1
|
Poimenova IA, Sozarukova MM, Ratova DMV, Nikitina VN, Khabibullin VR, Mikheev IV, Proskurnina EV, Proskurnin MA. Analytical Methods for Assessing Thiol Antioxidants in Biological Fluids: A Review. Molecules 2024; 29:4433. [PMID: 39339429 PMCID: PMC11433793 DOI: 10.3390/molecules29184433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Redox metabolism is an integral part of the glutathione system, encompassing reduced and oxidized glutathione, hydrogen peroxide, and associated enzymes. This core process orchestrates a network of thiol antioxidants like thioredoxins and peroxiredoxins, alongside critical thiol-containing proteins such as mercaptoalbumin. Modifications to thiol-containing proteins, including oxidation and glutathionylation, regulate cellular signaling influencing gene activities in inflammation and carcinogenesis. Analyzing thiol antioxidants, especially glutathione, in biological fluids offers insights into pathological conditions. This review discusses the analytical methods for biothiol determination, mainly in blood plasma. The study includes all key methodological aspects of spectroscopy, chromatography, electrochemistry, and mass spectrometry, highlighting their principles, benefits, limitations, and recent advancements that were not included in previously published reviews. Sample preparation and factors affecting thiol antioxidant measurements are discussed. The review reveals that the choice of analytical procedures should be based on the specific requirements of the research. Spectrophotometric methods are simple and cost-effective but may need more specificity. Chromatographic techniques have excellent separation capabilities but require longer analysis times. Electrochemical methods enable real-time monitoring but have disadvantages such as interference. Mass spectrometry-based approaches have high sensitivity and selectivity but require sophisticated instrumentation. Combining multiple techniques can provide comprehensive information on thiol antioxidant levels in biological fluids, enabling clearer insights into their roles in health and disease. This review covers the time span from 2010 to mid-2024, and the data were obtained from the SciFinder® (ACS), Google Scholar (Google), PubMed®, and ScienceDirect (Scopus) databases through a combination search approach using keywords.
Collapse
Affiliation(s)
- Iuliia A. Poimenova
- Analytical Chemistry Division, Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119234 Moscow, Russia; (I.A.P.); (M.M.S.); (D.-M.V.R.); (V.N.N.); (V.R.K.)
| | - Madina M. Sozarukova
- Analytical Chemistry Division, Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119234 Moscow, Russia; (I.A.P.); (M.M.S.); (D.-M.V.R.); (V.N.N.); (V.R.K.)
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 117901 Moscow, Russia;
| | - Daria-Maria V. Ratova
- Analytical Chemistry Division, Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119234 Moscow, Russia; (I.A.P.); (M.M.S.); (D.-M.V.R.); (V.N.N.); (V.R.K.)
| | - Vita N. Nikitina
- Analytical Chemistry Division, Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119234 Moscow, Russia; (I.A.P.); (M.M.S.); (D.-M.V.R.); (V.N.N.); (V.R.K.)
| | - Vladislav R. Khabibullin
- Analytical Chemistry Division, Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119234 Moscow, Russia; (I.A.P.); (M.M.S.); (D.-M.V.R.); (V.N.N.); (V.R.K.)
- Federal State Budgetary Institution of Science Institute of African Studies, Russian Academy of Sciences, Spiridonovka St., 30/1, 123001 Moscow, Russia
| | - Ivan V. Mikheev
- Analytical Chemistry Division, Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119234 Moscow, Russia; (I.A.P.); (M.M.S.); (D.-M.V.R.); (V.N.N.); (V.R.K.)
| | - Elena V. Proskurnina
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 117901 Moscow, Russia;
- Laboratory of Molecular Biology, Research Centre for Medical Genetics, 1 Moskvorechye St., 115522 Moscow, Russia
| | - Mikhail A. Proskurnin
- Analytical Chemistry Division, Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119234 Moscow, Russia; (I.A.P.); (M.M.S.); (D.-M.V.R.); (V.N.N.); (V.R.K.)
| |
Collapse
|
2
|
Sozarukova MM, Kochneva EM, Proskurnina EV, Mikheev IV, Novikov DO, Proskurnin MA, Ivanov VK. Albumin Retains Its Transport Function after Interaction with Cerium Dioxide Nanoparticles. ACS Biomater Sci Eng 2023; 9:6759-6772. [PMID: 37955421 DOI: 10.1021/acsbiomaterials.3c01416] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
The interaction of inorganic nanomaterials with biological fluids containing proteins can lead not only to the formation of a protein corona and thereby to a change in the biological activity of nanoparticles but also to a significant effect on the structural and functional properties of the biomolecules themselves. This work studied the interaction of nanoscale CeO2, the most versatile nanozyme, with human serum albumin (HSA). Fourier transform infrared spectroscopy, MALDI-TOF mass spectrometry, UV-vis spectroscopy, and fluorescence spectroscopy confirmed the formation of HSA-CeO2 nanoparticle conjugates. Changes in protein conformation, which depend on the concentration of both citrate-stabilized CeO2 nanoparticles and pristine CeO2 nanoparticles, did not affect albumin drug-binding sites and, accordingly, did not impair the HSA transport function. The results obtained shed light on the biological consequences of the CeO2 nanoparticles' entrance into the body, which should be taken into account when engineering nanobiomaterials to increase their efficiency and reduce the side effects.
Collapse
Affiliation(s)
- Madina M Sozarukova
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky Avenue, 31, Moscow 119991, Russia
| | - Ekaterina M Kochneva
- Analytical Chemistry Division, Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1-3, GSP-1, Moscow 119991, Russia
| | - Elena V Proskurnina
- Research Centre for Medical Genetics, Moskvorechye Street, 1, Moscow 115522, Russia
| | - Ivan V Mikheev
- Analytical Chemistry Division, Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1-3, GSP-1, Moscow 119991, Russia
| | - Dmitry O Novikov
- Bauman Moscow State Technical University, 2-nd Baumanskaya Street, 5, Moscow 105005, Russia
| | - Mikhail A Proskurnin
- Analytical Chemistry Division, Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1-3, GSP-1, Moscow 119991, Russia
| | - Vladimir K Ivanov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky Avenue, 31, Moscow 119991, Russia
- National Research University Higher School of Economics, Pokrovsky Bulvar, 11, Moscow 109028, Russia
| |
Collapse
|
3
|
Hecko S, Schiefer A, Badenhorst CPS, Fink MJ, Mihovilovic MD, Bornscheuer UT, Rudroff F. Enlightening the Path to Protein Engineering: Chemoselective Turn-On Probes for High-Throughput Screening of Enzymatic Activity. Chem Rev 2023; 123:2832-2901. [PMID: 36853077 PMCID: PMC10037340 DOI: 10.1021/acs.chemrev.2c00304] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Many successful stories in enzyme engineering are based on the creation of randomized diversity in large mutant libraries, containing millions to billions of enzyme variants. Methods that enabled their evaluation with high throughput are dominated by spectroscopic techniques due to their high speed and sensitivity. A large proportion of studies relies on fluorogenic substrates that mimic the chemical properties of the target or coupled enzymatic assays with an optical read-out that assesses the desired catalytic efficiency indirectly. The most reliable hits, however, are achieved by screening for conversions of the starting material to the desired product. For this purpose, functional group assays offer a general approach to achieve a fast, optical read-out. They use the chemoselectivity, differences in electronic and steric properties of various functional groups, to reduce the number of false-positive results and the analytical noise stemming from enzymatic background activities. This review summarizes the developments and use of functional group probes for chemoselective derivatizations, with a clear focus on screening for enzymatic activity in protein engineering.
Collapse
Affiliation(s)
- Sebastian Hecko
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Astrid Schiefer
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Christoffel P S Badenhorst
- Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| | - Michael J Fink
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, Massachusetts 02138, United States
| | - Marko D Mihovilovic
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Uwe T Bornscheuer
- Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| | - Florian Rudroff
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| |
Collapse
|
4
|
You G, Hou J, Xu Y, Miao L, Ao Y, Xing B. Surface Properties and Environmental Transformations Controlling the Bioaccumulation and Toxicity of Cerium Oxide Nanoparticles: A Critical Review. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 253:155-206. [PMID: 32462332 DOI: 10.1007/398_2020_42] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Increasing production and utilization of cerium oxide nanoparticles (CNPs) in recent years have raised wide concerns about their toxicity. Numerous studies have been conducted to reveal the toxicity of CNPs, but the results are sometimes contradictory. In this review, the most important factors in mediating CNPs toxicity are discussed, including (1) the roles of physicochemical properties (size, morphology, agglomeration condition, surface charge, coating and surface valence state) on CNPs toxicity; (2) the phase transfer and transformation process of CNPs in various aqueous, terrestrial, and airborne environments; and (3) reductive dissolution of CNPs core and their chemical reactions with phosphate, sulfate/S2-, and ferrous ions. The physicochemical properties play key roles in the interactions of CNPs with organisms and consequently their environmental transformations, reactivity and toxicity assessment. Also, the speciation transformations of CNPs caused by reactions with (in)organic ligands in both environmental and biological systems would further alter their fate, transport, and toxicity potential. Thus, the toxicity mechanisms are proposed based on the physical damage of direct adsorption of CNPs onto the cell membrane and chemical inhibition (including oxidative stress and interaction of CNPs with biomacromolecules). Finally, the current knowledge gaps and further research needs in identifying the toxicological risk factors of CNPs under realistic environmental conditions are highlighted, which might improve predictions about their potential environmental influences. This review aims to provide new insights into cost-effectiveness of control options and management practices to prevent environmental risks from CNPs exposure.
Collapse
Affiliation(s)
- Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, China.
| | - Yi Xu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Yanhui Ao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
5
|
Rollin-Genetet F, Seidel C, Artells E, Auffan M, Thiéry A, Vidaud C. Redox Reactivity of Cerium Oxide Nanoparticles Induces the Formation of Disulfide Bridges in Thiol-Containing Biomolecules. Chem Res Toxicol 2015; 28:2304-12. [PMID: 26566067 DOI: 10.1021/acs.chemrestox.5b00319] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The redox state of disulfide bonds is implicated in many redox control systems, such as the cysteine-cystine couple. Among proteins, ubiquitous cysteine-rich metallothioneins possess thiolate metal binding groups susceptible to metal exchange in detoxification processes. CeO2 NPs are commonly used in various industrial applications due to their redox properties. These redox properties that enable dual oxidation states (Ce(IV)/Ce(III)) to exist at their surface may act as oxidants for biomolecules. The interaction among metallothioneins, cysteine, and CeO2 NPs was investigated through various biophysical approaches to shed light on the potential effects of the Ce(4+)/Ce(3+) redox system on the thiol groups of these biomolecules. The possible reaction mechanisms include the formation of a disulfide bridge/Ce(III) complex resulting from the interaction between Ce(IV) and the thiol groups, leading to metal unloading from the MTs, depending on their metal content and cluster type. The formation of stable Ce(3+) disulfide complexes has been demonstrated via their fluorescence properties. This work provides the first evidence of thiol concentration-dependent catalytic oxidation mechanisms between pristine CeO2 NPs and thiol-containing biomolecules.
Collapse
Affiliation(s)
- Françoise Rollin-Genetet
- CEA/DSV/iBEB/SBTN, Laboratoire d'Etude des Protéines Cibles, BP17171, F-30207 Bagnols sur Cèze Cedex, France.,Labex Serenade Safe(r) Ecodesign Research and Education applied to NAnomaterial DEvelopment
| | - Caroline Seidel
- CEA/DSV/iBEB/SBTN, Laboratoire d'Etude des Protéines Cibles, BP17171, F-30207 Bagnols sur Cèze Cedex, France
| | - Ester Artells
- Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), Technopôle Arbois-Méditerranée, Bât. Villemin - BP 80, F-13545 Aix-en-Provence cedex 04, France.,Labex Serenade Safe(r) Ecodesign Research and Education applied to NAnomaterial DEvelopment
| | - Mélanie Auffan
- Aix-Marseille Université, CNRS, IRD, CEREGE UM34, UMR 7330, F-13545 Aix en Provence, France.,iCEINT International Consortium for the Environmental Implications of Nanotechnology , F-13545 Aix en Provence, France.,Labex Serenade Safe(r) Ecodesign Research and Education applied to NAnomaterial DEvelopment
| | - Alain Thiéry
- Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), Technopôle Arbois-Méditerranée, Bât. Villemin - BP 80, F-13545 Aix-en-Provence cedex 04, France.,iCEINT International Consortium for the Environmental Implications of Nanotechnology , F-13545 Aix en Provence, France.,Labex Serenade Safe(r) Ecodesign Research and Education applied to NAnomaterial DEvelopment
| | - Claude Vidaud
- CEA/DSV/iBEB/SBTN, Laboratoire d'Etude des Protéines Cibles, BP17171, F-30207 Bagnols sur Cèze Cedex, France.,iCEINT International Consortium for the Environmental Implications of Nanotechnology , F-13545 Aix en Provence, France.,Labex Serenade Safe(r) Ecodesign Research and Education applied to NAnomaterial DEvelopment
| |
Collapse
|
6
|
Zheng LQ, Li Y, Yu XD, Xu JJ, Chen HY. A sensitive and selective detection method for thiol compounds using novel fluorescence probe. Anal Chim Acta 2014; 850:71-7. [DOI: 10.1016/j.aca.2014.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 08/29/2014] [Accepted: 09/04/2014] [Indexed: 01/20/2023]
|
7
|
Zhang LY, Tu FQ, Guo XF, Wang H, Wang P, Zhang HS. Rapid and sensitive determination of free thiols by capillary zone electrophoresis with near-infrared laser-induced fluorescence detection using a new BODIPY-based probe as labeling reagent. Electrophoresis 2014; 35:2951-8. [DOI: 10.1002/elps.201400203] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/16/2014] [Accepted: 07/18/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Li-Yun Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education); College of Chemistry and Molecular Sciences, Wuhan University; Wuhan P. R. China
| | - Feng-Qin Tu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education); College of Chemistry and Molecular Sciences, Wuhan University; Wuhan P. R. China
| | - Xiao-Feng Guo
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education); College of Chemistry and Molecular Sciences, Wuhan University; Wuhan P. R. China
| | - Hong Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education); College of Chemistry and Molecular Sciences, Wuhan University; Wuhan P. R. China
| | - Peng Wang
- Hubei Entry Exit Inspect & Quarantine Bur PRC, Ctr Technol; Wuhan P. R. China
| | - Hua-Shan Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education); College of Chemistry and Molecular Sciences, Wuhan University; Wuhan P. R. China
| |
Collapse
|
8
|
Marie T, Mélanie A, Lenka B, Julien I, Isabelle K, Christine P, Elise M, Catherine S, Bernard A, Ester A, Jérôme R, Alain T, Jean-Yves B. Transfer, transformation, and impacts of ceria nanomaterials in aquatic mesocosms simulating a pond ecosystem. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:9004-9013. [PMID: 25050645 DOI: 10.1021/es501641b] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Mesocosms are an invaluable tool for addressing the complex issue of exposure during nanoecotoxicological testing. This experimental strategy was used to take into account parameters as the interactions between the NPs and naturally occurring (in)organic colloids (heteroaggregation), or the flux between compartments of the ecosystems (aqueous phase, sediments, biota) when assessing the impacts of CeO2 NPs in aquatic ecosystems. In this study, we determine the transfer, redox transformation, and impacts of 1 mg L(-1) of bare and citrate coated CeO2-NPs toward an ecologically relevant organism (snail, Planorbarius corneus) exposed 4 weeks in a complex experimental system mimicking a pond ecosystem. Over time, CeO2-NPs tend to homo- and heteroaggregate and to accumulate on the surficial sediment. The kinetic of settling down was coating-dependent and related to the coating degradation. After 4 weeks, Ce was observed in the digestive gland of benthic organisms and associated with 65-80% of Ce(IV) reduction into Ce(III) for both bare and coated CeO2 NPs. A transitory oxidative stress was observed for bare CeO2-NPs. Coated-NPs exposed snails did not undergo any lipid peroxidation nor change in the antioxidant contents, while Ce content and reduction in the digestive gland were identical to bare CeO2-NPs. We hypothesized that the presence of citrate coating enhanced the defense capacity of the cells toward the oxidative stress induced by the CeO2 core.
Collapse
Affiliation(s)
- Tella Marie
- CNRS, Aix-Marseille Université, CEREGE UM34, UMR 7330, 13545 Aix en Provence, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Hao Y, Xiong D, Wang L, Chen W, Zhou B, Liu YN. A reversible competition colorimetric assay for the detection of biothiols based on ruthenium-containing complex. Talanta 2013; 115:253-7. [PMID: 24054588 DOI: 10.1016/j.talanta.2013.04.076] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/25/2013] [Accepted: 04/26/2013] [Indexed: 01/05/2023]
Abstract
A novel reversible colorimetric sensor, which based on a competitive ligation of Hg(2+) by thiols, cysteine (Cys) or glutathione (GSH), and thiocyanate (SCN) on the N3 dye (bis(4,4'-dicarboxy-2,2'-bipyridine) dithiocyanato ruthenium (II)), was developed for the detection of biothiols. First, Hg(2+) ions coordinate to the sulfur atom of the dyes' SCN groups, and this interaction induces a change in color from red to yellow, owing to the formation of a complex of Hg(2+)-N3. Then, in the presence of biothiols, the red color of N3 is recovered concomitantly with the dissociation of the Hg(2+)-N3 complex, due to the extraction of Hg(2+) by biothiols. Thus the corresponding color variation in the process of the dissociation of the Hg(2+)-N3 complex can be employed for the quantitative detection of thiols using UV-vis spectroscopy. In particular, the transformation can be readily viewed with the naked eye. A good linear relationship between the change in absorbance (ΔAbs) of Hg(2+)-N3 at 461 nm and the thiol concentration was obtained in the range of 0.5-25 μM, and the detection limits are then calculated to be 57 and 52 nM for Cys and GSH, respectively. The proposed colorimetric assay displays a high selectivity for Cys over various other amino acids and GSSG (oxidized glutathione).
Collapse
Affiliation(s)
- Yuanqiang Hao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China
| | | | | | | | | | | |
Collapse
|
10
|
Kaur K, Saini R, Kumar A, Luxami V, Kaur N, Singh P, Kumar S. Chemodosimeters: An approach for detection and estimation of biologically and medically relevant metal ions, anions and thiols. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2012.04.013] [Citation(s) in RCA: 316] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Xu L, Li B, Jin Y. Inner filter effect of gold nanoparticles on the fluorescence of quantum dots and its application to biological aminothiols detection. Talanta 2011; 84:558-64. [DOI: 10.1016/j.talanta.2011.01.061] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Revised: 01/21/2011] [Accepted: 01/25/2011] [Indexed: 12/31/2022]
|