1
|
Dietrich A, Schiemer R, Kurmann J, Zhang S, Hubbuch J. Raman-based PAT for VLP precipitation: systematic data diversification and preprocessing pipeline identification. Front Bioeng Biotechnol 2024; 12:1399938. [PMID: 38882637 PMCID: PMC11177211 DOI: 10.3389/fbioe.2024.1399938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/13/2024] [Indexed: 06/18/2024] Open
Abstract
Virus-like particles (VLPs) are a promising class of biopharmaceuticals for vaccines and targeted delivery. Starting from clarified lysate, VLPs are typically captured by selective precipitation. While VLP precipitation is induced by step-wise or continuous precipitant addition, current monitoring approaches do not support the direct product quantification, and analytical methods usually require various, time-consuming processing and sample preparation steps. Here, the application of Raman spectroscopy combined with chemometric methods may allow the simultaneous quantification of the precipitated VLPs and precipitant owing to its demonstrated advantages in analyzing crude, complex mixtures. In this study, we present a Raman spectroscopy-based Process Analytical Technology (PAT) tool developed on batch and fed-batch precipitation experiments of Hepatitis B core Antigen VLPs. We conducted small-scale precipitation experiments providing a diversified data set with varying precipitation dynamics and backgrounds induced by initial dilution or spiking of clarified Escherichia coli-derived lysates. For the Raman spectroscopy data, various preprocessing operations were systematically combined allowing the identification of a preprocessing pipeline, which proved to effectively eliminate initial lysate composition variations as well as most interferences attributed to precipitates and the precipitant present in solution. The calibrated partial least squares models seamlessly predicted the precipitant concentration with R 2 of 0.98 and 0.97 in batch and fed-batch experiments, respectively, and captured the observed precipitation trends with R 2 of 0.74 and 0.64. Although the resolution of fine differences between experiments was limited due to the observed non-linear relationship between spectral data and the VLP concentration, this study provides a foundation for employing Raman spectroscopy as a PAT sensor for monitoring VLP precipitation processes with the potential to extend its applicability to other phase-behavior dependent processes or molecules.
Collapse
Affiliation(s)
- Annabelle Dietrich
- Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Robin Schiemer
- Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Jasper Kurmann
- Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Shiqi Zhang
- Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Jürgen Hubbuch
- Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
2
|
Feasibility study on the use of ATR-FTIR spectroscopy as a tool for the estimation of wine polysaccharides. Carbohydr Polym 2022; 287:119365. [DOI: 10.1016/j.carbpol.2022.119365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/02/2022] [Accepted: 03/14/2022] [Indexed: 11/18/2022]
|
3
|
Thanasi V, Catarino S, Ricardo-da-Silva J. Fourier transform infrared spectroscopy in monitoring the wine production. CIÊNCIA E TÉCNICA VITIVINÍCOLA 2022. [DOI: 10.1051/ctv/ctv2022370179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The complexity of the wine matrix makes monitoring of the winemaking process from the grapes to the final product crucial for the wine industry. In this context, analytical methodologies that can combine good accuracy, robustness, high sample throughput, “green character”, and by preference real-time analysis, are on-demand to create high-quality vitivinicultural products. In the last years, Fourier-transform Infrared Spectroscopy (FTIR) combined with chemometric analysis has been evaluated in several studies as an effective analytical tool for the wine sector. Some applications of FTIR spectroscopy have been already accepted by the wine industry, mainly for the prediction of basic oenological parameters, using portable and non-portable instruments, but still many others are waiting to be thoroughly developed. This literature review aims to provide a critical synopsis of the most important studies assessing grape and wine quality and authenticity, and to identify possible gaps for further research, meeting the needs of the modern wine industry and the expectations of most demanding consumers. The FTIR studies were grouped according to the main sampling material used - 1) leaves, stems, and berries; 2) grape must and wine applications - along with a summary of the basic limitations and future perspectives of this analytical technique.
Collapse
|
4
|
Du KZ, Cui Y, Chen S, Yang R, Shang Y, Wang C, Yan Y, Li J, Chang YX. An integration strategy combined progressive multivariate statistics with anticoagulant activity evaluation for screening anticoagulant quality markers in Chinese patent medicine. JOURNAL OF ETHNOPHARMACOLOGY 2022; 287:114964. [PMID: 34990765 DOI: 10.1016/j.jep.2021.114964] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/16/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The cardiovascular and cerebrovascular diseases affect human health globally. Naoxintong capsules (NXTs), a famous Chinese Patent Medicine, has been especially applied to treat cerebral infarction and coronary heart disease in clinical practice. The anticoagulant activity of this prescription plays an important role in this course of treatment. AIM OF THE STUDY Thrombin and factor Xa (FXa) are two key targets considering the anticoagulant activity. The purpose of this investigation is to screen the quanlity markers as key thrombin and FXa inhibitors for the anticoagulant activity oriented quality control of Chinese patent medicine. MATERIALS AND METHODS Simple multi-polar solvent extraction processes using various proportions of solvents were conducted and their thrombin/FXa inhibitory activities were evaluated in vitro. Bivariate correlation analysis (BCA), grey correlation analysis (GCA), and orthogonal partial least squares discriminate analysis (OPLS-DA) were adopted for screening the potential active markers related to the anticoagulant activity. The chemical structures of these active compounds were identified by UHPLC-Q-TOF-MS/MS and their thrombin/FXa inhibitory activity was determined. The molecular docking technology was applied to explore the interaction between the compounds and targets. The contribution of these anticoagulant active ingredients in NXT was also investigated. Last but not the least, the contents of these markers in NXT were determined by liquid chromatography-electrospray ionization tandem triple quadrupole mass spectrometry (HPLC-ESI-MS/MS) method. RESULTS The results showed that the NXT extract exhibited great activity against thrombin and FXa, especially extracted by 75% methanol (v/v). Six marker compounds with potential anticoagulant activity were screened out. Therein, four of the active compounds owing thrombin inhibitory activity (paeoniflorin, lithospermic acid, salvianolic acid B, Z-ligustilide) and five of the active compounds owing FXa inhibitory activity (3,5-dicaffeoylquinic acid, rosmarinic acid, lithospermic acid, salvianolic acid B and Z-ligustilide). In addition, these active compounds accounted for a large proportion of thrombin/FXa inhibitory activity of NXTs. The binding energy also showed the strong interaction formed by close connection of the compounds to the residues of targets. CONCLUSIONS The proposed integrated stategy could be an efficient strategy to screen potential thrombin/FXa inhibitors for the bioactivity related quanlity control of Chinese patent medicine.
Collapse
Affiliation(s)
- Kun-Ze Du
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yan Cui
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shujing Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Rui Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Ye Shang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Chenhong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yiqi Yan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yan-Xu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
5
|
Carmelo-Luna FJ, Mendoza-Wilson AM, Ramos-Clamont Montfort G, Lizardi-Mendoza J, Madera-Santana T, Lardizábal-Gutiérrez D, Quintana-Owen P. Synthesis and experimental/computational characterization of sorghum procyanidins-gelatin nanoparticles. Bioorg Med Chem 2021; 42:116240. [PMID: 34116380 DOI: 10.1016/j.bmc.2021.116240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 10/21/2022]
Abstract
In this research, sorghum procyanidins (PCs) and procyanidin B1 (PB1) were encapsulated in gelatin (Gel) to form nanoparticles as a strategy to maintain their stability and bioactivity and for possible applications as inhibitors of metalloproteinases (MMPs) of the gelatinase type. Encapsulation was carried out by adding either PCs or PB1 to an aqueous solution of A- or B-type Gel (GelA or GelB) at different concentrations and pH. Under this procedure, the nanoparticles PCs-GelA, PCs-GelB, PB1-GelA, and PB1-GelB were synthesized and subsequently characterized by experimental and computational methods. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that all types of nanoparticles had sizes in the range of 22-138 nm and tended to adopt an approximately spherical morphology with a smooth surface, and they were immersed in a Gel matrix. Spectral analysis indicated that the nanoparticles were synthesized by establishing hydrogen bonds and hydrophobic interactions betweenGel and the PCs or PB1. Study of simulated gastrointestinal digestion suggested that PCs were not released from the Gel nanoparticles, and they maintained their morphology (SEM analysis) and antioxidant activity determined by Trolox-equivalent antioxidant capacity (TEAC) assay. Computational characterization carried out through molecular docking studies of PB1 with Gel or (pro-)metalloproteinase-2 [(pro-)MMP-2], as a model representative of the PCs, showed very favorable binding energies (around -5.0 kcal/mol) provided by hydrogen bonds, van der Waals interactions, and desolvation. Additionally, it was found that PB1 could act as a selective inhibitor of (pro-)MMP-2.
Collapse
Affiliation(s)
- Francisco Javier Carmelo-Luna
- Centro de Investigación en Alimentación y Desarrollo, A.C. Coordinación de Tecnología de Alimentos de Origen Vegetal, Carretera Gustavo Enrique Astiazarán Rosas, No. 46, 83304 Hermosillo, Sonora, Mexico
| | - Ana María Mendoza-Wilson
- Centro de Investigación en Alimentación y Desarrollo, A.C. Coordinación de Tecnología de Alimentos de Origen Vegetal, Carretera Gustavo Enrique Astiazarán Rosas, No. 46, 83304 Hermosillo, Sonora, Mexico.
| | - Gabriela Ramos-Clamont Montfort
- Centro de Investigación en Alimentación y Desarrollo, A.C. Coordinación de Ciencias de los Alimentos, Carretera Gustavo Enrique Astiazarán Rosas, No. 46, 83304 Hermosillo, Sonora, Mexico
| | - Jaime Lizardi-Mendoza
- Centro de Investigación en Alimentación y Desarrollo, A.C. Coordinación de Alimentos de Origen Animal, Carretera Gustavo Enrique Astiazarán Rosas, No. 46, 83304 Hermosillo, Sonora, Mexico
| | - Tomás Madera-Santana
- Centro de Investigación en Alimentación y Desarrollo, A.C. Coordinación de Tecnología de Alimentos de Origen Vegetal, Carretera Gustavo Enrique Astiazarán Rosas, No. 46, 83304 Hermosillo, Sonora, Mexico
| | - Daniel Lardizábal-Gutiérrez
- Centro de Investigación en Materiales Avanzados S.C., Departamento de Materiales Nanoestructurados, Av. Miguel de Cervantes 120, Complejo Industrial Chihuahua C.P. 31109, Chihuahua, Chihuahua, Mexico
| | - Patricia Quintana-Owen
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Mérida, Carretera antigua a Progreso Km. 6, 97310 Mérida, Yucatán, Mexico
| |
Collapse
|
6
|
Qiao X, Qu C, Luo Q, Wang Y, Yang J, Yang H, Wen X. UHPLC-qMS spectrum-effect relationships for Rhizoma Paridis extracts. J Pharm Biomed Anal 2020; 194:113770. [PMID: 33288343 DOI: 10.1016/j.jpba.2020.113770] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/30/2020] [Accepted: 11/11/2020] [Indexed: 01/24/2023]
Abstract
Rhizoma Paridis (RP) with significant anti-tumor and haemostatic effects, has been used as the raw material of many Traditional Chinese preparations. However, its active ingredients are still unclear. The present study aimed to discover bioactive ingredients from RP based on spectrum-relationship and chemometric methods. Firstly, the saponins extract was prepared by phytochemical methods. Furthermore, UHPLC-QTOF-MS and UHPLC-qMS were incorporated to establish an efficient and sensitive method for obtaining the chemical profiles of RP. A total of 34 saponins were characterized in RP and 13 of them were assigned as common peaks in 25 batches of samples. After evaluation of the anti-tumor and haemostatic activities of samples, spectrum-effect relationships were investigated by the grey relational analysis (GRA), orthogonal projections to latent structures (OPLS) and back propagation artificial neural network (BP-ANN). These analyses showed that polyphyllin VII (P27), polyphyllin II (P30), dioscin (P31) and polyphyllin I (P33) play a role in the haemostatic effects of RP whereas polyphyllin VII (P27), dioscin (P31), polyphyllin I (P33), progenin III (P34) were assigned as candidate ingredients accounting for the anti-tumor activity of RP. The anti-tumor and haemostatic activities of these screened ingredients were subsequently verified in vitro. Collectively, the present study established the spectrum-effect relationship mode of RP and discovered the bioactive compounds of RP, which could be also used for exploration of bioactive compounds in herbal medicines, especially for trace compounds.
Collapse
Affiliation(s)
- Xin Qiao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, Jiangsu, China; School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, Jiangsu, China
| | - Cheng Qu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, Jiangsu, China; School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, Jiangsu, China
| | - Qiming Luo
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, Jiangsu, China; School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, Jiangsu, China
| | - Yuanzhong Wang
- Yunnan Academy of Agricultural Sciences, Kunming, 650224, Yunnan, China
| | - Jie Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, Jiangsu, China; School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, Jiangsu, China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, Jiangsu, China; School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, Jiangsu, China.
| | - Xiaodong Wen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, Jiangsu, China; School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, Jiangsu, China.
| |
Collapse
|
7
|
Zhang C, Zheng X, Ni H, Li P, Li HJ. Discovery of quality control markers from traditional Chinese medicines by fingerprint-efficacy modeling: Current status and future perspectives. J Pharm Biomed Anal 2018; 159:296-304. [DOI: 10.1016/j.jpba.2018.07.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/05/2018] [Accepted: 07/07/2018] [Indexed: 01/11/2023]
|
8
|
Basalekou M, Pappas C, Kotseridis Y, Tarantilis PA, Kontaxakis E, Kallithraka S. Red Wine Age Estimation by the Alteration of Its Color Parameters: Fourier Transform Infrared Spectroscopy as a Tool to Monitor Wine Maturation Time. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2017; 2017:5767613. [PMID: 29225994 PMCID: PMC5687142 DOI: 10.1155/2017/5767613] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/12/2017] [Accepted: 09/26/2017] [Indexed: 06/02/2023]
Abstract
Color, phenolic content, and chemical age values of red wines made from Cretan grape varieties (Kotsifali, Mandilari) were evaluated over nine months of maturation in different containers for two vintages. The wines differed greatly on their anthocyanin profiles. Mid-IR spectra were also recorded with the use of a Fourier Transform Infrared Spectrophotometer in ZnSe disk mode. Analysis of Variance was used to explore the parameter's dependency on time. Determination models were developed for the chemical age indexes using Partial Least Squares (PLS) (TQ Analyst software) considering the spectral region 1830-1500 cm-1. The correlation coefficients (r) for chemical age index i were 0.86 for Kotsifali (Root Mean Square Error of Calibration (RMSEC) = 0.067, Root Mean Square Error of Prediction (RMSEP) = 0,115, and Root Mean Square Error of Validation (RMSECV) = 0.164) and 0.90 for Mandilari (RMSEC = 0.050, RMSEP = 0.040, and RMSECV = 0.089). For chemical age index ii the correlation coefficients (r) were 0.86 and 0.97 for Kotsifali (RMSEC 0.044, RMSEP = 0.087, and RMSECV = 0.214) and Mandilari (RMSEC = 0.024, RMSEP = 0.033, and RMSECV = 0.078), respectively. The proposed method is simpler, less time consuming, and more economical and does not require chemical reagents.
Collapse
Affiliation(s)
- M. Basalekou
- Laboratory of Oenology, Department of Food Science & Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - C. Pappas
- Laboratory of Chemistry, Department of Food Science & Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Y. Kotseridis
- Laboratory of Oenology, Department of Food Science & Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - P. A. Tarantilis
- Laboratory of Chemistry, Department of Food Science & Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - E. Kontaxakis
- Department of Agriculture, School of Agriculture, Food and Nutrition, Technological Educational Institute of Crete, Estavromenos, 71004 Heraklion, Greece
| | - S. Kallithraka
- Laboratory of Oenology, Department of Food Science & Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| |
Collapse
|
9
|
dos Santos CAT, Páscoa RN, Lopes JA. A review on the application of vibrational spectroscopy in the wine industry: From soil to bottle. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2016.12.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Pappas C, Kyraleou M, Voskidi E, Kotseridis Y, Taranilis PA, Kallithraka S. Direct and simultaneous quantification of tannin mean degree of polymerization and percentage of galloylation in grape seeds using diffuse reflectance fourier transform-infrared spectroscopy. J Food Sci 2015; 80:C298-306. [PMID: 25588697 DOI: 10.1111/1750-3841.12770] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/26/2014] [Indexed: 11/28/2022]
Abstract
The direct and simultaneous quantitative determination of the mean degree of polymerization (mDP) and the degree of galloylation (%G) in grape seeds were quantified using diffuse reflectance infrared Fourier transform spectroscopy and partial least squares (PLS). The results were compared with those obtained using the conventional analysis employing phloroglucinolysis as pretreatment followed by high performance liquid chromatography-UV and mass spectrometry detection. Infrared spectra were recorded in solid state samples after freeze drying. The 2nd derivative of the 1832 to 1416 and 918 to 739 cm(-1) spectral regions for the quantification of mDP, the 2nd derivative of the 1813 to 607 cm(-1) spectral region for the degree of %G determination and PLS regression were used. The determination coefficients (R(2) ) of mDP and %G were 0.99 and 0.98, respectively. The corresponding values of the root-mean-square error of calibration were found 0.506 and 0.692, the root-mean-square error of cross validation 0.811 and 0.921, and the root-mean-square error of prediction 0.612 and 0.801. The proposed method in comparison with the conventional method is simpler, less time consuming, more economical, and requires reduced quantities of chemical reagents and fewer sample pretreatment steps. It could be a starting point for the design of more specific models according to the requirements of the wineries.
Collapse
Affiliation(s)
- Christos Pappas
- Dept. of Food Science & Human Nutrition, Agricultural Univ. of Athens, 75 Iera Odos, 11855, Athens, Greece
| | | | | | | | | | | |
Collapse
|
11
|
The role of visible and infrared spectroscopy combined with chemometrics to measure phenolic compounds in grape and wine samples. Molecules 2015; 20:726-37. [PMID: 25574817 PMCID: PMC6272337 DOI: 10.3390/molecules20010726] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 12/24/2014] [Indexed: 11/16/2022] Open
Abstract
The content of phenolic compounds determines the state of phenolic ripening of red grapes, which is a key criterion in setting the harvest date to produce quality red wines. Wine phenolics are also important quality components that contribute to the color, taste, and mouth feel of wines. Spectroscopic techniques (e.g., near and mid infrared) offer the potential to simplify and reduce the analytical time for a range of grape and wine analytes. It is this characteristic, together with the ability to simultaneously measure several analytes in the same sample at the same time, which makes these techniques very attractive for use in both industry and research. The objective of this mini review is to present examples and to discuss different applications of visible (VIS), near infrared (NIR) and mid infrared (MIR) to assess and measure phenolic compounds in grape and wines.
Collapse
|
12
|
Li W, Liu J, Guan R, Chen J, Yang D, Zhao Z, Wang D. Chemical characterization of procyanidins from Spatholobus suberectus and their antioxidative and anticancer activities. J Funct Foods 2015. [DOI: 10.1016/j.jff.2014.11.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
13
|
Silva SD, Feliciano RP, Boas LV, Bronze MR. Application of FTIR-ATR to Moscatel dessert wines for prediction of total phenolic and flavonoid contents and antioxidant capacity. Food Chem 2014; 150:489-93. [DOI: 10.1016/j.foodchem.2013.11.028] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 03/12/2013] [Accepted: 11/03/2013] [Indexed: 10/26/2022]
|
14
|
Afonso J, Passos CP, Coimbra MA, Silva CM, Soares-da-Silva P. Inhibitory effect of phenolic compounds from grape seeds (Vitis vinifera L.) on the activity of angiotensin I converting enzyme. Lebensm Wiss Technol 2013. [DOI: 10.1016/j.lwt.2013.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Ferrer-Gallego R, Gonçalves R, Rivas-Gonzalo JC, Escribano-Bailón MT, de Freitas V. Interaction of phenolic compounds with bovine serum albumin (BSA) and α-amylase and their relationship to astringency perception. Food Chem 2012; 135:651-8. [PMID: 22868141 DOI: 10.1016/j.foodchem.2012.04.123] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/30/2012] [Accepted: 04/23/2012] [Indexed: 11/19/2022]
Abstract
The ability of grape seed extracts to bind to bovine serum albumin (BSA) and α-amylase was studied by fluorescence quenching of protein intrinsic fluorescence and nephelometry. The influence of grape seed ripeness on astringency was also evaluated. From the spectra obtained, the modified Sterm-Volmer (K(app)) and the bimolecular quenching constants were calculated. Results showed that grape seed extracts had good affinity for proteins. The association strength of tannin-protein interactions varied with changes in tannin structure associated with the degree of ripeness affecting the binding/quenching process. In all cases studied, higher values of K(app) were obtained in samples at harvest which have greater ability to bind to proteins than have samples at post-veraison time. Nephelometric assays show the same trend as do fluorescence quenching studies. A possible explanation for this is that, as seeds ripen, their tannins increase in molecular mass, which relates to an increase in hydrophobicity of the molecules, and this increases protein affinity. However, that is contrary to the reported decrease in astringency of grape seeds during maturity. This indicates that tannin-protein interactions are not the only explanation for the complex sensations of astringency of grape seeds.
Collapse
Affiliation(s)
- Raúl Ferrer-Gallego
- Grupo de Investigación en Polifenoles, Unidad de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, E 37007 Salamanca, Spain
| | | | | | | | | |
Collapse
|
16
|
Laghi L, Versari A, Parpinello GP, Nakaji DY, Boulton RB. FTIR Spectroscopy and Direct Orthogonal Signal Correction Preprocessing Applied to Selected Phenolic Compounds in Red Wines. FOOD ANAL METHOD 2011. [DOI: 10.1007/s12161-011-9240-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|