1
|
Jiao D, Zhang R, Zhang H, Ma H, Zhang X, Fan X, Chang H. Rapid detection of glycosylated hemoglobin levels by a microchip liquid chromatography system in gradient elution mode. Anal Chim Acta 2024; 1288:342186. [PMID: 38220313 DOI: 10.1016/j.aca.2023.342186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/07/2023] [Accepted: 12/27/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND The determination of glycosylated hemoglobin (HbA1c) is crucial for diabetes diagnosis and can provide more substantial results than the simple measurement of glycemia. While there is a lack of simple methods for the determination of HbA1c using a point-of-care test (POCT) compared to glycemia measurement. In particular, high-performance liquid chromatography (HPLC) is considered the current gold standard for determining HbA1c levels. However, commercial HPLC systems usually have some sort of disadvantages such as bulky size, high-cost and need for qualified operators. Therefore, there is an urgent demand to develop a portable, and fast HbA1c detection system consuming fewer reagents. RESULTS We present a novel microchip that integrates a micromixer, passive injector, packed column and detection cell. The integrated microchip, in which all the microstructures were formed in the CNC machining center through micro-milling, is small in size (30 mm × 70 mm × 10 mm), and can withstand 1600 psi of liquid pressure. The integrated design is beneficial to reduce the band broadening caused by dead volume. Based on the microchip, a microchip liquid chromatography (LC) system was built and applied to the analysis of HbA1c. The separation conditions of HbA1c in blood calibrator samples were optimized using the microchip LC system. Samples containing four levels of HbA1c were completely separated within 2 min in optimal gradient conditions, with an inaccuracy (<3.2 %), a coefficient of variation (c.v. < 2.1 %) and a correlation coefficient (R2 = 0.993), indicating excellent separation efficiency and reproducibility. SIGNIFICANCE The POCT of HbA1c is critical for diabetes diagnosis. The microchip chromatography system was developed for HbA1c determination, which contains an integrated microchip and works under a gradient elution. It surpasses existing chip technology in terms of separation performance and detection speed, providing a competitive advantage for POCT of HbA1c. It is considered one important step for realizing efficient portable systems for timely and accurate diabetes diagnosis.
Collapse
Affiliation(s)
- Dezhao Jiao
- The Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Department of Microsystem Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ruirong Zhang
- The Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Department of Microsystem Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Hantian Zhang
- The Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Department of Microsystem Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Haoquan Ma
- The Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Department of Microsystem Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiaorui Zhang
- The Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Department of Microsystem Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiaoguang Fan
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Honglong Chang
- The Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Department of Microsystem Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China.
| |
Collapse
|
2
|
Özge Karaşallı M, Derya Koyuncu Zeybek. A Novel Label-Free Immunosensor Based on Electrochemically Reduced Graphene Oxide for Determination of Hemoglobin A1c. RUSS J ELECTROCHEM+ 2020. [DOI: 10.1134/s1023193520090037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Li X, Chang H. Chip-based ion chromatography (chip-IC) with a sensitive five-electrode conductivity detector for the simultaneous detection of multiple ions in drinking water. MICROSYSTEMS & NANOENGINEERING 2020; 6:66. [PMID: 34567677 PMCID: PMC8433475 DOI: 10.1038/s41378-020-0175-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/25/2020] [Accepted: 04/26/2020] [Indexed: 06/13/2023]
Abstract
The emerging need for accurate, efficient, inexpensive, and multiparameter monitoring of water quality has led to interest in the miniaturization of benchtop chromatography systems. This paper reports a chip-based ion chromatography (chip-IC) system in which the microvalves, sample channel, packed column, and conductivity detector are all integrated on a polymethylmethacrylate (PMMA) chip. A laser-based bonding technique was developed to guarantee simultaneous robust sealing between the homogeneous and heterogeneous interfaces. A five-electrode-based conductivity detector was presented to improve the sensitivity for nonsuppressed anion detection. Common anions (F-, Cl-, NO3 -, and SO4 2-) were separated in less than 8 min, and a detection limit (LOD) of 0.6 mg L-1 was achieved for SO4 2-. Tap water was also analyzed using the proposed chip-IC system, and the relative deviations of the quantified concentration were less than 10% when compared with that a commercial IC system.
Collapse
Affiliation(s)
- Xiaoping Li
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, 710072 Xi’an, P. R. China
| | - Honglong Chang
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, 710072 Xi’an, P. R. China
| |
Collapse
|
4
|
Kecskemeti A, Gaspar A. Particle-based liquid chromatographic separations in microfluidic devices - A review. Anal Chim Acta 2018; 1021:1-19. [DOI: 10.1016/j.aca.2018.01.064] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/18/2018] [Accepted: 01/21/2018] [Indexed: 01/06/2023]
|
5
|
Haghighi F, Talebpour Z, Nezhad AS. Towards fully integrated liquid chromatography on a chip: Evolution and evaluation. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.05.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Tsai SA, Tang JY, Wang MH, Jang LS. Impedance measurement system for automatic determination of glycated hemoglobin. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:065003. [PMID: 29960512 DOI: 10.1063/1.5025151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this study, an automatic glycated hemoglobin (HbA1c) impedance measurement system (AHMS) is developed for the detection of HbA1c. The proposed device removes some of the drawbacks of common instruments for HbA1c detection (i.e., large, expensive, difficult to operate) by detecting the ratio of HbA1c to Hb. The method is label-free and requires only a small sample volume; no additional reagents are required. The manpower consumption and bulk of the instrument are also reduced. The method provides a simple way to analyze impedance deviation and effectively reduces the effort required by the operator. The ratios of HbA1c to Hb (4%-7%) are well distinguished, and the experiment is used to build a database for AHMS. To check the reliability of the proposed system, a sample test using three different ratios of HbA1c is applied in this study. The sample test uses HbA1c to Hb ratios of 4.7%, 5.6%, and 6.8%, and the determined experimental values are 4.93%, 5.8%, and 6.83%, respectively. The sample test has an accuracy of approximately 96.99%. Based on these results, the proposed system for detecting HbA1c through protein coverage is both effective and feasible.
Collapse
Affiliation(s)
- Shou-Ai Tsai
- Department of Electrical Engineering, National Cheng Kung University, 1 University Road, Tainan City 701, Taiwan
| | - Jing-Yau Tang
- Department of Electrical Engineering, National Cheng Kung University, 1 University Road, Tainan City 701, Taiwan
| | - Min-Haw Wang
- Department of Electrical Engineering, Chinese Culture University, Taipei City, Taiwan
| | - Ling-Sheng Jang
- Department of Electrical Engineering, National Cheng Kung University, 1 University Road, Tainan City 701, Taiwan
| |
Collapse
|
7
|
Sridevi S, Vasu KS, Sampath S, Asokan S, Sood AK. Optical detection of glucose and glycated hemoglobin using etched fiber Bragg gratings coated with functionalized reduced graphene oxide. JOURNAL OF BIOPHOTONICS 2016; 9:760-9. [PMID: 26266873 DOI: 10.1002/jbio.201580156] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 07/07/2015] [Accepted: 07/12/2015] [Indexed: 05/05/2023]
Abstract
An enhanced optical detection of D-glucose and glycated hemoglobin (HbA1c ) has been established in this study using etched fiber Bragg gratings (eFBG) coated with aminophenylboronic acid (APBA)-functionalized reduced graphene oxide (RGO). The read out, namely the shift in Bragg wavelength (ΔλB ) is highly sensitive to changes that occur due to the adsorption of glucose (or HbA1c ) molecules on the eFBG sensor coated with APBA-RGO complex through a five-membered cyclic ester bond formation between glucose and APBA molecules. A limit of detection of 1 nM is achieved with a linear range of detection from 1 nM to 10 mM in the case of D-glucose detection experiments. For HbA1c , a linear range of detection varying from 86 nM to 0.23 mM is achieved. The observation of only 4 pm (picometer) change in ΔλB even for the 10 mM lactose solution confirms the specificity of the APBA-RGO complex coated eFBG sensors to glucose molecules.
Collapse
Affiliation(s)
- S Sridevi
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, 560012, India
| | - K S Vasu
- Department of Physics, Indian Institute of Science, Bangalore, 560012, India
| | - S Sampath
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - S Asokan
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, 560012, India
- Robert Bosch Centre for Cyber Physical Systems, Indian Institute of Science, Bangalore, 560012, India
| | - A K Sood
- Department of Physics, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
8
|
Campanella B, Bramanti E. Detection of proteins by hyphenated techniques with endogenous metal tags and metal chemical labelling. Analyst 2014; 139:4124-53. [DOI: 10.1039/c4an00722k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The absolute and relative quantitation of proteins plays a fundamental role in modern proteomics, as it is the key to understand still unresolved biological questions in medical and pharmaceutical applications.
Collapse
Affiliation(s)
- Beatrice Campanella
- National Research Council of Italy
- C.N.R
- Istituto di Chimica dei Composti Organo Metallici-ICCOM-UOS Pisa
- 56124 Pisa, Italy
| | - Emilia Bramanti
- National Research Council of Italy
- C.N.R
- Istituto di Chimica dei Composti Organo Metallici-ICCOM-UOS Pisa
- 56124 Pisa, Italy
| |
Collapse
|
9
|
Glycated hemoglobin (HbA1c) affinity biosensors with ring-shaped interdigital electrodes on impedance measurement. Biosens Bioelectron 2013; 49:450-6. [DOI: 10.1016/j.bios.2013.05.059] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 05/30/2013] [Accepted: 05/31/2013] [Indexed: 11/20/2022]
|
10
|
Recent developments in microfluidic chip-based separation devices coupled to MS for bioanalysis. Bioanalysis 2013; 5:2567-80. [DOI: 10.4155/bio.13.196] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In recent years, the development of microfluidic chip separation devices coupled to MS has dramatically increased for high-throughput bioanalysis. In this review, advances in different types of microfluidic chip separation devices, such as electrophoresis- and LC-based microchips, as well as 2D design of microfluidic chip-based separation devices will be discussed. In addition, the utilization of chip-based separation devices coupled to MS for analyzing peptides/proteins, glycans, drug metabolites and biomarkers for various bioanalytical applications will be evaluated.
Collapse
|
11
|
Lin SL, Bai HY, Lin TY, Fuh MR. Microfluidic chip-based liquid chromatography coupled to mass spectrometry for determination of small molecules in bioanalytical applications. Electrophoresis 2012; 33:635-43. [PMID: 22451056 DOI: 10.1002/elps.201100380] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The development and integration of microfabricated liquid chromatography (LC) microchips have increased dramatically in the last decade due to the needs of enhanced sensitivity and rapid analysis as well as the rising concern on reducing environmental impacts of chemicals used in various types of chemical and biochemical analyses. Recent development of microfluidic chip-based LC mass spectrometry (chip-based LC-MS) has played an important role in proteomic research for high throughput analysis. To date, the use of chip-based LC-MS for determination of small molecules, such as biomarkers, active pharmaceutical ingredients (APIs), and drugs of abuse and their metabolites, in clinical and pharmaceutical applications has not been thoroughly investigated. This mini-review summarizes the utilization of commercial chip-based LC-MS systems for determination of small molecules in bioanalytical applications, including drug metabolites and disease/tumor-associated biomarkers in clinical samples as well as adsorption, distribution, metabolism, and excretion studies of APIs in drug discovery and development. The different types of commercial chip-based interfaces for LC-MS analysis are discussed first and followed by applications of chip-based LC-MS on biological samples as well as the comparison with other LC-MS techniques.
Collapse
Affiliation(s)
- Shu-Ling Lin
- Department of Chemistry, Soochow University, Taipei, Taiwan
| | | | | | | |
Collapse
|
12
|
LIANG Y, WU C, DAI Z, LIANG Z, LIANG Z, ZHANG L, ZHANG Y. Microchip-based reversed-phase liquid chromatography-tandem mass spectrometry platform for protein analysis. Se Pu 2011; 29:469-74. [DOI: 10.3724/sp.j.1123.2011.00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
13
|
Martić S, Labib M, Shipman PO, Kraatz HB. Ferrocene-peptido conjugates: From synthesis to sensory applications. Dalton Trans 2011; 40:7264-90. [DOI: 10.1039/c0dt01707h] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
14
|
Bai HY, Lin SL, Chung YT, Liu TY, Chan SA, Fuh MR. Quantitative determination of 8-isoprostaglandin F(2α) in human urine using microfluidic chip-based nano-liquid chromatography with on-chip sample enrichment and tandem mass spectrometry. J Chromatogr A 2010; 1218:2085-90. [PMID: 21081240 DOI: 10.1016/j.chroma.2010.10.091] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 10/09/2010] [Accepted: 10/25/2010] [Indexed: 01/03/2023]
Abstract
Urinary 8-isoprostaglandin F(2α) (8-isoPGF(2α)) has been reported as an important biomarker to indicate the oxidative stress status in vivo. In order to quantitatively determine the low contents of 8-isoPGF(2α) (in sub- to low ng mL(-1) range) in physiological fluids, a sensitive detection method has become an important issue. In this study, we employed a microfluidic chip-based nano liquid chromatography (chip-nanoLC) with on-chip sample enrichment coupled to triple quadrupole mass spectrometer (QqQ-MS) for the quantitative determination of 8-isoPGF(2α) in human urine. This chip-nanoLC unit integrates a microfluidic switch, a chip column design having a pre-column (enrichment column) for sample enrichment prior to an analytical column for separation, as well as a nanospray emitter on a single polyimide chip. The introduction of enrichment column offers the advantages of online sample pre-concentration and reducing matrix influence on MS detection to improve sensitivity. In this study, the chip-nanoLC consisting of Zorbax 300A SB-C18 columns and Agilent QqQ Mass spectrometer were used for determining 8-isoPGF(2α) in human urine. Gradient elution was employed for effective LC separation and multiple reaction monitoring (MRM) was utilized for the quantitative determination of 8-isoPGF(2α) (m/z 353→193). We employed liquid-liquid extraction (LLE)/solid-phase extraction (SPE) for extracting analyte and reducing matrix effect from urine sample prior to chip-nanoLC/QqQ-MS analysis for determining urinary 8-isoPGF(2α). Good recoveries were found to be in the range of 83.0-85.3%. The linear range was 0.01-2 ng mL(-1) for urinary 8-isoPGF(2α). In addition, the proposed method showed good precision and accuracy for 8-isoPGF(2α) spiked synthetic urine samples. Intra-day and inter-day precisions were 1.8-5.0% and 4.3-5.8%, respectively. The method accuracy for intra-day and inter-day assays ranged from 99.3 to 99.9% and 99.4 to 99.7%, respectively. Due to its rapidity, enhanced sensitivity, and high recovery, this chip-nanoLC/QqQ-MS system was successfully utilized to determine the physiological biomarkers such as 8-isoPGF(2α) in human urine for clinical diagnosis.
Collapse
Affiliation(s)
- Hsin-Yu Bai
- Department of Chemistry, Soochow University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
15
|
Bai HY, Lin SL, Chan SA, Fuh MR. Characterization and evaluation of two-dimensional microfluidic chip-HPLC coupled to tandem mass spectrometry for quantitative analysis of 7-aminoflunitrazepam in human urine. Analyst 2010; 135:2737-42. [DOI: 10.1039/c0an00355g] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|