphosphorylated phosphononucleosides has been effected for evaluation as nucleoside triphosphate mimics. Most of the novel phosphononucleosides proved to be inactive against a variety of DNA and RNA viruses. Only the phosphono AZT derivatives 56-59 showed weak activity against HIV-1 and HIV-2.
Collapse
Affiliation(s)
- Sebastien Debarge
- Department of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork, Ireland
| | | | | |
Collapse
|
23
|
Molecularly imprinted polymers for solid-phase extraction of 1-methyladenosine from human urine. Anal Chim Acta 2010; 659:167-71. [DOI: 10.1016/j.aca.2009.11.046] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 11/20/2009] [Accepted: 11/23/2009] [Indexed: 11/21/2022]
|
24
|
Breton F, Delépée R, Agrofoglio LA. Molecular imprinting of AMP by an ionic-noncovalent dual approach. J Sep Sci 2009; 32:3285-91. [PMID: 19739141 DOI: 10.1002/jssc.200900226] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In order to mimic recognition properties of adenylate kinase, molecularly imprinted polymers (MIPs) were prepared for adenosine 5'-monophosphate (AMP), a substrate of the enzyme. Different functional monomers interacting with the phosphate moiety were tested, and the MIP giving the best specific binding of AMP was composed with one equivalent of 2-(dimethylamino)ethyl methacrylate and ten equivalents of acrylamide compared to AMP. Packed into solid phase cartridge, this polymer showed similar characteristics than the enzyme, since it was specific for AMP toward other nucleotides.
Collapse
Affiliation(s)
- Florent Breton
- Institut de Chimie Organique et Analytique, UMR 6005, Université d'Orléans, Orléans, France
| | | | | |
Collapse
|
25
|
Examination of imprinting process with molsidomine as a template. Molecules 2009; 14:2212-25. [PMID: 19553893 PMCID: PMC6254156 DOI: 10.3390/molecules14062212] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 06/04/2009] [Accepted: 06/11/2009] [Indexed: 11/17/2022] Open
Abstract
Eight different functional monomers were used with ethylene glycol dimethacrylate as a cross-linker and molsidomine as a template to obtain molecularly imprinted polymers (MIPs). Non-covalent interactions between molsidomine and each functional monomer in DMSO prior to thermal bulk polymerization were utilized. On the basis of calculated imprinting factors, MIP prepared with N,N'-diallyltartaramide was chosen for further investigations. Examination of interactions in the prepolymerization complex between molsidomine and N,N'-diallyltartaramide was performed using the Job method. The absorbance of isomolar solutions reaching a maximum for the molar ratio of template to monomer equal to 1:4. Scatchard analysis was used for estimation of the dissociation constants and the maximum amounts of binding sites. The polymer based on N,N'-diallyltartaramide has two classes of heterogeneous binding sites characterized by two values of K(d) and two B(max): K(d)(1) = 1.17 mM(-1) and B(max)(1) = 0.8 mumol/mg for the higher affinity binding sites, and K(d)(2) = 200 microM(-1) and B(max)(2) = 2.05 mumol/mg for the lower affinity binding sites. Furthermore, effects of pH and organic solvent on binding properties of MIP and NIP were investigated, together with release of molsidomine from both MIP and NIP.
Collapse
|
26
|
Li S, Pilla S, Gong S. Modulated molecular recognition by a temperature-sensitive molecularly-imprinted polymer. ACTA ACUST UNITED AC 2009. [DOI: 10.1002/pola.23325] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Vonderheide AP, Boyd B, Ryberg A, Yilmaz E, Hieber TE, Kauffman PE, Garris ST, Morgan JN. Analysis of permethrin isomers in composite diet samples by molecularly imprinted solid-phase extraction and isotope dilution gas chromatography–ion trap mass spectrometry. J Chromatogr A 2009; 1216:4633-40. [DOI: 10.1016/j.chroma.2009.03.077] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 03/25/2009] [Accepted: 03/26/2009] [Indexed: 10/21/2022]
|
28
|
Zill AT, Zimmerman SC. A Route to Water-Soluble Molecularly Templated Nanoparticles Using Click Chemistry and Alkyne-Functionalized Hyperbranched Polyglycerol. Isr J Chem 2009. [DOI: 10.1560/ijc.49.1.71] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|