1
|
Mondal SK, Aina P, Rownaghi AA, Rezaei F. Cooperative and Bifunctional Adsorbent-Catalyst Materials for In-situ VOCs Capture-Conversion. Chempluschem 2024; 89:e202300419. [PMID: 38116915 DOI: 10.1002/cplu.202300419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
Volatile organic compounds (VOCs) are gases that are emitted into the air from products or processes and are major components of air pollution that significantly deteriorate air quality and seriously affect human health. Different types of metals, metal oxides, mixed-metal oxides, polymers, activated carbons, zeolites, metal-organic frameworks (MOFs) and mixed-matrixed materials have been developed and used as adsorbent or catalyst for diversified VOCs detection, removal, and destruction. In this comprehensive review, we first discuss the general classification of VOCs removal materials and processes and outline the historical development of bifunctional and cooperative adsorbent-catalyst materials for the removal of VOCs from air. Subsequently, particular attention is devoted to design of strategies for cooperative adsorbent-catalyst materials, along with detailed discussions on the latest advances on these bifunctional materials, reaction mechanisms, long-term stability, and regeneration for VOCs removal processes. Finally, challenges and future opportunities for the environmental implementation of these bifunctional materials are identified and outlined with the intent of providing insightful guidance on the design and fabrication of more efficient materials and systems for VOCs removal in the future.
Collapse
Affiliation(s)
- Sukanta K Mondal
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, MO 65409-1230, United States
| | - Peter Aina
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, MO 65409-1230, United States
- Department of Chemical, Environmental and Materials Engineering, University of Miami, Miami, FL 33124, United States
| | - Ali A Rownaghi
- National Energy Technology Laboratory, United States Department of Energy, Pittsburgh, PA 15236, United States
| | - Fateme Rezaei
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, MO 65409-1230, United States
- Department of Chemical, Environmental and Materials Engineering, University of Miami, Miami, FL 33124, United States
| |
Collapse
|
2
|
Pinto FGHS, Caldeira VPDS, Villarroel-Rocha J, Sapag K, Pergher SBC, Santos AGD. Al/SBA-15 Mesoporous Material: A Study of pH Influence over Aluminum Insertion into the Framework. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:208. [PMID: 38251171 PMCID: PMC10820022 DOI: 10.3390/nano14020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024]
Abstract
Herein, ordered mesoporous materials like SBA-15 and Al/SBA-15 were prepared using the pH adjustment method. Thus, these materials were developed in different pH of synthesis, from the pH adjustment method using a KCl/HCl solution and varying the Si/Al molar ratio (5, 25, and 75). All the ordered mesoporous materials were characterized by FRX, 27Al NMR, SEM, XRD, N2 adsorption/desorption, and CO2 adsorption. From the applied method, it was possible to obtain SBA-15 and Al/SBA-15 with high mesoscopic ordering based on the XRD patterns, independent of the pH employed. From the chemical composition, the insertion of higher amounts of Al into the synthesis caused a progressive improvement in the structural and textural properties of the ordered mesoporous materials. Thus, the chosen synthesis conditions can lead to different aluminum coordination (tetrahedral and octahedral), which gives these materials a greater potential to be applied. The presence of Al in high amounts provides material with the ability to form micropores. Finally, the proposed method proved to be innovative; low-cost; less aggressive to the environment, with efficient insertion of aluminum in the framework of SBA-15 mesoporous material; and practical, based on only one step.
Collapse
Affiliation(s)
- Francisco Gustavo Hayala Silveira Pinto
- Chemistry Department, State University of Rio Grande do Norte, Mossoró 59610-210, RN, Brazil; (F.G.H.S.P.); (V.P.d.S.C.); (A.G.D.S.)
- LABPEMOL, Institute of Chemistry, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | | | - Jhonny Villarroel-Rocha
- Porous Solids Laboratory, Institute of Applied Physics, CONICET, National University of San Luis, Ejército de los Andes 950, San Luis 5700, Argentina; (J.V.-R.); (K.S.)
| | - Karim Sapag
- Porous Solids Laboratory, Institute of Applied Physics, CONICET, National University of San Luis, Ejército de los Andes 950, San Luis 5700, Argentina; (J.V.-R.); (K.S.)
| | | | - Anne Gabriella Dias Santos
- Chemistry Department, State University of Rio Grande do Norte, Mossoró 59610-210, RN, Brazil; (F.G.H.S.P.); (V.P.d.S.C.); (A.G.D.S.)
| |
Collapse
|
3
|
Jermjun K, Khumho R, Thongoiam M, Yousatit S, Yokoi T, Ngamcharussrivichai C, Nuntang S. Natural Rubber/Hexagonal Mesoporous Silica Nanocomposites as Efficient Adsorbents for the Selective Adsorption of (-)-Epigallocatechin Gallate and Caffeine from Green Tea. Molecules 2023; 28:6019. [PMID: 37630270 PMCID: PMC10458317 DOI: 10.3390/molecules28166019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
(-)-Epigallocatechin gallate (EGCG) is a bioactive component of green tea that provides many health benefits. However, excessive intake of green tea may cause adverse effects of caffeine (CAF) since green tea (30-50 mg) has half the CAF content of coffee (80-100 mg). In this work, for enhancing the health benefits of green tea, natural rubber/hexagonal mesoporous silica (NR/HMS) nanocomposites with tunable textural properties were synthesized using different amine template sizes and applied as selective adsorbents to separate EGCG and CAF from green tea. The resulting adsorbents exhibited a wormhole-like silica framework, high specific surface area (528-578 m2 g-1), large pore volume (0.76-1.45 cm3 g-1), and hydrophobicity. The NR/HMS materials adsorbed EGCG more than CAF; the selectivity coefficient of EGCG adsorption was 3.6 times that of CAF adsorption. The EGCG adsorption capacity of the NR/HMS series was correlated with their pore size and surface hydrophobicity. Adsorption behavior was well described by a pseudo-second-order kinetic model, indicating that adsorption involved H-bonding interactions between the silanol groups of the mesoporous silica surfaces and the hydroxyl groups of EGCG and the carbonyl group of CAF. As for desorption, EGCG was more easily removed than CAF from the NR/HMS surface using an aqueous solution of ethanol. Moreover, the NR/HMS materials could be reused for EGCG adsorption at least three times. The results suggest the potential use of NR/HMS nanocomposites as selective adsorbents for the enrichment of EGCG in green tea. In addition, it could be applied as an adsorbent in the filter to reduce the CAF content in green tea by up to 81.92%.
Collapse
Affiliation(s)
- Kamolwan Jermjun
- Industrial Chemistry Innovation Program, Faculty of Science, Maejo University, Chiang Mai 50290, Thailand;
| | - Rujeeluk Khumho
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (R.K.); (M.T.); (S.Y.); (C.N.)
| | - Mookarin Thongoiam
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (R.K.); (M.T.); (S.Y.); (C.N.)
| | - Satit Yousatit
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (R.K.); (M.T.); (S.Y.); (C.N.)
| | - Toshiyuki Yokoi
- Chemical Resources Laboratory, Tokyo Institute of Technology, Yokohama 226-8503, Japan;
| | - Chawalit Ngamcharussrivichai
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (R.K.); (M.T.); (S.Y.); (C.N.)
- Center of Excellence on Petrochemical and Materials Technology (PETROMAT), Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sakdinun Nuntang
- Industrial Chemistry Innovation Program, Faculty of Science, Maejo University, Chiang Mai 50290, Thailand;
| |
Collapse
|
4
|
Kerdmuanglek F, Chomtong T, Boonsith S, Chutimasakul T, Iemsam-Arng J, Thepwatee S. Non-ionic surfactant-assisted controlled release of oxyresveratrol on dendritic fibrous silica for topical applications. J Colloid Interface Sci 2023; 646:342-353. [PMID: 37201462 DOI: 10.1016/j.jcis.2023.05.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/21/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
We present a simple and eco-friendly method for controlled drug release using a surfactant-assisted method. Oxyresveratrol (ORES) was co-loaded with a non-ionic surfactant onto KCC-1, a dendritic fibrous silica, using an ethanol evaporation technique. The carriers were characterized using FE-SEM, TEM, XRD, N2 adsorption-desorption, FTIR, and Raman spectroscopy, and the loading and encapsulation efficiencies were assessed using TGA and DSC techniques. Contact angle and zeta potential were used to determine the surfactant arrangement and the particle charges. To investigate the effects of different surfactants (Tween 20, Tween 40, Tween 80, Tween 85, and Span 80) on ORES release, we conducted experiments under different pH and temperature conditions. Results showed that the types of surfactants, drug loading content, pH, and temperature significantly affected the drug release profile. The percentage of drug loading efficiency of the carriers was in the range of 80 %-100 %, and the release of ORES was in the order of M/KCC-1 > M/K/S80 > M/K/T40 > M/K/T20 > MK/T80 > M/K/T85 at 24 h. Furthermore, the carriers provided excellent protection for ORES against UVA and maintained its antioxidant activity. KCC-1 and Span 80 enhanced the cytotoxicity to HaCaT cells, while Tween 80 suppressed the cytotoxicity.
Collapse
Affiliation(s)
- Fonkaeo Kerdmuanglek
- Department of Industrial Chemistry, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok 10800, Thailand.
| | - Thitikorn Chomtong
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand.
| | - Suthida Boonsith
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand.
| | - Threeraphat Chutimasakul
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology, Nakhon Nayok 26120, Thailand.
| | - Jayanant Iemsam-Arng
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand.
| | - Sukanya Thepwatee
- Department of Industrial Chemistry, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok 10800, Thailand; Research Group of Bioactive Product Design, Cosmetics and Health Care Innovation (BioCos), King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok 10800, Thailand.
| |
Collapse
|
5
|
Karagecili H, İzol E, Kirecci E, Gulcin İ. Determination of Antioxidant, Anti-Alzheimer, Antidiabetic, Antiglaucoma and Antimicrobial Effects of Zivzik Pomegran-ate (Punica granatum)—A Chemical Profiling by LC-MS/MS). Life (Basel) 2023; 13:life13030735. [PMID: 36983890 PMCID: PMC10058309 DOI: 10.3390/life13030735] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/23/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Zivzik pomegranate (Punica granatum) has recently sparked considerable interest due to its nutritional and antioxidant properties. To evaluate the antioxidant capacities of P. granatum juice, ethanol (EEZP), and water (WEZP) extracts from peel and seed, the antioxidant methods of 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid radical (ABTS•+) scavenging, 1,1-diphenyl-2-picrylhydrazyl free radical (DPPH•) scavenging, Fe3+-2,4,6-tris(2-pyridyl)-S-triazine (TPTZ) reducing, Fe3+ reducing, and Cu2+ reducing methods were used. The antioxidant capacities of samples were compared with the most commonly used synthetic antioxidants, i.e., BHA, BHT, α-tocopherol, and Trolox. In terms of setting an example, the IC50 values of EEZP for ABTS•+ and DPPH• scavenging activities were found to be lower than standards, at 5.9 and 16.1 μg/mL, respectively. The phenolic and flavonoid contents in EEZP peel were 59.7 mg GAE/g and 88.0 mg QE/g, respectively. Inhibition of α-glycosidase, α-amylase, acetylcholinesterase, and human carbonic anhydrase II (hCA II) enzymes was also investigated. EEZP demonstrated IC50 values of 7.3 μg/mL against α-glycosidase, 317.7 μg/mL against α-amylase, 19.7 μg/mL against acetylcholinesterase (AChE), and 106.3 μg/mL against CA II enzymes. A total of 53 phenolic compounds were scanned, and 30 compounds were determined using LC-MS/MS. E. coli and S. aureus bacteria were resistant to all four antibiotics used as standards in hospitals.
Collapse
Affiliation(s)
- Hasan Karagecili
- Department of Nursing, Faculty of Health Sciences, Siirt University, 56100 Siirt, Turkey
- Correspondence: (H.K.); (İ.G.); Tel.: +90-4422314375 (İ.G.)
| | - Ebubekir İzol
- Bee and Natural Products R & D and P & D Application and Research Center, Bingöl University, 12000 Bingol, Turkey
- Department of Chemistry, Faculty of Science, Ataturk University, 25240 Erzurum, Turkey
| | - Ekrem Kirecci
- Department of Basic Medical Sciences, Faculty of Medicine, Microbiology, Kahramanmaraş Sütçü İmam University, 46050 Kahramanmaras, Turkey
| | - İlhami Gulcin
- Department of Chemistry, Faculty of Science, Ataturk University, 25240 Erzurum, Turkey
- Correspondence: (H.K.); (İ.G.); Tel.: +90-4422314375 (İ.G.)
| |
Collapse
|
6
|
Inorganic Nanocarriers: Surface Functionalization, Delivery Utility for Natural Therapeutics - A Review. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING 2022. [DOI: 10.4028/p-96l963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inorganic nanocarriers for a decade have increased interest in nanotechnology research platform as versatile drug delivery materials. The utility of the inorganic nanocarriers for delivery of therapeutic agents is attributed to their unique properties such as magnetic, photocatalytic nature and the ability to exhibit surface functionalization. Herein, we review the surface functionalization and delivery utility for natural therapeutics exhibited by inorganic nanocarriers mostly focusing on their magnetic, photocatalytic and the plasmonic properties. The review also highlights the influence of electronic property of inorganic surface on functionalization of ligand based natural therapeutic agents. Improvement of stability and therapeutic potential by formation of nanocomposites are detailed. Furthermore, we suggest improvement strategies for stability and toxicity reduction of inorganic nanoparticles that would potentially make them useful for clinical application as therapeutic delivery tools for treatment of various diseases.
Collapse
|
7
|
Szewczyk A, Brzezińska-Rojek J, Ośko J, Majda D, Prokopowicz M, Grembecka M. Antioxidant-Loaded Mesoporous Silica-An Evaluation of the Physicochemical Properties. Antioxidants (Basel) 2022; 11:antiox11071417. [PMID: 35883907 PMCID: PMC9312088 DOI: 10.3390/antiox11071417] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 02/05/2023] Open
Abstract
The dangerous effects of oxidative stress can be alleviated by antioxidants—substances with the ability to prevent damage caused by reactive oxygen species. The adsorption of antioxidants onto nanocarriers is a well-known method that might protect them against rough environ-mental conditions. The aim of this study was to investigate the adsorption and desorption of gallic acid (GA), protocatechuic acid (PCA), chlorogenic acid (CGA), and 4-hydroxybenzoic acid (4-HBA) using commercially available mesoporous silica materials (MSMs), both parent (i.e., SBA-15 and MCM-41) and surface functionalized (i.e., SBA-NH2 and SBA-SH). The MSMs loaded with active compounds were characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), thermoporometry (TPM), and powder X-ray diffraction (XRD). High-performance liquid chromatography (HPLC-CAD) was used to evaluate the performance of the adsorption and desorption processes. The antioxidant potential was investigated using the Folin−Ciocalteu (FC) spectrophotometric method. Among the studied MSMs, the highest adsorption of GA was observed for amine-modified SBA-15 mesoporous silica. The adsorption capacity of SBA-NH2 increased in the order of PCA, 4-HBA < GA < CGA. Different desorption effectiveness levels of the adsorbed compounds were observed with the antioxidant capacity preserved for all investigated compounds.
Collapse
Affiliation(s)
- Adrian Szewczyk
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Gen. J. Hallera Avenue 107, 80-416 Gdańsk, Poland;
| | - Joanna Brzezińska-Rojek
- Department of Bromatology, Faculty of Pharmacy, Medical University of Gdańsk, Gen. J. Hallera Avenue 107, 80-416 Gdańsk, Poland; (J.B.-R.); (J.O.)
| | - Justyna Ośko
- Department of Bromatology, Faculty of Pharmacy, Medical University of Gdańsk, Gen. J. Hallera Avenue 107, 80-416 Gdańsk, Poland; (J.B.-R.); (J.O.)
| | - Dorota Majda
- Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Kraków, Poland;
| | - Magdalena Prokopowicz
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Gen. J. Hallera Avenue 107, 80-416 Gdańsk, Poland;
- Correspondence: (M.P.); (M.G.)
| | - Małgorzata Grembecka
- Department of Bromatology, Faculty of Pharmacy, Medical University of Gdańsk, Gen. J. Hallera Avenue 107, 80-416 Gdańsk, Poland; (J.B.-R.); (J.O.)
- Correspondence: (M.P.); (M.G.)
| |
Collapse
|
8
|
Resveratrol Encapsulation and Release from Pristine and Functionalized Mesoporous Silica Carriers. Pharmaceutics 2022; 14:pharmaceutics14010203. [PMID: 35057098 PMCID: PMC8780957 DOI: 10.3390/pharmaceutics14010203] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/08/2022] [Accepted: 01/13/2022] [Indexed: 02/06/2023] Open
Abstract
Resveratrol, a naturally occurring polyphenol, has attracted significant attention due to its antioxidant, cardioprotective and anticancer potential. However, its low aqueous solubility limits resveratrol bioavailability and use. In this work, different mesoporous silica matrices were used to encapsulate the polyphenol and to increase its dissolution rate. Pristine MCM-41, MCM-48, SBA-15, SBA-16, FDU-12 and MCF silica were obtained. The influence of SBA-15 functionalized with aminopropyl, isocyanate, phenyl, mercaptopropyl, and propionic acid moieties on resveratrol loading and release profiles was also assessed. The cytotoxic effects were evaluated for mesoporous carriers and resveratrol-loaded samples against human lung cancer (A549), breast cancer (MDA-MB-231) and human skin fibroblast (HSF) cell lines. The effect on apoptosis and cell cycle were assayed for selected resveratrol-loaded carriers. The polyphenol molecules are encapsulated only inside the mesopores, mostly in amorphous state. All materials containing either pristine or functionalized silica carriers increased polyphenol dissolution rate. The influence of the physico-chemical properties of the mesoporous carriers and resveratrol–loaded supports on the kinetic parameters was identified. Resv@SBA-15-SH and Resv@SBA-15-NCO samples exhibited the highest anticancer effect against A549 cells (IC50 values were 26.06 and 36.5 µg/mL, respectively) and against MDA-MB-231 (IC50 values were 35.56 and 19.30 µg/mL, respectively), which highlights their potential use against cancer.
Collapse
|
9
|
Raschip IE, Fifere N, Varganici CD, Dinu MV. Development of antioxidant and antimicrobial xanthan-based cryogels with tuned porous morphology and controlled swelling features. Int J Biol Macromol 2020; 156:608-620. [DOI: 10.1016/j.ijbiomac.2020.04.086] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/02/2020] [Accepted: 04/12/2020] [Indexed: 12/20/2022]
|
10
|
The Effect of SBA-15 Surface Modification on the Process of 18β-Glycyrrhetinic Acid Adsorption: Modeling of Experimental Adsorption Isotherm Data. MATERIALS 2019; 12:ma12223671. [PMID: 31703371 PMCID: PMC6888531 DOI: 10.3390/ma12223671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 12/22/2022]
Abstract
This study aimed at the adsorption of 18β-glycyrrhetinic acid (18β-GA), a pentacyclic triterpenoid derivative of oleanane type, onto functionalized mesoporous SBA-15 silica and non-porous silica (Aerosil®) as the reference adsorbent. Although 18β-GA possesses various beneficial pharmacological properties including antitumor, anti-inflammatory, and antioxidant activity, it occurs is small amounts in plant materials. Thus, the efficient methods of this bioactive compound enrichment from vegetable raw materials are currently studied. Siliceous adsorbents were functionalized while using various alkoxysilane derivatives, such as (3-aminopropyl)trimethoxysilane (APTMS), [3-(methylamino)propyl]trimethoxysilane (MAPTMS), (N,N-dimethylaminopropyl)trimethoxysilane (DMAPTMS), and [3-(2-aminothylamino)propyl] trimethoxysilane (AEAPTMS). The effect of silica surface modification with agents differing in the structure and the order of amine groups on the adsorption capacity of the adsorbent and adsorption efficiency were thoroughly examined. The equilibrium adsorption data were analyzed while using the Langmuir, Freundlich, Redlich-Peterson, Temkin, Dubinin-Radushkevich, and Dubinin-Astakhov isotherms. Both linear regression and nonlinear fitting analysis were employed in order to find the best-fitted model. The adsorption isotherms of 18β-GA onto silicas functionalized with APTMS, MAPTMS, and AEAPTMS indicate the Langmuir-type adsorption, whereas sorbents modified with DMAPTMS show the constant distribution of the adsorbate between the adsorbent and the solution regardless of silica type. The Dubinin-Astakhov, Dubinin-Radushkevich, and Redlich-Peterson equations described the best the process of 18β-GA adsorption onto SBA-15 and Aerosil® silicas that were functionalized with APTMS, MAPTMS, and AEAPTMS, regardless of the method that was used for the estimation of isotherm parameters. Based on nonlinear fitting analysis (Dubinin-Astakhov model), it can be concluded that SBA-15 sorbent that was modified with APTMS, MAPTMS, and AEAPTMS is characterized by twice the adsorption capacity (202.8–237.3 mg/g) as compared to functionalized non-porous silica (118.2–144.2 mg/g).
Collapse
|
11
|
El-Desoky H, Abdel-Galeil M, Khalifa A. Mesoporous SiO2 (SBA-15) modified graphite electrode as highly sensitive sensor for ultra trace level determination of Dapoxetine hydrochloride drug in human plasma. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.05.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Influence of bridged monomer on porosity and sorption properties of mesoporous silicas functionalized with diethylenetriamine groups. ADSORPTION 2019. [DOI: 10.1007/s10450-019-00047-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Fernandez-Bats I, Di Pierro P, Villalonga-Santana R, Garcia-Almendarez B, Porta R. Bioactive mesoporous silica nanocomposite films obtained from native and transglutaminase-crosslinked bitter vetch proteins. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.03.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
14
|
Merging vibrational spectroscopic data for wine classification according to the geographic origin. Food Res Int 2017; 102:504-510. [PMID: 29195978 DOI: 10.1016/j.foodres.2017.09.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/06/2017] [Accepted: 09/08/2017] [Indexed: 01/20/2023]
Abstract
The wine making procedure is no longer a secret and it is nowadays well described and repeated around the world. Nevertheless, wines present unique features, strongly associated with their geographic origin. Classification systems were developed to catalogue wines according to the provenance, and are currently established by official authorities in order to ensure wine authenticity. The use of near-infrared (NIR), mid-infrared (MIR) and Raman spectroscopy for tracing the origin of wine samples, has been reported with different levels of success. This work evaluated and compared the performance of these techniques, as well as their joint use, in terms of geographic origin classification. NIR, MIR and Raman spectra of wine samples belonging to four Portuguese wine regions (Vinhos Verdes, Lisboa, Açores and Távora-Varosa) were analyzed by partial least squares discriminant analysis (PLS-DA). Results revealed the better suitability of MIR spectroscopy (87.7% of correct predictions) over NIR (60.4%) and Raman (60.8%). The joint use of spectral sets did not improve the predictive ability of the models. The best models were achieved by combining MIR and NIR spectra resulting in 86.7% of correct predictions. Multiblock partial least squares (MB-PLS) models were developed to further explore the combination of spectral data. Although these models did not improve the percentage of correct predictions, they demonstrated the higher contribution of MIR spectroscopic data, in the development of the models.
Collapse
|
15
|
da Silva LF, Guerra CC, Klein D, Bergold AM. Solid cation exchange phase to remove interfering anthocyanins in the analysis of other bioactive phenols in red wine. Food Chem 2017; 227:158-165. [PMID: 28274416 DOI: 10.1016/j.foodchem.2017.01.087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 01/12/2017] [Accepted: 01/16/2017] [Indexed: 11/15/2022]
Abstract
Bioactive phenols (BPs) are often targets in red wine analysis. However, other compounds interfere in the liquid chromatography methods used for this analysis. Here, purification procedures were tested to eliminate anthocyanin interference during the determination of 19 red-wine BPs. Liquid chromatography, coupled to a diode array detector (HPLC-DAD) and a mass spectrometer (UPLC-MS), was used to compare the direct injection of the samples with solid-phase extractions: reversed-phase (C18) and strong cation-exchange (SCX). The HPLC-DAD method revealed that, out of 13BPs, only six are selectively analyzed with or without C18 treatment, whereas SCX enabled the detection of all BPs. The recovery with SCX was above 86.6% for eight BPs. Moreover, UPLC-MS demonstrated the potential of SCX sample preparation for the determination of 19BPs. The developed procedure may be extended to the analysis of other red wine molecules or to other analytical methods where anthocyanins may interfere.
Collapse
Affiliation(s)
- Letícia Flores da Silva
- LACEM - Laboratório de Cromatografia e Espectrometria de Massas, Embrapa Uva e Vinho, Rua Livramento, 515, CEP 95701-008 Bento Gonçalves, RS, Brazil; Faculdade de Farmácia, Universidade de Caxias do Sul, Rua Francisco Getúlio Vargas, 1130, CEP 95070-560, Caxias do Sul, RS, Brazil.
| | - Celito Crivellaro Guerra
- LACEM - Laboratório de Cromatografia e Espectrometria de Massas, Embrapa Uva e Vinho, Rua Livramento, 515, CEP 95701-008 Bento Gonçalves, RS, Brazil
| | - Diandra Klein
- LACEM - Laboratório de Cromatografia e Espectrometria de Massas, Embrapa Uva e Vinho, Rua Livramento, 515, CEP 95701-008 Bento Gonçalves, RS, Brazil; Faculdade de Farmácia, Universidade de Caxias do Sul, Rua Francisco Getúlio Vargas, 1130, CEP 95070-560, Caxias do Sul, RS, Brazil
| | - Ana Maria Bergold
- Laboratório de Química Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, CEP 90610-000, Porto Alegre, RS, Brazil
| |
Collapse
|
16
|
Amine-modified mesoporous silica for quantitative adsorption and release of hydroxytyrosol and other phenolic compounds from olive mill wastewater. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2016.10.053] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Verification of the selectivity of a liquid chromatography method for determination of stilbenes and flavonols in red wines by mass spectrometry. CHEMICAL PAPERS 2016. [DOI: 10.1007/s11696-016-0066-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Ruiz-Rico M, Daubenschüz H, Pérez-Esteve É, Marcos MD, Amorós P, Martínez-Máñez R, Barat JM. Protective effect of mesoporous silica particles on encapsulated folates. Eur J Pharm Biopharm 2016; 105:9-17. [DOI: 10.1016/j.ejpb.2016.05.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/06/2016] [Accepted: 05/18/2016] [Indexed: 02/08/2023]
|
19
|
Moritz M, Geszke-Moritz M. Amine-modified SBA-15 and MCF mesoporous molecular sieves as promising sorbents for natural antioxidant. Modeling of caffeic acid adsorption. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 61:411-21. [DOI: 10.1016/j.msec.2015.12.093] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/22/2015] [Accepted: 12/28/2015] [Indexed: 12/13/2022]
|
20
|
Polyphenolic Profile of Red Wines for the Discrimination of Controlled Designation of Origin. FOOD ANAL METHOD 2015. [DOI: 10.1007/s12161-015-0193-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Moritz M, Geszke-Moritz M. Mesoporous materials as multifunctional tools in biosciences: Principles and applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 49:114-151. [DOI: 10.1016/j.msec.2014.12.079] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/09/2014] [Indexed: 12/17/2022]
|