1
|
Xiong H, Tan QG, Zhang J, Wang WX, Yuan X, Zhang W, Yan B. Physiologically based pharmacokinetic model revealed the distinct bio-transportation and turnover of arsenobetaine and arsenate in marine fish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 240:105991. [PMID: 34673466 DOI: 10.1016/j.aquatox.2021.105991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Arsenobetaine (AsB) is the major form of arsenic in marine fish; however, its biodynamics within the fish tissues is not well understood. This study simulated the biodynamics and biotransportation (absorption, distribution, and elimination) of dietary AsB and arsenate [As(V)] in the marine grouper Epinephelus fuscoguttatus, by constructing a physiologically based pharmacokinetic (PBPK) model. The transfer rates between different compartments (gill, intestine, liver, heart, kidney, and muscle) and blood were modeled during exposure (14 d) and depuration (20 d). The model showed that AsB had a weak ability to cross the intestinal membranes and circulated slowly in the blood. The newly AsB absorbed from the blood did not enter the hepatointestinal circulation for elimination, but was effectively distributed in liver. Thereafter, it was slowly absorbed and finally stored in the muscle, the most important organ for AsB deposition, at a constant rate of 63.5 d-1. In contrast, As(V) displayed a dynamic behavior, including rapid crossing through the intestinal membranes, quick circulation in the blood and transportation to other tissues, and elimination. Biodynamics coupled with biotransformation illustrated, for the first time, the unique strategies of dietary AsB that passed slowly through the fish intestine with the highest deposition rate in the muscle, thereby contributing to the high AsB bioaccumulation in the muscle tissue of marine fish. CAPSULE: AsB displayed a weaker ability to cross the intestine membranes, slowly absorbed and finally stored in muscle, whereas As(V) displayed rapid crossing the intestine membranes, quick transportation, and elimination.
Collapse
Affiliation(s)
- Haiyan Xiong
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Qiao-Guo Tan
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, College of Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Jichao Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xiangzhou Yuan
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Wei Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China.
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
2
|
Vicente-Martínez Y, Caravaca M, Soto-Meca A. Non-chromatographic speciation of arsenic by successive dispersive liquid-liquid microextraction and in situ formation of an ionic liquid in water samples. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
3
|
Yang XA, Shi MT, Leng D, Zhang WB. Fabrication of a porous hydrangea-like Fe3O4@MnO2 composite for ultra-trace arsenic preconcentration and determination. Talanta 2018; 189:55-64. [DOI: 10.1016/j.talanta.2018.06.065] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 06/11/2018] [Accepted: 06/20/2018] [Indexed: 11/30/2022]
|
4
|
López-García I, Marín-Hernández JJ, Hernández-Córdoba M. Magnetic ferrite particles combined with electrothermal atomic absorption spectrometry for the speciation of low concentrations of arsenic. Talanta 2018; 181:6-12. [DOI: 10.1016/j.talanta.2017.12.086] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/21/2017] [Accepted: 12/27/2017] [Indexed: 02/03/2023]
|
5
|
Ruiz-de-Cenzano M, Rochina-Marco A, Cervera ML, de la Guardia M. Evaluation of the Content of Antimony, Arsenic, Bismuth, Selenium, Tellurium and Their Inorganic Forms in Commercially Baby Foods. Biol Trace Elem Res 2017; 180:355-365. [PMID: 28401398 DOI: 10.1007/s12011-017-1018-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 04/04/2017] [Indexed: 10/19/2022]
Abstract
Baby foods, from the Spanish market and prepared from meat, fish, vegetables, cereals, legumes, and fruits, were analyzed to obtain the concentration of antimony (Sb), arsenic (As), bismuth (Bi), and tellurium (Te) as toxic elements and selenium (Se) as essential element. An analytical procedure was employed based on atomic fluorescence spectroscopy which allowed to obtain accurate data at low levels of concentration. Values of 14 commercial samples, expressed in nanograms per gram fresh weight, ranged for Sb 0.66-6.9, As 4.5-242, Te 1.35-2.94, Bi 2.18-4.79, and Se 5.4-109. Additionally, speciation studies were performed based on data from a non-chromatographic screening method. It was concluded that tellurium and bismuth were mainly present as inorganic forms and selenium as organic form, and antimony and arsenic species depend on the ingredients of each baby food. Risk assessment considerations were made by comparing dietary intake of the aforementioned elements through the consumption of one baby food portion a day and recommended or tolerable guideline values.
Collapse
Affiliation(s)
- M Ruiz-de-Cenzano
- Department of Analytical Chemistry, University of Valencia, 50 th Dr. Moliner St., 46100, Burjassot, Valencia, Spain
| | - A Rochina-Marco
- Department of Analytical Chemistry, University of Valencia, 50 th Dr. Moliner St., 46100, Burjassot, Valencia, Spain
| | - M L Cervera
- Department of Analytical Chemistry, University of Valencia, 50 th Dr. Moliner St., 46100, Burjassot, Valencia, Spain.
| | - M de la Guardia
- Department of Analytical Chemistry, University of Valencia, 50 th Dr. Moliner St., 46100, Burjassot, Valencia, Spain
| |
Collapse
|
6
|
Llorente-Mirandes T, Rubio R, López-Sánchez JF. Inorganic Arsenic Determination in Food: A Review of Analytical Proposals and Quality Assessment Over the Last Six Years. APPLIED SPECTROSCOPY 2017; 71:25-69. [PMID: 28033722 DOI: 10.1177/0003702816652374] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Here we review recent developments in analytical proposals for the assessment of inorganic arsenic (iAs) content in food products. Interest in the determination of iAs in products for human consumption such as food commodities, wine, and seaweed among others is fueled by the wide recognition of its toxic effects on humans, even at low concentrations. Currently, the need for robust and reliable analytical methods is recognized by various international safety and health agencies, and by organizations in charge of establishing acceptable tolerance levels of iAs in food. This review summarizes the state of the art of analytical methods while highlighting tools for the assessment of quality assessment of the results, such as the production and evaluation of certified reference materials (CRMs) and the availability of specific proficiency testing (PT) programmes. Because the number of studies dedicated to the subject of this review has increased considerably over recent years, the sources consulted and cited here are limited to those from 2010 to the end of 2015.
Collapse
Affiliation(s)
| | - Roser Rubio
- Department of Analytical Chemistry, University of Barcelona, Spain
| | | |
Collapse
|
7
|
de la Calle I, Pena-Pereira F, Lavilla I, Bendicho C. Liquid-phase microextraction combined with graphite furnace atomic absorption spectrometry: A review. Anal Chim Acta 2016; 936:12-39. [DOI: 10.1016/j.aca.2016.06.046] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/26/2016] [Accepted: 06/28/2016] [Indexed: 12/19/2022]
|
8
|
Abstract
Arsenic is an element of concern given its toxicological significance, even at low concentrations. Food is a potential route of exposure to inorganic arsenic and in this regard arsenic in rice is associated with soil contamination, fertilizer application, and the use of arsenic-containing irrigation water. Therefore, there is a need to investigate the regional rice crops with a view to future discussions on the need for possible regulatory measures. Several studies have reported high concentrations of arsenic in rice grown in soils irrigated with contaminated water; however, procedures used, including sample pretreatment and preconcentration steps, have to be followed to ensure sensitivity, accuracy, and reproducibility. Arsenic is a difficult element to measure in complex matrices, such as foods, because the matrix must be destroyed at an elevated temperature without the loss of the analyte or contamination. This review summarizes the major methods for the determination of arsenic in rice samples. The main purpose of this review is to provide an update on the recent literature concerning the strategies for the determination of arsenic and to critically discuss their advantages and weaknesses. These difficulties are described along with recent developments aimed at overcoming these potential issues.
Collapse
|
9
|
López-García I, Briceño M, Vicente-Martínez Y, Hernández-Córdoba M. Rapid screening of water soluble arsenic species in edible oils using dispersive liquid–liquid microextraction. Food Chem 2015; 167:396-401. [DOI: 10.1016/j.foodchem.2014.06.121] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 04/20/2014] [Accepted: 06/28/2014] [Indexed: 11/29/2022]
|
10
|
Interface of on line coupling capillary electrophoresis with hydride generation electrothermal atomic absorption spectrometry and its application to arsenic speciation in sediment. Talanta 2013; 109:128-32. [DOI: 10.1016/j.talanta.2013.01.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/25/2013] [Accepted: 01/30/2013] [Indexed: 11/23/2022]
|
11
|
Anawar HM. Arsenic speciation in environmental samples by hydride generation and electrothermal atomic absorption spectrometry. Talanta 2012; 88:30-42. [DOI: 10.1016/j.talanta.2011.11.068] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/22/2011] [Accepted: 11/23/2011] [Indexed: 10/14/2022]
|