1
|
Huy TQ, Huyen PT, Le AT, Tonezzer M. Recent Advances of Silver Nanoparticles in Cancer Diagnosis and Treatment. Anticancer Agents Med Chem 2020; 20:1276-1287. [DOI: 10.2174/1871520619666190710121727] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/23/2019] [Accepted: 05/29/2019] [Indexed: 12/26/2022]
Abstract
Background:
Silver nanoparticles (AgNPs) are well-known as a promising antimicrobial material;
they have been widely used in many commercial products against pathogenic agents. Despite a growing concern
regarding the cytotoxicity, AgNPs still have attracted considerable interest worldwide to develop a new generation
of diagnostic tool and effective treatment solution for cancer cells.
Objective:
This paper aims to review the advances of AgNPs applied for cancer diagnosis and treatment.
Methods:
The database has been collected, screened and analysed through up-to-date scientific articles published
from 2007 to May 2019 in peer-reviewed international journals.
Results:
The findings of the database have been analysed and divided into three parts of the text that deal with
AgNPs in cancer diagnosis, their cytotoxicity, and the role as carrier systems for cancer treatment. Thanks to
their optical properties, high conductivity and small size, AgNPs have been demonstrated to play an essential
role in enhancing signals and sensitivity in various biosensing platforms. Furthermore, AgNPs also can be used
directly or developed as a drug delivery system for cancer treatment.
Conclusion:
The review paper will help readers understand more clearly and systematically the role and advances
of AgNPs in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Tran Q. Huy
- National Institute of Hygiene and Epidemiology (NIHE), 1 - Yersin Street, Hanoi, Vietnam
| | - Pham T.M. Huyen
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Anh-Tuan Le
- Phenikaa University Nano Institute (PHENA), Phenikaa University, Hanoi 12116, Vietnam
| | - Matteo Tonezzer
- IMEM-CNR, Sede di Trento - FBK, Via alla Cascata 56/C, Povo-Trento, Italy
| |
Collapse
|
2
|
Khanmohammadi A, Jalili Ghazizadeh A, Hashemi P, Afkhami A, Arduini F, Bagheri H. An overview to electrochemical biosensors and sensors for the detection of environmental contaminants. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01940-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
3
|
Khanmohammadi A, Aghaie A, Vahedi E, Qazvini A, Ghanei M, Afkhami A, Hajian A, Bagheri H. Electrochemical biosensors for the detection of lung cancer biomarkers: A review. Talanta 2019; 206:120251. [PMID: 31514848 DOI: 10.1016/j.talanta.2019.120251] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 01/05/2023]
Abstract
Cancer is one of the most widespread challenges and important diseases, which has the highest mortality rate. Lung cancer is the most common type of cancer, so that about 25% of all cancer deaths are related to the lung cancer. The lung cancer is classified as two different types with different treatment methodology: the small cell lung carcinoma and nonsmall cell lung carcinoma are two categories of the lung cancer. Since the lung cancer is often in the latent period in its early stages, therefore, early diagnosis of lung cancer has many challenges. Hence, there is a need for sensitive and reliable tools for preclinical diagnosis of lung cancer. Therefore, many detection methods have been employed for early detection of lung cancer. As lung cancer tumors growth in the body, the cancerous cells release numerous DNA, proteins, and metabolites as special biomarkers of the lung cancer. The levels of these biomarkers show the stages of the lung cancer. Therefore, detection of the biomarkers can be used for screening and clinical diagnosis of the lung cancer. There are numerous biomarkers for the lung cancer such as EGFR, CEA, CYFRA 21-1, ENO1, NSE, CA 19-9, CA 125 and VEGF. Nowadays, electrochemical methods are very attractive and useful in the lung cancer detections. So, in this paper, the recent advances and improvements (2010-2018) in the electrochemical detection of the lung cancer biomarkers have been reviewed.
Collapse
Affiliation(s)
- Akbar Khanmohammadi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Aghaie
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ensieh Vahedi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Qazvini
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abbas Afkhami
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Ali Hajian
- Institute of Sensor and Actuator Systems, TU Wien, Vienna, Austria
| | - Hasan Bagheri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Špringer T, Chadtová Song X, Ermini ML, Lamačová J, Homola J. Functional gold nanoparticles for optical affinity biosensing. Anal Bioanal Chem 2017; 409:4087-4097. [DOI: 10.1007/s00216-017-0355-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/16/2017] [Accepted: 03/31/2017] [Indexed: 12/12/2022]
|
5
|
Hasanzadeh M, Shadjou N. What are the reasons for low use of graphene quantum dots in immunosensing of cancer biomarkers? MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:1313-1326. [DOI: 10.1016/j.msec.2016.11.068] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/09/2016] [Accepted: 11/17/2016] [Indexed: 11/29/2022]
|
6
|
Hasanzadeh M, Shadjou N. Advanced nanomaterials for use in electrochemical and optical immunoassays of carcinoembryonic antigen. A review. Mikrochim Acta 2017. [DOI: 10.1007/s00604-016-2066-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Rama EC, Costa-García A. Screen-printed Electrochemical Immunosensors for the Detection of Cancer and Cardiovascular Biomarkers. ELECTROANAL 2016. [DOI: 10.1002/elan.201600126] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Estefanía Costa Rama
- Departamento de Química Física y Analítica, Facultad de Química; Universidad de Oviedo; 33006 Oviedo Spain
| | - Agustín Costa-García
- Departamento de Química Física y Analítica, Facultad de Química; Universidad de Oviedo; 33006 Oviedo Spain
| |
Collapse
|
8
|
Gao YS, Zhu XF, Xu JK, Lu LM, Wang WM, Yang TT, Xing HK, Yu YF. Label-free electrochemical immunosensor based on Nile blue A-reduced graphene oxide nanocomposites for carcinoembryonic antigen detection. Anal Biochem 2016; 500:80-7. [DOI: 10.1016/j.ab.2016.02.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 11/05/2015] [Accepted: 02/09/2016] [Indexed: 11/29/2022]
|
9
|
Gao YS, Xu JK, Lu LM, Zhu XF, Wang WM, Yang TT, Zhang KX, Yu YF. A label-free electrochemical immunosensor for carcinoembryonic antigen detection on a graphene platform doped with poly(3,4-ethylenedioxythiophene)/Au nanoparticles. RSC Adv 2015. [DOI: 10.1039/c5ra16618g] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this work, a two-step method was developed for the fabrication of a graphene sensing platform doped with poly(3,4-ethylenedioxythiophene)/Au nanoparticles (AuNPs/PEDOT/GR).
Collapse
Affiliation(s)
- Yan-Sha Gao
- College of Science
- Jiangxi Agricultural University
- Nanchang 330045
- PR China
- Jiangxi Key Laboratory of Organic Chemistry
| | - Jing-Kun Xu
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- PR China
| | - Li-Min Lu
- College of Science
- Jiangxi Agricultural University
- Nanchang 330045
- PR China
| | - Xiao-Fei Zhu
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- PR China
| | - Wen-Min Wang
- College of Science
- Jiangxi Agricultural University
- Nanchang 330045
- PR China
| | - Tao-Tao Yang
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- PR China
| | - Kai-Xin Zhang
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- PR China
| | - Yong-Fang Yu
- College of Science
- Jiangxi Agricultural University
- Nanchang 330045
- PR China
| |
Collapse
|
10
|
Dual signal amplification of horseradish peroxidase functionalized nanocomposite as trace label for the electrochemical detection of carcinoembryonic antigen. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.02.072] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Diaconu I, Cristea C, Hârceagă V, Marrazza G, Berindan-Neagoe I, Săndulescu R. Electrochemical immunosensors in breast and ovarian cancer. Clin Chim Acta 2013; 425:128-38. [DOI: 10.1016/j.cca.2013.07.017] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 07/19/2013] [Accepted: 07/20/2013] [Indexed: 12/20/2022]
|
12
|
Chen H, Tang D, Zhang B, Liu B, Cui Y, Chen G. Electrochemical immunosensor for carcinoembryonic antigen based on nanosilver-coated magnetic beads and gold-graphene nanolabels. Talanta 2012; 91:95-102. [DOI: 10.1016/j.talanta.2012.01.025] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 01/09/2012] [Accepted: 01/12/2012] [Indexed: 02/07/2023]
|
13
|
Silver nanowire–graphene hybrid nanocomposites as label for sensitive electrochemical immunoassay of alpha-fetoprotein. Electrochim Acta 2011. [DOI: 10.1016/j.electacta.2011.05.128] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
14
|
Gold nanolabels and enzymatic recycling dual amplification-based electrochemical immunosensor for the highly sensitive detection of carcinoembryonic antigen. Sci China Chem 2011. [DOI: 10.1007/s11426-011-4373-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Dawan S, Kanatharana P, Wongkittisuksa B, Limbut W, Numnuam A, Limsakul C, Thavarungkul P. Label-free capacitive immunosensors for ultra-trace detection based on the increase of immobilized antibodies on silver nanoparticles. Anal Chim Acta 2011; 699:232-41. [DOI: 10.1016/j.aca.2011.05.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 05/17/2011] [Accepted: 05/24/2011] [Indexed: 10/18/2022]
|
16
|
Ray S, Reddy PJ, Choudhary S, Raghu D, Srivastava S. Emerging nanoproteomics approaches for disease biomarker detection: a current perspective. J Proteomics 2011; 74:2660-81. [PMID: 21596164 DOI: 10.1016/j.jprot.2011.04.027] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 03/15/2011] [Accepted: 04/28/2011] [Indexed: 01/29/2023]
Abstract
Availability of genome sequence of human and different pathogens has advanced proteomics research for various clinical applications. One of the prime goals of proteomics is identification and characterization of biomarkers for cancer and other fatal human diseases to aid an early diagnosis and monitor disease progression. However, rapid detection of low abundance biomarkers from the complex biological samples under clinically relevant conditions is extremely difficult, and it requires the development of ultrasensitive, robust and high-throughput technological platform. In order to overcome several technical limitations associated with sensitivity, dynamic range, detection time and multiplexing, proteomics has started integrating several emerging disciplines such as nanotechnology, which has led to the development of a novel analytical platform known as 'nanoproteomics'. Among the diverse classes of nanomaterials, the quantum dots, gold nanoparticles, carbon nanotubes and silicon nanowires are the most promising candidates for diagnostic applications. Nanoproteomics offers several advantages such as ultralow detection, short assay time, high-throughput capability and low sample consumption. In this article, we have discussed the application of nanoproteomics for biomarker discovery in various diseases with special emphasis on various types of cancer. Furthermore, we have discussed the prospects, merits and limitations of nanoproteomics.
Collapse
Affiliation(s)
- Sandipan Ray
- Wadhwani Research Center for Biosciences and Bioengineering, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | | | | | | | | |
Collapse
|
17
|
Carbon nanotube-based symbiotic coaxial nanocables with nanosilica and nanogold particles as labels for electrochemical immunoassay of carcinoembryonic antigen in biological fluids. Talanta 2011; 84:538-46. [DOI: 10.1016/j.talanta.2011.01.063] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 01/16/2011] [Accepted: 01/25/2011] [Indexed: 02/03/2023]
|
18
|
Szymanski M, Porter R, Dep GV, Wang Y, Haggett BGD. Silver nanoparticles and magnetic beads with electrochemical measurement as a platform for immunosensing devices. Phys Chem Chem Phys 2011; 13:5383-7. [DOI: 10.1039/c1cp20187e] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
YABUKI S. Polyelectrolyte Complex Membranes for Immobilizing Biomolecules, and Their Applications to Bio-analysis. ANAL SCI 2011; 27:695. [DOI: 10.2116/analsci.27.695] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Soichi YABUKI
- National Institute of Advanced Industrial Science and Technology (AIST)
| |
Collapse
|