1
|
Wenck S, Mix T, Fischer M, Hackl T, Seifert S. Opening the Random Forest Black Box of 1H NMR Metabolomics Data by the Exploitation of Surrogate Variables. Metabolites 2023; 13:1075. [PMID: 37887402 PMCID: PMC10608983 DOI: 10.3390/metabo13101075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
The untargeted metabolomics analysis of biological samples with nuclear magnetic resonance (NMR) provides highly complex data containing various signals from different molecules. To use these data for classification, e.g., in the context of food authentication, machine learning methods are used. These methods are usually applied as a black box, which means that no information about the complex relationships between the variables and the outcome is obtained. In this study, we show that the random forest-based approach surrogate minimal depth (SMD) can be applied for a comprehensive analysis of class-specific differences by selecting relevant variables and analyzing their mutual impact on the classification model of different truffle species. SMD allows the assignment of variables from the same metabolites as well as the detection of interactions between different metabolites that can be attributed to known biological relationships.
Collapse
Affiliation(s)
- Soeren Wenck
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany (M.F.); (T.H.)
| | - Thorsten Mix
- Institute of Organic Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany;
| | - Markus Fischer
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany (M.F.); (T.H.)
| | - Thomas Hackl
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany (M.F.); (T.H.)
- Institute of Organic Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany;
| | - Stephan Seifert
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany (M.F.); (T.H.)
| |
Collapse
|
2
|
Watermann S, Bode MC, Hackl T. Identification of metabolites from complex mixtures by 3D correlation of 1H NMR, MS and LC data using the SCORE-metabolite-ID approach. Sci Rep 2023; 13:15834. [PMID: 37740032 PMCID: PMC10516956 DOI: 10.1038/s41598-023-43056-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023] Open
Abstract
Not only in metabolomics studies, but also in natural product chemistry, reliable identification of metabolites usually requires laborious steps of isolation and purification and remains a bottleneck in many studies. Direct metabolite identification from a complex mixture without individual isolation is therefore a preferred approach, but due to the large number of metabolites present in natural products, this approach is often hampered by signal overlap in the respective 1H NMR spectra. This paper presents a method for the three-dimensional mathematical correlation of NMR with MS data over the third dimension of the time course of a chromatographic fractionation. The MATLAB application SCORE-metabolite-ID (Semi-automatic COrrelation analysis for REliable metabolite IDentification) provides semi-automatic detection of correlated NMR and MS data, allowing NMR signals to be related to associated mass-to-charge ratios from ESI mass spectra. This approach enables fast and reliable dereplication of known metabolites and facilitates the dynamic analysis for the identification of unknown compounds in any complex mixture. The strategy was validated using an artificial mixture and further tested on a polar extract of a pine nut sample. Straightforward identification of 40 metabolites could be shown, including the identification of β-D-glucopyranosyl-1-N-indole-3-acetyl-N-L-aspartic acid (1) and Nα-(2-hydroxy-2-carboxymethylsuccinyl)-L-arginine (2), the latter being identified in a food sample for the first time.
Collapse
Affiliation(s)
- Stephanie Watermann
- Institute of Organic Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - Marie-Christin Bode
- Institute of Organic Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - Thomas Hackl
- Institute of Organic Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany.
- Hamburg School of Food Science - Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146, Hamburg, Germany.
| |
Collapse
|
3
|
|
4
|
1H NMR-MS-based heterocovariance as a drug discovery tool for fishing bioactive compounds out of a complex mixture of structural analogues. Sci Rep 2019; 9:11113. [PMID: 31366964 PMCID: PMC6668471 DOI: 10.1038/s41598-019-47434-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/17/2019] [Indexed: 01/07/2023] Open
Abstract
Chemometric methods and correlation of spectroscopic or spectrometric data with bioactivity results are known to improve dereplication in classical bio-guided isolation approaches. However, in drug discovery from natural sources the isolation of bioactive constituents from a crude extract containing close structural analogues remains a significant challenge. This study is a 1H NMR-MS workflow named ELINA (Eliciting Nature’s Activities) which is based on statistical heterocovariance analysis (HetCA) of 1H NMR spectra detecting chemical features that are positively (“hot”) or negatively (“cold”) correlated with bioactivity prior to any isolation. ELINA is exemplified in the discovery of steroid sulfatase (STS) inhibiting lanostane triterpenes (LTTs) from a complex extract of the polypore fungus Fomitopsis pinicola.
Collapse
|
5
|
Pinu FR, Goldansaz SA, Jaine J. Translational Metabolomics: Current Challenges and Future Opportunities. Metabolites 2019; 9:E108. [PMID: 31174372 PMCID: PMC6631405 DOI: 10.3390/metabo9060108] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 02/06/2023] Open
Abstract
Metabolomics is one of the latest omics technologies that has been applied successfully in many areas of life sciences. Despite being relatively new, a plethora of publications over the years have exploited the opportunities provided through this data and question driven approach. Most importantly, metabolomics studies have produced great breakthroughs in biomarker discovery, identification of novel metabolites and more detailed characterisation of biological pathways in many organisms. However, translation of the research outcomes into clinical tests and user-friendly interfaces has been hindered due to many factors, some of which have been outlined hereafter. This position paper is the summary of discussion on translational metabolomics undertaken during a peer session of the Australian and New Zealand Metabolomics Conference (ANZMET 2018) held in Auckland, New Zealand. Here, we discuss some of the key areas in translational metabolomics including existing challenges and suggested solutions, as well as how to expand the clinical and industrial application of metabolomics. In addition, we share our perspective on how full translational capability of metabolomics research can be explored.
Collapse
Affiliation(s)
- Farhana R Pinu
- The New Zealand Institute for Plant and Food Research, Private Bag 92169, Auckland 1142, New Zealand.
| | - Seyed Ali Goldansaz
- Department of Agriculture, Food and Nutritional Sciences, University of Alberta, Edmonton, AB T6G 2P5, Canada.
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| | - Jacob Jaine
- Analytica Laboratories Ltd., Ruakura Research Centre, Hamilton 3216, New Zealand.
| |
Collapse
|
6
|
Targeted isolation and identification of bioactive compounds lowering cholesterol in the crude extracts of crabapples using UPLC-DAD-MS-SPE/NMR based on pharmacology-guided PLS-DA. J Pharm Biomed Anal 2017; 150:144-151. [PMID: 29232626 DOI: 10.1016/j.jpba.2017.11.061] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/15/2017] [Accepted: 11/26/2017] [Indexed: 11/24/2022]
Abstract
The anti-hyperlipidemic effects of crude crabapple extracts derived from Malus 'Red jade', Malus hupehensis (Pamp.) Rehd. and Malus prunifolia (Willd.) Borkh. were evaluated on high-fat diet induced obese (HF DIO) mice. The results revealed that some of these extracts could lower serum cholesterol levels in HF DIO mice. The same extracts were also parallelly analyzed by LC-MS in both positive and negative ionization modes. Based on the pharmacological results, 22 LC-MS variables were identified to be correlated with the anti-hyperlipidemic effects using partial least square discriminant analysis (PLS-DA) and independent samples t-test. Further, under the guidance of the bioactivity-correlated LC-MS signals, 10 compounds were targetedly isolated and enriched using UPLC-DAD-MS-SPE and identified/elucidated by NMR together with MS/MS as citric acid(1), p-coumaric acid(2), hyperoside(3), myricetin(4), naringenin(5), quercetin(6), kaempferol(7), gentiopicroside(8), ursolic acid(9) and 8-epiloganic acid(10). Among these 10 compounds, 6 compounds, hyperoside(3), myricetin(4), naringenin(5), quercetin(6), kaempferol(7) and ursolic acid(9), were individually studied and reported to indeed have effects on lowering the serum lipid levels. These results demonstrated the efficiency of this strategy for drug discovery. In contrast to traditional routes to discover bioactive compounds in the plant extracts, targeted isolation and identification of bioactive compounds in the crude plant extracts using UPLC-DAD-MS-SPE/NMR based on pharmacology-guided PLS-DA of LC-MS data brings forward a new efficient dereplicated approach to natural products research for drug discovery.
Collapse
|
7
|
Blunder M, Orthaber A, Bauer R, Bucar F, Kunert O. Efficient identification of flavones, flavanones and their glycosides in routine analysis via off-line combination of sensitive NMR and HPLC experiments. Food Chem 2017; 218:600-609. [DOI: 10.1016/j.foodchem.2016.09.077] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 09/11/2016] [Accepted: 09/12/2016] [Indexed: 12/21/2022]
|
8
|
Ge L, Tan GYA, Wang L, Chen CL, Li L, Tan SN, Wang JY. Determination of monomeric composition in polyhydroxyalkanoates by liquid chromatography coupled with on-line mass spectrometry and off-line nuclear magnetic resonance. Talanta 2015; 146:107-13. [PMID: 26695241 DOI: 10.1016/j.talanta.2015.08.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 08/14/2015] [Accepted: 08/14/2015] [Indexed: 10/23/2022]
Abstract
Polyhydroxyalkanoates (PHAs) are commercially-valuable biocompatible and biodegradable polymers with many potential medical, pharmaceutical and other industrial applications. The analysis of PHA monomeric composition is especially challenging due to the broad chemical diversity of PHA monomers and lack of analytical standards to represent the chemically-diverse PHA monomer constituents. In this study, a novel strategy based on on-line liquid chromatography-mass spectrometry (LC-MS) and off-line liquid chromatography-nuclear magnetic resonance (LC-NMR) was established to quantify seven PHA monomers with available standards and used to elucidate the structures of unknown PHA monomers. The strategy was successfully applied for the determination of monomeric composition in bacterial PHAs isolated from Pseudomonads cultivated on different carbon sources after hydrolysis. The results of this work demonstrated that the newly-developed strategy was efficient, repeatable, and could have good potential to be employed for detailed analysis of PHA monomeric composition.
Collapse
Affiliation(s)
- Liya Ge
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore.
| | - Giin-Yu Amy Tan
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; Division of Environmental and Water Resources Engineering, School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Lin Wang
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Chia-Lung Chen
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Ling Li
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Swee Ngin Tan
- Natural Sciences and Science Education Academic Group, Nanyang Technological University, 1 Nanyang Walk, 637616, Singapore.
| | - Jing-Yuan Wang
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; Division of Environmental and Water Resources Engineering, School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|
9
|
Influence of Postharvest Storage, Processing, and Extraction Methods on the Analysis of Phenolic Phytochemicals. ACTA ACUST UNITED AC 2014. [DOI: 10.1021/bk-2014-1185.ch001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
10
|
Liu A, Han C, Zhou X, Zhu Z, Huang F, Shen Y. Determination of three capsaicinoids in Capsicum annuum
by pressurized liquid extraction combined with LC-MS/MS. J Sep Sci 2013; 36:857-62. [DOI: 10.1002/jssc.201200942] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 11/13/2012] [Accepted: 11/14/2012] [Indexed: 11/08/2022]
Affiliation(s)
- Aili Liu
- College of Chemistry and Materials Engineering; Wenzhou University; Wenzhou China
| | - Chao Han
- Wenzhou Entry-Exit Inspection and Quarantine Bureau of P.R.C; Wenzhou China
| | - Xiujin Zhou
- Zhoushan Entry-Exit Inspection and Quarantine Bureau of P.R.C; Zhoushan China
| | - Zhenou Zhu
- Wenzhou Entry-Exit Inspection and Quarantine Bureau of P.R.C; Wenzhou China
| | - Fuzhen Huang
- Wenzhou Entry-Exit Inspection and Quarantine Bureau of P.R.C; Wenzhou China
| | - Yan Shen
- College of Chemistry and Materials Engineering; Wenzhou University; Wenzhou China
| |
Collapse
|
11
|
Wei Y, Yin L, Xie Q, Zhang G. An Efficient Strategy Based on Macroporous Resins and Semi-Preparative High Performance Liquid Chromatography for Rapid Separation of Five Flavonoids Components FromFlaveria Bidentis(L.) Kuntze. SEP SCI TECHNOL 2013. [DOI: 10.1080/01496395.2012.672535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Wu H, Guo J, Chen S, Liu X, Zhou Y, Zhang X, Xu X. Recent developments in qualitative and quantitative analysis of phytochemical constituents and their metabolites using liquid chromatography–mass spectrometry. J Pharm Biomed Anal 2013; 72:267-91. [DOI: 10.1016/j.jpba.2012.09.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 08/30/2012] [Accepted: 09/02/2012] [Indexed: 12/14/2022]
|
13
|
LC-MS/MS Identification of a Bromelain Peptide Biomarker from Ananas comosus Merr. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:548486. [PMID: 23082082 PMCID: PMC3467939 DOI: 10.1155/2012/548486] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 08/02/2012] [Indexed: 11/17/2022]
Abstract
Bromelain (Br) is a cysteine peptidase (GenBank AEH26024.1) from pineapple, with over 40 years of clinical use. The constituents mediating its anti-inflammatory activity are not thoroughly characterized and no peptide biomarker exists. Our objective is to characterize Br raw material and identify peptides in the plasma of Br treated mice. After SDS-PAGE in-gel digestion, Br (VN#3507; Middletown, CT, USA) peptides were analyzed via LC/MS/MS using 95% protein probability, 95% peptide probability, and a minimum peptide number = 5. Br spiked mouse plasma (1 ug/ul) and plasma from i.p. treated mice (12 mg/kg) were assessed using SRM. In Br raw material, we identified seven proteins: four proteases, one jacalin-like lectin, and two protease inhibitors. In Br spiked mouse plasma, six proteins (ananain, bromelain inhibitor, cysteine proteinase AN11, FB1035 precursor, FBSB precursor, and jacalin-like lectin) were identified. Using LC/MS/MS, we identified the unique peptide, DYGAVNEVK, derived from FB1035, in the plasma of i.p. Br treated mice. The spectral count of this peptide peaked at 6 hrs and was undetectable by 24 hrs. In this study, a novel Br peptide was identified in the plasma of treated mice for the first time. This Br peptide could serve as a biomarker to standardize the therapeutic dose and maximize clinical utility.
Collapse
|
14
|
Resolving the problem of chromatographic overlap by 3D cross correlation (3DCC) processing of LC, MS and NMR data for characterization of complex glycan mixtures. Anal Bioanal Chem 2012; 404:1427-37. [DOI: 10.1007/s00216-012-6241-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 06/26/2012] [Accepted: 06/29/2012] [Indexed: 12/18/2022]
|
15
|
Shen Y, Han C, Jiang Y, Zhou X, Zhu Z, Lei X. Rapid quantification of four major bioactive alkaloids in Corydalis decumbens (Thunb.) Pers. by pressurised liquid extraction combined with liquid chromatography-triple quadrupole linear ion trap mass spectrometry. Talanta 2011; 84:1026-31. [DOI: 10.1016/j.talanta.2011.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 02/24/2011] [Accepted: 03/01/2011] [Indexed: 10/18/2022]
|
16
|
Wang XX, He JM, Wang CL, Zhang RP, He WY, Guo SX, Sun RX, Abliz Z. Simultaneous structural identification of natural products in fractions of crude extract of the rare endangered plant Anoectochilus roxburghii using H NMR/RRLC-MS parallel dynamic spectroscopy. Int J Mol Sci 2011; 12:2556-71. [PMID: 21731458 PMCID: PMC3127134 DOI: 10.3390/ijms12042556] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 04/11/2011] [Accepted: 04/12/2011] [Indexed: 12/02/2022] Open
Abstract
Nuclear magnetic resonance/liquid chromatography-mass spectroscopy parallel dynamic spectroscopy (NMR/LC-MS PDS) is a method aimed at the simultaneous structural identification of natural products in complex mixtures. In this study, the method is illustrated with respect to 1H NMR and rapid resolution liquid chromatography-mass spectroscopy (RRLC-MS) data, acquired from the crude extract of Anoectochilus roxburghii, which was separated into a series of fractions with the concentration of constituent dynamic variation using reversed-phase preparative chromatography. Through fraction ranges and intensity changing profiles in 1H NMR/RRLC–MS PDS spectrum, 1H NMR and the extracted ion chromatogram (XIC) signals deriving from the same individual constituent, were correlated due to the signal amplitude co-variation resulting from the concentration variation of constituents in a series of incompletely separated fractions. 1H NMR/RRLC-MS PDS was then successfully used to identify three types of natural products, including eight flavonoids, four organic acids and p-hydroxybenzaldehyde, five of which have not previously been reported in Anoectochilus roxburghii. In addition, two groups of co-eluted compounds were successfully identified. The results prove that this approach should be of benefit in the unequivocal structural determination of a variety of classes of compounds from extremely complex mixtures, such as herbs and biological samples, which will lead to improved efficiency in the identification of new potential lead compounds.
Collapse
Affiliation(s)
- Xiao-Xue Wang
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; E-Mails: (X.-X.W.); (J.-M.H.); (R.-P.Z.); (W.-Y.H.)
| | - Jiu-Ming He
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; E-Mails: (X.-X.W.); (J.-M.H.); (R.-P.Z.); (W.-Y.H.)
| | - Chun-Lan Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100094, China; E-Mails: (C.-L.W.); (S.-X.G.)
| | - Rui-Ping Zhang
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; E-Mails: (X.-X.W.); (J.-M.H.); (R.-P.Z.); (W.-Y.H.)
| | - Wen-Yi He
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; E-Mails: (X.-X.W.); (J.-M.H.); (R.-P.Z.); (W.-Y.H.)
| | - Shun-Xing Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100094, China; E-Mails: (C.-L.W.); (S.-X.G.)
| | - Rui-Xiang Sun
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100080, China; E-Mail:
| | - Zeper Abliz
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; E-Mails: (X.-X.W.); (J.-M.H.); (R.-P.Z.); (W.-Y.H.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-10-631-65218; Fax: +86-10-631-65218
| |
Collapse
|
17
|
Wei Y, Xie Q, Fisher D, Sutherland IA. Separation of patuletin-3-O-glucoside, astragalin, quercetin, kaempferol and isorhamnetin from Flaveria bidentis (L.) Kuntze by elution-pump-out high-performance counter-current chromatography. J Chromatogr A 2011; 1218:6206-11. [PMID: 21329934 DOI: 10.1016/j.chroma.2011.01.058] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 01/16/2011] [Accepted: 01/18/2011] [Indexed: 11/16/2022]
Abstract
Flaveria bidentis (L.) Kuntze is an annual alien weed of Flaveria Juss. (Asteraceae) in China. Bioactive compounds, mainly flavonol glycosides and flavones from F. bidentis (L.) Kuntze, have been studied in order to utilize this invasive weed, Analytical high-performance counter-current chromatography (HPCCC) was successfully used to separate patuletin-3-O-glucoside, a mixture of hyperoside (quercetin-3-O-galactoside) and 6-methoxykaempferol-3-O-galactoside, astragalin, quercetin, kaempferol and isorhamnetin using two runs with different solvent system. Ethyl acetate-methanol-water (10:1:10, v/v) was selected by analytical HPCCC as the optimum phase system for the separation of patuletin-3-O-glucoside, a mixture of hyperoside and 6-methoxykaempferol-3-O-galactoside, and astragalin. A Dichloromethane-methanol-water (5:3:2, v/v) was used for the separation of quercetin, kaempferol and isorhamnetin. The separation was then scaled up: the crude extract (ca 1.5 g) was separated by preparative HPCCC, yielding 12 mg of patuletin-3-O-glucoside at a purity of 98.3%, yielding 9 mg of a mixture of hyperoside and 6-methoxykaempferol-3-O-galactoside constituting over 98% of the fraction, and 16 mg of astragalin (kaempferol-3-O-glucoside) at a purity of over 99%. The pump-out peaks are isorhanetin (98% purity), kaemferol (93% purity) and quercitin (99% purity). The chemical structure of patuletin-3-O-glucoside and astragalin were confirmed by MS and ¹H, ¹³C NMR.
Collapse
Affiliation(s)
- Yun Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, China.
| | | | | | | |
Collapse
|
18
|
Xie Q, Wei Y, Zhang G. Separation of flavonol glycosides from Flaveria bidentis (L.) Kuntze by high-speed counter-current chromatography. Sep Purif Technol 2010. [DOI: 10.1016/j.seppur.2010.02.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|