1
|
Lee BC, Tsai JC, Huang YH, Wang CC, Lee HC, Tsai HJ. The 419th Aspartic Acid of Neural Membrane Protein Enolase 2 Is a Key Residue Involved in the Axonal Growth of Motor Neurons Mediated by Interaction between Enolase 2 Receptor and Extracellular Pgk1 Ligand. Int J Mol Sci 2024; 25:10753. [PMID: 39409082 PMCID: PMC11477227 DOI: 10.3390/ijms251910753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
Neuron-specific Enolase 2 (Eno2) is an isozyme primarily distributed in the central and peripheral nervous systems and neuroendocrine cells. It promotes neuronal survival, differentiation, and axonal regeneration. Recent studies have shown that Eno2 localized on the cell membrane of motor neurons acts as a receptor for extracellular phosphoglycerate kinase 1 (ePgk1), which is secreted by muscle cells and promotes the neurite outgrowth of motor neurons (NOMN). However, interaction between Eno1, another isozyme of Enolase, and ePgk1 failed to return the same result. To account for the difference, we constructed seven point-mutations of Eno2, corresponding to those of Eno1, and verified their effects on NOMN. Among the seven Eno2 mutants, eno2-siRNA-knockdown NSC34 cells transfected with plasmid encoding the 419th aspartic acid mutated into serine (Eno2-[D419S]) or Eno2-[E420K] showed a significant reduction in neurite length. Moreover, the Eno2-ePgk1-interacted synergic effect on NOMN driven by Eno2-[D419S] was more profoundly reduced than that driven by Eno2-[E420K], suggesting that D419 was the more essential residue involved in NOMN mediated by Eno2-ePgk1 interaction. Eno2-ePgk1-mediated NOMN appeared to increase the level of p-Cofilin, a growth cone collapse marker, in NSC34 cells transfected with Eno2-[D419S] and incubated with ePgk1, thereby inhibiting NOMN. Furthermore, we conducted in vivo experiments using zebrafish transgenic line Tg(mnx1:GFP), in which GFP is tagged in motor neurons. In the presence of ePgk1, the retarded growth of axons in embryos injected with eno2-specific antisense morpholino oligonucleotides (MO) could be rescued by wobble-eno2-mRNA. However, despite the addition of ePgk1, the decreased defective axons and the increased branched neurons were not significantly improved in the eno2-[D419S]-mRNA-injected embryos. Collectively, these results lead us to suggest that the 419th aspartic acid of mouse Eno2 is likely a crucial site affecting motor neuron development mediated by Eno2-ePgk1 interaction, and, hence, mutations result in a significant reduction in the degree of NOMN in vitro and axonal growth in vivo.
Collapse
Affiliation(s)
- Bing-Chang Lee
- Department of Life Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (B.-C.L.); (Y.-H.H.); (H.-C.L.)
| | - Jui-Che Tsai
- Graduate Institute of Applied Science and Engineering, Fu Jen Catholic University, New Taipei City 242062, Taiwan;
| | - Yi-Hsin Huang
- Department of Life Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (B.-C.L.); (Y.-H.H.); (H.-C.L.)
| | - Chun-Cheng Wang
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10617, Taiwan;
| | - Hung-Chieh Lee
- Department of Life Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (B.-C.L.); (Y.-H.H.); (H.-C.L.)
| | - Huai-Jen Tsai
- Department of Life Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (B.-C.L.); (Y.-H.H.); (H.-C.L.)
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10617, Taiwan;
| |
Collapse
|
2
|
Ullah M, Ullah S, Zhengxin L, Khan M, Nazir R, Qassem TA, Mushtaq H, Hasan DF, Aldossari SA, Mahmood N, Hussain S, Alam K. Fabrication of Highly Sensitive and Selective Nitrite Colorimetric Sensor Based on the Enhanced Peroxidase Mimetic Activity of Using Acetic Acid Capped Zinc Oxide Nanosheets. J Fluoresc 2024:10.1007/s10895-024-03830-6. [PMID: 38967859 DOI: 10.1007/s10895-024-03830-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
Nitrite ions (NO2-), as one of the leading type-A inorganic-anion, showing significant-effects in the aquatic environment and also to humans health. Whereas, the higher uptake causes detrimental threat to human health leading to various chronic diseases, thus demanding efficient, reliable and convenient method for its monitoring. For this purpose, in the present research study we have fabricated the mimetic nonozyme like catalyst based colorimetric nitrite sensor. The acetic acid capped Zinc Oxide (ZnO) nanosheets (NSs) were introduce as per-oxidase mimetic like catalyst which shows high efficiency towards the oxidative catalysis of colorless tetramethylbenzidine (TMB) to oxidized-TMB (blue color) in the presence of Hydrogen-peroxide (H2O2). The present nitrite ions will stimulate the as formed oxidized-TMB (TMBox), and will caused diazotization reaction (diazotized-TMBox), which will not only decreases the peak intensity of UV-visible peak of TMBox at 652 nm but will also produces another peak at 446 nm called as diazotized-TMBox peak, proving the catalytic reaction between the nitrite ions and TMBox. Further, the prepared colorimetric sensor exhibits better sensitivity with a wider range of concentration (1 × 10-3-4.50 × 10-1 µM), lowest limit of detection (LOD) of 0.22 ± 0.05 nM and small limit of quantification (LOQ) 0.78 ± 0.05 nM having R2 value of 0.998. Further, the colorimetric sensor also manifest strong selectivity towards NO2- as compared to other interference in drinking water system. Resultantly, the prepared sensor with outstanding repeatability, stability, reproducibility, re-usability and its practicability in real water samples also exploit its diverse applications in food safety supervision and environmental monitoring.
Collapse
Affiliation(s)
- Mohib Ullah
- School of Material Science and Engineering, Henan university of Technology, Zhengzhou, 450001, China
| | - Sami Ullah
- Department of Chemistry, Kohat University of Science & Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Li Zhengxin
- School of Material Science and Engineering, Henan university of Technology, Zhengzhou, 450001, China.
| | - Muslim Khan
- Department of Chemistry, Kohat University of Science & Technology, Kohat, Khyber Pakhtunkhwa, Pakistan.
| | - Ruqia Nazir
- Department of Chemistry, Kohat University of Science & Technology, Kohat, Khyber Pakhtunkhwa, Pakistan.
| | - Talal Aziz Qassem
- Department of Medical Laboratory Technics, College of Health and Medical Technology, Alnoor University, Mosul, Iraq
| | | | - Dheyaa Flayih Hasan
- College of Health and Medical Technology, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | - Samar A Aldossari
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Nasir Mahmood
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
| | - Shehbaz Hussain
- Department of Chemistry, Kohat University of Science & Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Khurshid Alam
- Department of Chemistry, Kohat University of Science & Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
3
|
Aydın M, Aydın EB, Sezgintürk MK. A Highly Selective Poly(thiophene)‐graft‐Poly(methacrylamide) Polymer Modified ITO Electrode for Neuron Specific Enolase Detection in Human Serum. Macromol Biosci 2019; 19:e1900109. [DOI: 10.1002/mabi.201900109] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/31/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Muhammet Aydın
- Tekirdagˇ Namık Kemal UniversityScientific and Technological Research Center Tekirdagˇ 59000 Turkey
| | - Elif Burcu Aydın
- Tekirdagˇ Namık Kemal UniversityScientific and Technological Research Center Tekirdagˇ 59000 Turkey
| | - Mustafa Kemal Sezgintürk
- Çanakkale Onsekiz Mart UniversityFaculty of Engineering, Bioengineering Department Çanakkale 17000 Turkey
| |
Collapse
|
4
|
Scanning electrochemical microscopy in the development of enzymatic sensors and immunosensors. Biosens Bioelectron 2019; 141:111411. [PMID: 31228730 DOI: 10.1016/j.bios.2019.111411] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/24/2019] [Accepted: 06/03/2019] [Indexed: 01/05/2023]
Abstract
Scanning electrochemical microscopy (SECM) is very useful, non-invasive tool for the analysis of surfaces pre-modified with biomolecules or by whole cells. This review focuses on the application of SECM technique for the analysis of surfaces pre-modified with enzymes (horseradish peroxidase, alkaline phosphatase and glucose oxidase) or labelled with antibody-enzyme conjugates. The working principles and operating modes of SECM are outlined. The applicability of feedback, generation-collection and redox competition modes of SECM on surfaces modified by enzymes or labelled with antibody-enzyme conjugates is discussed. SECM is important in the development of miniaturized bioanalytical systems with enzymes, since it can provide information about the local enzyme activity. Technical challenges and advantages of SECM, experimental parameters, used enzymes and redox mediators, immunoassay formats and analytical parameters of enzymatic SECM sensors and immunosensors are reviewed.
Collapse
|
5
|
Conzuelo F, Schulte A, Schuhmann W. Biological imaging with scanning electrochemical microscopy. Proc Math Phys Eng Sci 2018; 474:20180409. [PMID: 30839832 PMCID: PMC6237495 DOI: 10.1098/rspa.2018.0409] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 09/04/2018] [Indexed: 12/27/2022] Open
Abstract
Scanning electrochemical microscopy (SECM) is a powerful and versatile technique for visualizing the local electrochemical activity of a surface as an ultramicroelectrode tip is moved towards or over a sample of interest using precise positioning systems. In comparison with other scanning probe techniques, SECM not only enables topographical surface mapping but also gathers chemical information with high spatial resolution. Considerable progress has been made in the analysis of biological samples, including living cells and immobilized biomacromolecules such as enzymes, antibodies and DNA fragments. Moreover, combinations of SECM with comple-mentary analytical tools broadened its applicability and facilitated multi-functional analysis with extended life science capabilities. The aim of this review is to present a brief topical overview on recent applications of biological SECM, with particular emphasis on important technical improvements of this surface imaging technique, recommended applications and future trends.
Collapse
Affiliation(s)
- Felipe Conzuelo
- Analytical Chemistry—Center for Electrochemical Sciences (CES), Faculty for Chemistry and Biochemistry, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| | - Albert Schulte
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Wolfgang Schuhmann
- Analytical Chemistry—Center for Electrochemical Sciences (CES), Faculty for Chemistry and Biochemistry, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| |
Collapse
|
6
|
Huang L, Li Z, Lou Y, Cao F, Zhang D, Li X. Recent Advances in Scanning Electrochemical Microscopy for Biological Applications. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1389. [PMID: 30096895 PMCID: PMC6119995 DOI: 10.3390/ma11081389] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/24/2018] [Accepted: 07/28/2018] [Indexed: 12/17/2022]
Abstract
Scanning electrochemical microscopy (SECM) is a chemical microscopy technique with high spatial resolution for imaging sample topography and mapping specific chemical species in liquid environments. With the development of smaller, more sensitive ultramicroelectrodes (UMEs) and more precise computer-controlled measurements, SECM has been widely used to study biological systems over the past three decades. Recent methodological breakthroughs have popularized SECM as a tool for investigating molecular-level chemical reactions. The most common applications include monitoring and analyzing the biological processes associated with enzymatic activity and DNA, and the physiological activity of living cells and other microorganisms. The present article first introduces the basic principles of SECM, followed by an updated review of the applications of SECM in biological studies on enzymes, DNA, proteins, and living cells. Particularly, the potential of SECM for investigating bacterial and biofilm activities is discussed.
Collapse
Affiliation(s)
- Luyao Huang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China.
| | - Ziyu Li
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China.
| | - Yuntian Lou
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China.
| | - Fahe Cao
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | - Dawei Zhang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China.
| | - Xiaogang Li
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
7
|
Polcari D, Dauphin-Ducharme P, Mauzeroll J. Scanning Electrochemical Microscopy: A Comprehensive Review of Experimental Parameters from 1989 to 2015. Chem Rev 2016; 116:13234-13278. [PMID: 27736057 DOI: 10.1021/acs.chemrev.6b00067] [Citation(s) in RCA: 224] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- David Polcari
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec Canada, H3A 0B8
| | - Philippe Dauphin-Ducharme
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec Canada, H3A 0B8
| | - Janine Mauzeroll
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec Canada, H3A 0B8
| |
Collapse
|
8
|
Holzinger A, Steinbach C, Kranz C. Scanning Electrochemical Microscopy (SECM): Fundamentals and Applications in Life Sciences. ELECTROCHEMICAL STRATEGIES IN DETECTION SCIENCE 2015. [DOI: 10.1039/9781782622529-00125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In recent years, scanning electrochemical microscopy (SECM) has made significant contributions to the life sciences. Innovative developments focusing on high-resolution imaging, developing novel operation modes, and combining SECM with complementary optical or scanning probe techniques renders SECM an attractive analytical approach. This chapter gives an introduction to the essential instrumentation and operation principles of SECM for studying biologically-relevant systems. Particular emphasis is given to applications aimed at imaging the activity of biochemical constituents such as enzymes, antibodies, and DNA, which play a pivotal role in biomedical diagnostics. Furthermore, the unique advantages of SECM and combined techniques for studying live cells is highlighted by discussion of selected examples.
Collapse
Affiliation(s)
- Angelika Holzinger
- Institute of Analytical and Bioanalytical Chemistry, University of Ulm 89069 Ulm Germany
| | - Charlotte Steinbach
- Institute of Analytical and Bioanalytical Chemistry, University of Ulm 89069 Ulm Germany
| | - Christine Kranz
- Institute of Analytical and Bioanalytical Chemistry, University of Ulm 89069 Ulm Germany
| |
Collapse
|
9
|
Stefan-van Staden RI, Comnea-Stancu IR, Surdu-Bob CC, Stanciu-Gavan C. Pattern recognition of neuron specific enolase and carcinoembryonic antigen in whole blood samples. J Mol Recognit 2015; 28:103-7. [DOI: 10.1002/jmr.2433] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 09/01/2014] [Accepted: 09/04/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Raluca-Ioana Stefan-van Staden
- Laboratory of Electrochemistry and PATLAB Bucharest; National Institute of Research for Electrochemistry and Condensed Matter; 202 Splaiul Independentei St. Bucharest 060021 Romania
- Faculty of Applied Chemistry and Materials Science; Politehnica University of Bucharest; 1-7 Polizu St. Bucharest 011061 Romania
| | - Ionela Raluca Comnea-Stancu
- Laboratory of Electrochemistry and PATLAB Bucharest; National Institute of Research for Electrochemistry and Condensed Matter; 202 Splaiul Independentei St. Bucharest 060021 Romania
- Faculty of Applied Chemistry and Materials Science; Politehnica University of Bucharest; 1-7 Polizu St. Bucharest 011061 Romania
| | - Carmen Cristina Surdu-Bob
- Low Temperature Plasma Laboratory; National Institute for Lasers, Plasma and Radiation Physics; Str. Atomistilor 409 Magurele 077125 Romania
| | - Camelia Stanciu-Gavan
- Department of Surgery 4; University of Medicine and Pharmacy “Carol Davila”; 8 Eroii Sanitari St. Bucharest 050474 Romania
| |
Collapse
|
10
|
Wain AJ. Scanning electrochemical microscopy for combinatorial screening applications: A mini-review. Electrochem commun 2014. [DOI: 10.1016/j.elecom.2014.05.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
11
|
Conzuelo F, Stratmann L, Grützke S, Pingarrón JM, Schuhmann W. Detection and Quantification of Sulfonamide Antibiotic Residues in Milk Using Scanning Electrochemical Microscopy. ELECTROANAL 2014. [DOI: 10.1002/elan.201300577] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
12
|
Stefan-van Staden RI, Comnea IR, van Staden JF, Stanciu Gavan C. Stochastic microsensors as screening tools for neuron specific enolase. RSC Adv 2014. [DOI: 10.1039/c4ra03804e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Stochastic microsensors based on nanostructured materials from the classes of porphyrins and cyclodextrins, and carbon onions were used for new screening tools of whole blood samples for neuron specific enolase, a lung cancer biomarker.
Collapse
Affiliation(s)
- Raluca-Ioana Stefan-van Staden
- Laboratory of Electrochemistry and PATLAB Bucharest
- National Institute of Research for Electrochemistry and Condensed Matter
- Bucharest, Romania
- Faculty of Applied Chemistry and Materials Science
- Politehnica University of Bucharest
| | - Ionela Raluca Comnea
- Laboratory of Electrochemistry and PATLAB Bucharest
- National Institute of Research for Electrochemistry and Condensed Matter
- Bucharest, Romania
- Faculty of Applied Chemistry and Materials Science
- Politehnica University of Bucharest
| | - Jacobus Frederick van Staden
- Laboratory of Electrochemistry and PATLAB Bucharest
- National Institute of Research for Electrochemistry and Condensed Matter
- Bucharest, Romania
| | - Camelia Stanciu Gavan
- Department of Surgery 4
- University of Medicine and Pharmacy “Carol Davila”
- Bucharest, Romania
| |
Collapse
|
13
|
Roberts WS, Davis F, Holmes JL, Collyer SD, Larcombe LD, Morgan SL, Higson SP. Detection and imaging the expression of the trans-membrane protein CD44 in RT112 cells by use of enzyme-labeled antibodies and SECM. Biosens Bioelectron 2013; 41:282-8. [DOI: 10.1016/j.bios.2012.08.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 08/13/2012] [Accepted: 08/16/2012] [Indexed: 11/29/2022]
|
14
|
Munteanu S, Gam-Derouich S, Flammier C, Fedala Y, Combellas C, Amiot F, Kanoufi F. Scanning electrochemical microscopy monitoring in microcantilever platforms. Anal Chem 2012; 84:7449-55. [PMID: 22876782 DOI: 10.1021/ac301502a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The deflection of cantilever systems may be performed by an indirect electrochemical method that consists of measuring the local cantilever activity and deflection in a feedback generation-collection configuration of the SECM. This is illustrated during the electrochemically assisted adsorption of Br onto a gold-coated cantilever, either in its pristine state or previously coated with a thin organic barrier. It is further extended to the adsorption of an antibody in a heterogeneous immunoassay at an allergen-coated microcantilever platform. In both reactions, the cantilever deflection is qualitatively detected from the SECM tip current measurement and a quantitative estimate is obtained through modeling. This electroanalytical strategy provides an alternative approach to standard optical detection. It can overcome some limitations of the optical method by allowing electrochemical characterization of nonconductive cantilevers and appropriate use for closed systems.
Collapse
Affiliation(s)
- Sorin Munteanu
- PECSA CNRS-UMR 7195, ESPCI ParisTech, Paris cedex 05, France
| | | | | | | | | | | | | |
Collapse
|
15
|
Holmes JL, Davis F, Collyer SD, Higson SPJ. A new application of scanning electrochemical microscopy for the label-free interrogation of antibody-antigen interactions: Part 2. Anal Chim Acta 2012; 741:1-8. [PMID: 22840698 DOI: 10.1016/j.aca.2012.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 06/19/2012] [Accepted: 07/03/2012] [Indexed: 11/30/2022]
Abstract
Within this paper we describe the use of scanning electrochemical microscopy (SECM) to fabricate a dotted array of biotinylated polyethyleneimine which was then used to immobilise first neutravidin and then a biotinylated antibody towards a relevant antigen of interest (PSA, NTx, ciprofloxacin). These antigens were selected both for their clinical relevance but also since they display a broad range of molecular weights, to determine whether the size of the antigen used effects the sensitivity of this approach. The SECM was then used to image the binding of both complementary and non-complementary antigens in a label-free assay. Imaging of the arrays before and following exposure to various concentrations of antigen in buffer showed clear evidence for specific binding of the complementary antigens to the antibody functionalised dots. Non-specific binding was also quantified by control experiments with other antigens. This demonstrated non-specific binding across the whole of the substrate, thereby confirming that specific binding does occur between the antibody and antigen of interest at the surface of the dots. The binding of ciprofloxacin was investigated both in simple buffer solution and in a more complex media, bovine milk.
Collapse
|
16
|
Roberts WS, Davis F, Collyer SD, Higson SPJ. Construction and interrogation of enzyme microarrays using scanning electrochemical microscopy – optimisation of adsorption and determination of enzymatic activity. Analyst 2011; 136:5287-93. [DOI: 10.1039/c1an15589j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|