1
|
Yoshino T, Shimada T, Ito Y, Honda T, Maeda Y, Matsunaga T, Tanaka T. Biosynthesis of Thermoresponsive Magnetic Nanoparticles by Magnetosome Display System. Bioconjug Chem 2018; 29:1756-1762. [DOI: 10.1021/acs.bioconjchem.8b00195] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Tomoko Yoshino
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Takumi Shimada
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Yasuhito Ito
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Toru Honda
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Yoshiaki Maeda
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Tadashi Matsunaga
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Tsuyoshi Tanaka
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
2
|
Functional expression of full-length TrkA in the prokaryotic host Magnetospirillum magneticum AMB-1 by using a magnetosome display system. Appl Environ Microbiol 2016; 81:1472-6. [PMID: 25527540 DOI: 10.1128/aem.03112-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Tropomyosin receptor kinase A (TrkA), a receptor tyrosine kinase, is known to be associated with various diseases. Thus, TrkA has become a major drug-screening target for these diseases. Despite the fact that the production of recombinant proteins by prokaryotic hosts has advantages, such as fast growth and ease of genetic engineering, the efficient production of functional receptor tyrosine kinase by prokaryotic hosts remains a major experimental challenge. Here, we report the functional expression of full-length TrkA on magnetosomes in Magnetospirillum magneticum AMB-1 by using a magnetosome display system. TrkAwas fused with the magnetosome-localized protein Mms13 and expressed on magnetosome surfaces. Recombinant TrkA showed both nerve growth factor (NGF)-binding and autophosphorylation activities. TrkA expressed on magnetosomes has the potential to be used, not only for further functional analysis of TrkA, but also for ligand screening.
Collapse
|
3
|
Honda T, Tanaka T, Yoshino T. Stoichiometrically Controlled Immobilization of Multiple Enzymes on Magnetic Nanoparticles by the Magnetosome Display System for Efficient Cellulose Hydrolysis. Biomacromolecules 2015; 16:3863-8. [PMID: 26571204 DOI: 10.1021/acs.biomac.5b01174] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The immobilization of multiple cellulase complexes receiving attention for use in the efficient hydrolysis of celluloses. In this study, the magnetosome display system was employed for the preparation of systems mimicking natural multiple cellulase complexes (cellulosomes) on magnetic nanoparticles (MNPs). Initially, two fluorescent proteins, namely, green fluorescent protein and mCherry, were immobilized on MNPs. Fluorescence analysis revealed the close proximity of two different proteins on the MNPs. Enzyme-linked immunosorbent assay analysis showed that stoichiometrically equivalent amounts of the proteins were immobilized on the MNPs. Next, endoglucanase (EG) and β-glucosidase (BG) were immobilized on MNPs to give EG/BG-MNPs. The resulting MNPs were applied for the hydrolysis of celluloses, with rapid hydrolysis of carboxymethyl cellulose being observed. Furthermore, the fusion of the cellulose-binding domain to EG/BG-MNPs promoted improved hydrolysis activity against the insoluble cellulose. We could therefore conclude that the magnetosome display system can expand the possibilities of mimicking natural cellulosome organization on MNPs.
Collapse
Affiliation(s)
- Toru Honda
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology , 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Tsuyoshi Tanaka
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology , 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Tomoko Yoshino
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology , 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
4
|
Roda A, Cevenini L, Borg S, Michelini E, Calabretta MM, Schüler D. Bioengineered bioluminescent magnetotactic bacteria as a powerful tool for chip-based whole-cell biosensors. LAB ON A CHIP 2013; 13:4881-4889. [PMID: 24193113 DOI: 10.1039/c3lc50868d] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This paper describes the generation of genetically engineered bioluminescent magnetotactic bacteria (BL-MTB) and their integration into a microfluidic analytical device to create a portable toxicity detection system. Magnetospirillum gryphiswaldense strain MSR-1 was bioengineered to constitutively express a red-emitting click beetle luciferase whose bioluminescent signal is directly proportional to bacterial viability. The magnetic properties of these bacteria have been exploited as "natural actuators" to transfer the cells in the chip from the reaction to the detection area, optimizing the chip's analytical performance. A robust and cost-effective biosensor for the evaluation of sample toxicity, named MAGNETOX, based on lens-free contact imaging detection, has been developed. A microfluidic chip has been fabricated using multilayered black and transparent polydimethyl siloxane (PDMS) in which BL-MTB are incubated for 30 min with the sample, then moved by microfluidics, trapped, and concentrated in detection chambers by an array of neodymium-iron-boron magnets. The chip is placed in contact with a cooled CCD via a fiber optic taper to perform quantitative bioluminescence imaging after addition of luciferin substrate. A model toxic compound (dimethyl sulfoxide, DMSO) and a bile acid (taurochenodeoxycholic acid, TCDCA) were used to investigate the analytical performance of the MAGNETOX. Incubation with DMSO and TCDCA drastically reduces the bioluminescent signal in a dose-related manner. The generation of bacteria that are both magnetic and bioluminescent combines the advantages of easy 2D cell handling with ultra sensitive detection, offering undoubted potential to develop cell-based biosensors integrated into microfluidic chips.
Collapse
Affiliation(s)
- Aldo Roda
- Laboratory of Analytical and Bioanalytical Chemistry, Department of Chemistry "G. Ciamician", Alma Mater Studiorum-University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
5
|
Fluorescence imaging and targeted distribution of bacterial magnetic particles in nude mice. Appl Microbiol Biotechnol 2012; 94:495-503. [DOI: 10.1007/s00253-012-3981-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2011] [Revised: 02/14/2012] [Accepted: 02/16/2012] [Indexed: 01/15/2023]
|
6
|
Sun J, Tang T, Duan J, Xu PX, Wang Z, Zhang Y, Wu L, Li Y. Biocompatibility of bacterial magnetosomes: acute toxicity, immunotoxicity and cytotoxicity. Nanotoxicology 2010; 4:271-83. [PMID: 20795909 DOI: 10.3109/17435391003690531] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In this study, we examined the acute toxicity, immunotoxicity, and cytotoxicity of bacterial magnetosomes (BMs). LD(50) of BMs injected into the sublingual vein of SD rats was 62.7 mg/kg. Further studies with injection of 40 mg/kg BMs showed no significant difference between BM-treated and control rats in terms of routine blood exam results, liver and kidney function tests, organ coefficients of major organs, or Stimulation Index (SI) of lymph cells with ConA and/or LPS antigens. Histological examination of major organs from 40 mg/kg BM-treated rats showed no obvious pathological changes except for increased number of vacuoles in livers, and somewhat thicker interlobular septa in lungs. BMs showed little cytotoxic effect on H22, HL60, or EMT-6 cells. Growth of all three cells was neither inhibited nor stimulated by incubation with 9 microg/ml BMs, which also had no effect on DNA content, cell size, or cell membrane integrity.
Collapse
Affiliation(s)
- Jianbo Sun
- State Key Laboratories for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Li A, Zhang H, Zhang X, Wang Q, Tian J, Li Y, Li J. Rapid separation and immunoassay for low levels of Salmonella in foods using magnetosome-antibody complex and real-time fluorescence quantitative PCR. J Sep Sci 2010; 33:3437-43. [DOI: 10.1002/jssc.201000441] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Magnetic solids in analytical chemistry: A review. Anal Chim Acta 2010; 674:157-65. [DOI: 10.1016/j.aca.2010.06.043] [Citation(s) in RCA: 346] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 06/24/2010] [Accepted: 06/25/2010] [Indexed: 12/21/2022]
|
9
|
Yoshino T, Shimojo A, Maeda Y, Matsunaga T. Inducible expression of transmembrane proteins on bacterial magnetic particles in Magnetospirillum magneticum AMB-1. Appl Environ Microbiol 2010; 76:1152-7. [PMID: 20038711 PMCID: PMC2820942 DOI: 10.1128/aem.01755-09] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 12/12/2009] [Indexed: 11/20/2022] Open
Abstract
Bacterial magnetic particles (BacMPs) produced by the magnetotactic bacterium Magnetospirillum magneticum AMB-1 are used for a variety of biomedical applications. In particular, the lipid bilayer surrounding BacMPs has been reported to be amenable to the insertion of recombinant transmembrane proteins; however, the display of transmembrane proteins in BacMP membranes remains a technical challenge due to the cytotoxic effects of the proteins when they are overexpressed in bacterial cells. In this study, a tetracycline-inducible expression system was developed to display transmembrane proteins on BacMPs. The expression and localization of the target proteins were confirmed using luciferase and green fluorescent protein as reporter proteins. Gene expression was suppressed in the absence of anhydrotetracycline, and the level of protein expression could be controlled by modulating the concentration of the inducer molecule. This system was implemented to obtain the expression of the tetraspanin CD81. The truncated form of CD81 including the ligand binding site was successfully displayed at the surface of BacMPs by using Mms13 as an anchor protein and was shown to bind the hepatitis C virus envelope protein E2. These results suggest that the tetracycline-inducible expression system described here will be a useful tool for the expression and display of transmembrane proteins in the membranes of BacMPs.
Collapse
Affiliation(s)
- Tomoko Yoshino
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
| | | | | | | |
Collapse
|
10
|
Yoshino T, Matsunaga T. [Protein display onto nano-sized bacterial magnetic particles for receptor analysis]. YAKUGAKU ZASSHI 2009; 129:1319-25. [PMID: 19881203 DOI: 10.1248/yakushi.129.1319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Magnetic particles offer vast potential in ushering new techniques, especially in biomedical applications, as they can be easily manipulated by magnetic force. Magnetotactic bacteria synthesize nano-sized biomagnetites, otherwise known as bacterial magnetic particles (BacMPs) that are individually enveloped by a lipid bilayer membrane. BacMPs are ultrafine magnetite crystals (50-100 nm diameters) with uniform morphology produced by Magnetospirillum magneticum AMB-1. Based on our elucidations on the molecular mechanism of BacMP formation in M. magneticum AMB-1, functional nanomaterials have been designed. Through genetic engineering, functional proteins such as enzymes, antibodies, and receptors were successfully displayed onto BacMPs. Here, display techniques of functional proteins onto nano-sized BacMPs and its applications to ligand binding assays were described. Dopamine receptor, which is a member of G protein-coupled receptors, was successfully displayed onto BacMPs. This system makes possible the convenient acquisition of the native conformation of membrane proteins without the need for detergent solubilization, purification and reconstitution after cell disruption. Furthermore, estrogen receptor, which is one of nuclear receptors, was also displayed onto BacMPs. The assay using BacMPs displaying estrogen receptor could discriminate full agonists, partial agonists, or antagonists. The elucidation of the mechanism of BacMP synthesis has provided a roadmap for the design of novel nano-biomaterials that would play a useful role in multidisciplinary fields.
Collapse
Affiliation(s)
- Tomoko Yoshino
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan.
| | | |
Collapse
|
11
|
In vivo display of a multisubunit enzyme complex on biogenic magnetic nanoparticles. Appl Environ Microbiol 2009; 75:7734-8. [PMID: 19837839 DOI: 10.1128/aem.01640-09] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Magnetosomes are unique bacterial organelles comprising membrane-enveloped magnetic crystals produced by magnetotactic bacteria. Because of several desirable chemical and physical properties, magnetosomes would be ideal scaffolds on which to display highly complicated biological complexes artificially. As a model experiment for the functional expression of a multisubunit complex on magnetosomes, we examined the display of a chimeric bacterial RNase P enzyme composed of the protein subunit (C5) of Escherichia coli RNase P and the endogenous RNA subunit by expressing a translational fusion of C5 with MamC, a known magnetosome protein, in the magnetotactic bacterium Magnetospirillum gryphiswaldense. As intended, the purified C5 fusion magnetosomes, but not wild-type magnetosomes, showed apparent RNase P activity and the association of a typical bacterial RNase P RNA. Our results demonstrate for the first time that magnetosomes can be employed as scaffolds for the display of multisubunit complexes.
Collapse
|
12
|
Maeda Y, Yoshino T, Matsunaga T. Novel nanocomposites consisting of in vivo-biotinylated bacterial magnetic particles and quantum dots for magnetic separation and fluorescent labeling of cancer cells. ACTA ACUST UNITED AC 2009. [DOI: 10.1039/b900693a] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|