1
|
Ashraf S, Qaiser H, Tariq S, Khalid A, Makeen HA, Alhazmi HA, Ul-Haq Z. Unraveling the versatility of human serum albumin - A comprehensive review of its biological significance and therapeutic potential. Curr Res Struct Biol 2023; 6:100114. [PMID: 38111902 PMCID: PMC10726258 DOI: 10.1016/j.crstbi.2023.100114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/20/2023] Open
Abstract
Human serum albumin (HSA) is a multi-domain macromolecule with diverse ligand binding capability because of its ability to allow allosteric modulation despite being a monomeric protein. Physiologically, HSA act as the primary carrier for various exogenous and endogenous compounds and fatty acids, and alter the pharmacokinetic properties of several drugs. It has antioxidant properties and is utilized therapeutically to improve the drug delivery of pharmacological agents for the treatment of several disorders. The flexibility of albumin in holding various types of drugs coupled with a variety of modifications makes this protein a versatile drug carrier with incalculable potential in therapeutics. This review provides a brief outline of the different structural properties of HSA, and its various binding sites, moreover, an overview of the genetic, biomedical, and allosteric modulation of drugs and drug delivery aspects of HSA is also included, which may be helpful in guiding advanced clinical applications and further research on the therapeutic potential of this extraordinary protein.
Collapse
Affiliation(s)
- Sajda Ashraf
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75210, Pakistan
| | - Hina Qaiser
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75210, Pakistan
| | - Sumayya Tariq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75210, Pakistan
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan, Saudi Arabia
- Medicinal and Aromatic Plants Research Institute, National Center for Research, P.O. Box: 2424, Khartoum, 11111, Sudan
| | - Hafiz A. Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, Faculty of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hassan A. Alhazmi
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan, Saudi Arabia
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, 45142, Jazan, Saudi Arabia
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75210, Pakistan
| |
Collapse
|
2
|
Li Z, Wang Z, Wang N, Han X, Yu W, Wang R, Chang J. Identification of the binding between three fluoronucleoside analogues and fat mass and obesity-associated protein by isothermal titration calorimetry and spectroscopic techniques. J Pharm Biomed Anal 2018; 149:290-295. [DOI: 10.1016/j.jpba.2017.11.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/27/2017] [Accepted: 11/01/2017] [Indexed: 12/19/2022]
|
3
|
Zhao Z, Chen H, Zhang H, Ma L, Wang Z. Polyacrylamide-phytic acid-polydopamine conducting porous hydrogel for rapid detection and removal of copper (II) ions. Biosens Bioelectron 2017; 91:306-312. [DOI: 10.1016/j.bios.2016.12.047] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/08/2016] [Accepted: 12/20/2016] [Indexed: 12/19/2022]
|
4
|
Influence of the methyl position on the binding of 5-epi-taiwaniaquinone G to HSA investigated by spectrofluorimetry and molecular modeling. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1547-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Li W, Chen D, Wang H, Luo S, Dong L, Zhang Y, Shi J, Tong B, Dong Y. Quantitation of Albumin in Serum Using "Turn-on" Fluorescent Probe with Aggregation-Enhanced Emission Characteristics. ACS APPLIED MATERIALS & INTERFACES 2015; 7:26094-26100. [PMID: 26553289 DOI: 10.1021/acsami.5b07422] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
An aggregation-enhanced emission active luminogen named as sodium 4,4'4″-(3,4-diphenyl-1H-pyrrole-1,2,5-triyl)tribenzoate (DP-TPPNa) with propeller construction was synthesized and developed as a "turn on" fluorescent probe for in situ quantitation of albumin in blood serum. The DP-TPPNa fluorescence intensity was linearly correlated with the concentration of two serum albumins, bovine serum albumin (BSA) and human serum albumin (HSA), in pure PBS buffer in the ranges of 2.18-70 and 1.68-100 μg/mL, respectively. The detection limits were as low as 2.18 μg/mL for BSA and 1.68 μg/mL for HSA. The response time of fluorescence to serum albumin (SA) was very short (below 6 s), which achieved real-time detection. It also showed high selectivity to SA because other components in serum barely interfere with the detection of DP-TPPNa to SA, enabling in situ quantitative detection of SA without isolation from serum. DP-TPPNa was successfully applied for the quantitative detection of BSA in fetal bovine serum. The mechanism of fluorescent turn-on behavior was elucidated utilizing an unfolding process induced by guanidine hydrochloride, which revealed a capture process via selective hydrophobic interaction and hydrogen bonding between luminogen and SA.
Collapse
Affiliation(s)
- Wangyang Li
- School of Materials Science and Engineering, Beijing Institute of Technology , Beijing, 100081, China
| | - Didi Chen
- School of Materials Science and Engineering, Beijing Institute of Technology , Beijing, 100081, China
| | - Huan Wang
- School of Materials Science and Engineering, Beijing Institute of Technology , Beijing, 100081, China
| | - Shanshan Luo
- School of Materials Science and Engineering, Beijing Institute of Technology , Beijing, 100081, China
| | - Lichao Dong
- School of Materials Science and Engineering, Beijing Institute of Technology , Beijing, 100081, China
| | - Yahui Zhang
- School of Materials Science and Engineering, Beijing Institute of Technology , Beijing, 100081, China
| | - Jianbing Shi
- School of Materials Science and Engineering, Beijing Institute of Technology , Beijing, 100081, China
| | - Bin Tong
- School of Materials Science and Engineering, Beijing Institute of Technology , Beijing, 100081, China
| | - Yuping Dong
- School of Materials Science and Engineering, Beijing Institute of Technology , Beijing, 100081, China
| |
Collapse
|
6
|
Sacco P, Sechi A, Trevisan A, Picotti F, Gianni R, Stucchi L, Fabbian M, Bosco M, Paoletti S, Marsich E. A silver complex of hyaluronan-lipoate (SHLS12): Synthesis, characterization and biological properties. Carbohydr Polym 2015; 136:418-26. [PMID: 26572372 DOI: 10.1016/j.carbpol.2015.09.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 09/17/2015] [Accepted: 09/18/2015] [Indexed: 12/13/2022]
Abstract
In this study we present a novel silver complex of hyaluronan-lipoate (SHLS12) in a gel-state form. NMR analysis, conductometry and elemental analysis demonstrated stable non-covalent interactions between silver ions and the polysaccharide-lipoate backbone, whereas rheological investigations confirmed its gel-like physical-chemical behavior. Biological studies showed the ability of SHLS12 to exert a straightforward activity against different bacterial strains grown in sessile/planktonic state. The biocompatibility was also proved toward two eukaryotic cell lines. By considering both its ability to preserve antibacterial properties when exposed to the serum protein BSA and its low susceptibility to be degraded by hyaluronidase enzyme, this novel complex may be considered as a promising biomaterial for future in vivo applications.
Collapse
Affiliation(s)
- Pasquale Sacco
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, I-34127 Trieste, Italy
| | - Alessandra Sechi
- SIGEA Srl, AREA Science Park, loc. Padriciano 99, I-34149 Trieste, Italy
| | - Antonia Trevisan
- SIGEA Srl, AREA Science Park, loc. Padriciano 99, I-34149 Trieste, Italy
| | - Fabrizio Picotti
- SIGEA Srl, AREA Science Park, loc. Padriciano 99, I-34149 Trieste, Italy
| | - Rita Gianni
- SIGEA Srl, AREA Science Park, loc. Padriciano 99, I-34149 Trieste, Italy
| | - Luca Stucchi
- SIGEA Srl, AREA Science Park, loc. Padriciano 99, I-34149 Trieste, Italy
| | - Matteo Fabbian
- SIGEA Srl, AREA Science Park, loc. Padriciano 99, I-34149 Trieste, Italy
| | - Marco Bosco
- SIGEA Srl, AREA Science Park, loc. Padriciano 99, I-34149 Trieste, Italy
| | - Sergio Paoletti
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, I-34127 Trieste, Italy
| | - Eleonora Marsich
- Department of Medical, Surgical and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, I-34129 Trieste, Italy.
| |
Collapse
|
7
|
Ascenzi P, di Masi A, Fanali G, Fasano M. Heme-based catalytic properties of human serum albumin. Cell Death Discov 2015; 1:15025. [PMID: 27551458 PMCID: PMC4991842 DOI: 10.1038/cddiscovery.2015.25] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 07/09/2015] [Indexed: 12/11/2022] Open
Abstract
Human serum albumin (HSA): (i) controls the plasma oncotic pressure, (ii) modulates fluid distribution between the body compartments, (iii) represents the depot and carrier of endogenous and exogenous compounds, (iv) increases the apparent solubility and lifetime of hydrophobic compounds, (v) affects pharmacokinetics of many drugs, (vi) inactivates toxic compounds, (vii) induces chemical modifications of some ligands, (viii) displays antioxidant properties, and (ix) shows enzymatic properties. Under physiological and pathological conditions, HSA has a pivotal role in heme scavenging transferring the metal-macrocycle from high- and low-density lipoproteins to hemopexin, thus acquiring globin-like reactivity. Here, the heme-based catalytic properties of HSA are reviewed and the structural bases of drug-dependent allosteric regulation are highlighted.
Collapse
Affiliation(s)
- P Ascenzi
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University , 00146 Roma, Italy
| | - A di Masi
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, 00146 Roma, Italy; Department of Sciences, Roma Tre University, 00146 Roma, Italy
| | - G Fanali
- Biomedical Research Division, Department of Theoretical and Applied Sciences, University of Insubria , 21052 Busto Arsizio, Italy
| | - M Fasano
- Biomedical Research Division, Department of Theoretical and Applied Sciences, University of Insubria, 21052 Busto Arsizio, Italy; Center of Neuroscience, University of Insubria, 21052 Busto Arsizio, Italy
| |
Collapse
|
8
|
Flanagan SE, Malanowski AJ, Kizilay E, Seeman D, Dubin PL, Donato-Capel L, Bovetto L, Schmitt C. Complex equilibria, speciation, and heteroprotein coacervation of lactoferrin and β-lactoglobulin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:1776-1783. [PMID: 25565379 DOI: 10.1021/la504020e] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
There has been a resurgence of interest in complex coacervation, a form of liquid-liquid phase separation (LLPS) in systems of oppositely charged macroions, but very few reports describe the somewhat anomalous coacervation between acidic and basic proteins, which occurs under very narrow ranges of conditions. We sought to identify the roles of equilibrium interprotein complexes during the coacervation of β-lactoglobulin dimer (BLG2) with lactoferrin (LF) and found that this LLPS arises specifically from LF(BLG2)2. We followed the progress of complexation and coacervation as a function of r, the LF/BLG molar ratio, using turbidity to monitor the degree of coacervation and proton release and dynamic light scattering (DLS) to assess the stoichiometry and abundance of complexes. Isothermal titration calorimetry (ITC) showed that initial complex formation is endothermic, but a large exotherm related to coacervate formation obscured other regions. On the basis of turbidimetry, proton release, and DLS, we propose a speciation diagram that presents the abundance of various complexes as a function of r. Although multiple species could be simultaneously present, distinct regions could be identified corresponding to equilibria among particular protein pairs.
Collapse
Affiliation(s)
- Sean E Flanagan
- Department of Chemistry, University of Massachusetts-Amherst , Amherst, Massachusetts 01003, United States
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Hagège A, Huynh TNS, Hébrant M. Separative techniques for metalloproteomics require balance between separation and perturbation. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2014.08.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Baraka-Vidot J, Navarra G, Leone M, Bourdon E, Militello V, Rondeau P. Deciphering metal-induced oxidative damages on glycated albumin structure and function. Biochim Biophys Acta Gen Subj 2014; 1840:1712-24. [PMID: 24380878 DOI: 10.1016/j.bbagen.2013.12.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 11/25/2013] [Accepted: 12/09/2013] [Indexed: 01/14/2023]
|
11
|
Luo JY, Lu SJ, Gan GL, Lin XY, Li H, Li WS. Luminescence quenching behavior of [Ru(bpy)2(dppz)]2+-DNA/CdS/ITO electrode controlled synchronically by copper(II) ion and external electric field. J Photochem Photobiol A Chem 2014. [DOI: 10.1016/j.jphotochem.2014.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Wang X, Miao Q, Song T, Yuan Q, Gao J, Liang G. A fluorescent switch for sequentially and selectively sensing copper(ii) andl-histidine in vitro and in living cells. Analyst 2014; 139:3360-4. [DOI: 10.1039/c4an00410h] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A new fluorescent switch was developed for sequential and selective sensing of Cu2+andl-histidine (l-His)in vitroand in living cells.
Collapse
Affiliation(s)
- Xiaojing Wang
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Chemistry & Collaborative Innovation Center of Suzhou Nano Science and Technology
- University of Science and Technology of China
- Hefei, China
| | - Qingqing Miao
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Chemistry & Collaborative Innovation Center of Suzhou Nano Science and Technology
- University of Science and Technology of China
- Hefei, China
| | - Tingjie Song
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei, China
| | - Qingpan Yuan
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Chemistry & Collaborative Innovation Center of Suzhou Nano Science and Technology
- University of Science and Technology of China
- Hefei, China
| | - Jinhao Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005, China
| | - Gaolin Liang
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Chemistry & Collaborative Innovation Center of Suzhou Nano Science and Technology
- University of Science and Technology of China
- Hefei, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces
| |
Collapse
|
13
|
Yao Z, Yang Y, Chen X, Hu X, Zhang L, Liu L, Zhao Y, Wu HC. Visual Detection of Copper(II) Ions Based on an Anionic Polythiophene Derivative Using Click Chemistry. Anal Chem 2013; 85:5650-3. [DOI: 10.1021/ac401386v] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zhiyi Yao
- Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yanbo Yang
- Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xueliang Chen
- School of
Materials Science
and Engineering, Zhengzhou University,
Zhengzhou 450052, China
| | - Xianping Hu
- School of
Materials Science
and Engineering, Zhengzhou University,
Zhengzhou 450052, China
| | - Li Zhang
- School of
Materials Science
and Engineering, Zhengzhou University,
Zhengzhou 450052, China
| | - Lei Liu
- Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yuliang Zhao
- Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Hai-Chen Wu
- Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Interface of on line coupling capillary electrophoresis with hydride generation electrothermal atomic absorption spectrometry and its application to arsenic speciation in sediment. Talanta 2013; 109:128-32. [DOI: 10.1016/j.talanta.2013.01.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/25/2013] [Accepted: 01/30/2013] [Indexed: 11/23/2022]
|
15
|
Marsich E, Travan A, Donati I, Turco G, Kulkova J, Moritz N, Aro H, Crosera M, Paoletti S. Biological responses of silver-coated thermosets: an in vitro and in vivo study. Acta Biomater 2013; 9:5088-99. [PMID: 23059413 DOI: 10.1016/j.actbio.2012.10.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/26/2012] [Accepted: 10/01/2012] [Indexed: 01/22/2023]
Abstract
Bisphenol A glycidylmethacrylate (BisGMA)/triethyleneglycol dimethacrylate (TEGDMA) thermosets are biomaterials commonly employed for orthopedic and dental applications; for both these fields, bacterial adhesion to the surface of the implant represents a major issue for the outcome of the surgical procedures. In this study, the antimicrobial properties of a nanocomposite coating formed by polysaccharide 1-deoxylactit-1-yl chitosan (Chitlac) and silver nanoparticles (nAg) on methacrylate thermosets were studied. The Chitlac-nAg system showed good anti-bacterial and anti-biofilm activity although its biocidal properties can be moderately, albeit significantly, inhibited by serum proteins. In vitro studies on the silver release kinetic in physiological conditions showed a steady metal release associated with a gradual loss of antimicrobial activity. However, after 3weeks there was still effective protection against bacterial colonization which could be accounted for by the residual silver. This time-span could be considered adequate to confer short-term protection from early peri-implant infections. Preliminary in vivo tests in a mini-pig animal model showed good biological compatibility of Chitlac-nAg-coated materials when implanted in bony tissue. The comparison was made with implants of titanium Ti6Al4V alloy and with a Chitlac-coated thermoset. Bone healing patterns and biocompatibility parameters observed for nAg-treated material were comparable with those observed for control implants.
Collapse
|
16
|
Fanali G, Cao Y, Ascenzi P, Fasano M. Mn(II) binding to human serum albumin: A 1H-NMR relaxometric study. J Inorg Biochem 2012; 117:198-203. [DOI: 10.1016/j.jinorgbio.2012.08.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 08/21/2012] [Accepted: 08/24/2012] [Indexed: 12/20/2022]
|
17
|
Affiliation(s)
- Nicolas H. Bings
- Institute of Inorganic
and Analytical Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Annemie Bogaerts
- Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610
Wilrijk-Antwerp, Belgium
| | - José A. C. Broekaert
- Institute of Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| |
Collapse
|
18
|
Timerbaev AR. Element speciation analysis using capillary electrophoresis: twenty years of development and applications. Chem Rev 2012; 113:778-812. [PMID: 23057472 DOI: 10.1021/cr300199v] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Andrei R Timerbaev
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Kosygin Str. 19, 119991 Moscow, Russian Federation.
| |
Collapse
|
19
|
Bytzek AK, Hartinger CG. Capillary electrophoretic methods in the development of metal-based therapeutics and diagnostics: new methodology and applications. Electrophoresis 2012; 33:622-34. [PMID: 22451055 DOI: 10.1002/elps.201100402] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In recent years, capillary electrophoresis (CE) has matured to a standard method in medicinal inorganic chemistry. More and more steps of the drug discovery process are followed by CE. However, not only the number of applications has steadily increased but also the variety of used methodology has significantly broadened and, as compared to a few years ago, a wider scope of separation modes and hyphenated systems has been used. Herein, a summary of the newly utilized CE methods and their applications in metallodrug research in the timeframe 2006-2011 is presented, following related reviews from 2003 and 2007 (Electrophoresis, 2003, 24, 2023-2037; Electrophoresis 2007, 28, 3436-3446). Areas covered include impurity profiling, quality control of pharmaceutical formulations, lipophilicity estimation, interactions between metallodrugs and proteins or nucleotides, and characterization and also quantification of metabolites in biological matrices and real-world samples.
Collapse
Affiliation(s)
- Anna K Bytzek
- Institute of Inorganic Chemistry, University of Vienna, Vienna, Austria
| | | |
Collapse
|
20
|
Aleksenko SS, Shmykov AY, Oszwałdowski S, Timerbaev AR. Interactions of tumour-targeting nanoparticles with proteins: potential of using capillary electrophoresis as a direct probe. Metallomics 2012; 4:1141-8. [DOI: 10.1039/c2mt20141k] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Human serum albumin: from bench to bedside. Mol Aspects Med 2011; 33:209-90. [PMID: 22230555 DOI: 10.1016/j.mam.2011.12.002] [Citation(s) in RCA: 1211] [Impact Index Per Article: 93.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 12/21/2011] [Indexed: 02/07/2023]
Abstract
Human serum albumin (HSA), the most abundant protein in plasma, is a monomeric multi-domain macromolecule, representing the main determinant of plasma oncotic pressure and the main modulator of fluid distribution between body compartments. HSA displays an extraordinary ligand binding capacity, providing a depot and carrier for many endogenous and exogenous compounds. Indeed, HSA represents the main carrier for fatty acids, affects pharmacokinetics of many drugs, provides the metabolic modification of some ligands, renders potential toxins harmless, accounts for most of the anti-oxidant capacity of human plasma, and displays (pseudo-)enzymatic properties. HSA is a valuable biomarker of many diseases, including cancer, rheumatoid arthritis, ischemia, post-menopausal obesity, severe acute graft-versus-host disease, and diseases that need monitoring of the glycemic control. Moreover, HSA is widely used clinically to treat several diseases, including hypovolemia, shock, burns, surgical blood loss, trauma, hemorrhage, cardiopulmonary bypass, acute respiratory distress syndrome, hemodialysis, acute liver failure, chronic liver disease, nutrition support, resuscitation, and hypoalbuminemia. Recently, biotechnological applications of HSA, including implantable biomaterials, surgical adhesives and sealants, biochromatography, ligand trapping, and fusion proteins, have been reported. Here, genetic, biochemical, biomedical, and biotechnological aspects of HSA are reviewed.
Collapse
|
22
|
Kubáň P, Timerbaev AR. CE of inorganic species - A review of methodological advancements over 2009-2010. Electrophoresis 2011; 33:196-210. [DOI: 10.1002/elps.201100357] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 07/30/2011] [Accepted: 07/30/2011] [Indexed: 01/13/2023]
|
23
|
Zauner T, Berger-Hoffmann R, Müller K, Hoffmann R, Zuchner T. Highly adaptable and sensitive protease assay based on fluorescence resonance energy transfer. Anal Chem 2011; 83:7356-63. [PMID: 21892820 DOI: 10.1021/ac201274f] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Proteases are widely used in analytical sciences and play a central role in several widespread diseases. Thus, there is an immense need for highly adaptable and sensitive assays for the detection and monitoring of various proteolytic enzymes. We established a simple protease fluorescence resonance energy transfer (pro-FRET) assay for the determination of protease activities, which could in principle be adapted for the detection of all proteases. As proof of principle, we demonstrated the potential of our method using trypsin and enteropeptidase in complex biological mixtures. Briefly, the assay is based on the cleavage of a FRET peptide substrate, which results in a dramatic increase of the donor fluorescence. The assay was highly sensitive and fast for both proteases. The detection limits for trypsin and enteropeptidase in Escherichia coli lysate were 100 and 10 amol, respectively. The improved sensitivity for enteropeptidase was due to the application of an enzyme cascade, which leads to signal amplification. The pro-FRET assay is highly specific as even high concentrations of other proteases did not result in significant background signals. In conclusion, this sensitive and simple assay can be performed in complex biological mixtures and can be easily adapted to act as a versatile tool for the sensitive detection of proteases.
Collapse
Affiliation(s)
- Thomas Zauner
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany
| | | | | | | | | |
Collapse
|
24
|
Seneviratne C, Dombi GW, Liu W, Dain JA. The in vitro glycation of human serum albumin in the presence of Zn(II). J Inorg Biochem 2011; 105:1548-54. [PMID: 22071077 DOI: 10.1016/j.jinorgbio.2011.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 08/30/2011] [Accepted: 09/01/2011] [Indexed: 12/20/2022]
Abstract
Amino groups of human serum albumin (HSA) can react non-enzymatically with carbonyl groups of reducing sugars to form advanced glycation end products (AGEs). These AGEs contribute to many of the chronic complications of diabetes including atherosclerosis, cataract formation and renal failure. The current study focused on in vitro non-enzymatic reactivity of glyceraldehyde (GA) and methylglyoxal (MG) with HSA and evaluated the rate and extent of AGE formation in the presence of varied concentrations of Zn(II). At normal physiological conditions, GA and MG readily react with HSA. The presence of Zn(II) in HSA-GA or HSA-MG incubation mixtures reduced AGE formation. This finding was confirmed by UV and fluorescence spectrometry, HPLC techniques, and matrix assisted laser desorption ionization mass spectrometry (MALDI-TOF). HPLC studies revealed decreased adduct formation of the glycated protein in the presence of Zn(II). The inhibition of AGE formation was intense at elevated Zn(II) concentrations. The results of this study suggest that Zn(II) may prove to be a potent agent in reducing AGE formation.
Collapse
|