1
|
Chatani T, Shiraishi S, Miyazako H, Onoe H, Hori Y. L-2L ladder digital-to-analogue converter for dynamics generation of chemical concentrations. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230085. [PMID: 37090965 PMCID: PMC10113815 DOI: 10.1098/rsos.230085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/09/2023] [Indexed: 05/03/2023]
Abstract
Cellular response to dynamic chemical stimulation encodes rich information about the underlying reaction pathways and their kinetics. Microfluidic chemical stimulators play a key role in generating dynamic concentration waveforms by mixing several aqueous solutions. In this article, we propose a multi-layer microfluidic chemical stimulator capable of modulating chemical concentrations by a simple binary logic based on the electronic-hydraulic analogy of electronic R-2R ladder circuits. The proposed device, which we call L-2L ladder digital-to-analogue converter (DAC), allows us to systematically modulate 2 n levels of concentrations from single sources of solution and solvent by a single operation of 2n membrane valves, which contrasts with existing devices that require complex channel geometry with multiple input sources and valve operations. We fabricated the L-2L ladder DAC with n = 3 bit resolution and verified the concept by comparing the generated waveforms with computational simulations. The response time of the proposed DAC was within the order of seconds because of its simple operation logic of membrane valves. Furthermore, detailed analysis of the waveforms revealed that the transient concentration can be systematically predicted by a simple addition of the transient waveforms of 2n = 6 base patterns, enabling facile optimization of the channel geometry to fine-tune the output waveforms.
Collapse
Affiliation(s)
- Tomohito Chatani
- Department of Applied Physics and Physico-informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Suguru Shiraishi
- Department of Applied Physics and Physico-informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Hiroki Miyazako
- Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroaki Onoe
- Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Yutaka Hori
- Department of Applied Physics and Physico-informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
2
|
Chen P, Li S, Guo Y, Zeng X, Liu BF. A review on microfluidics manipulation of the extracellular chemical microenvironment and its emerging application to cell analysis. Anal Chim Acta 2020; 1125:94-113. [PMID: 32674786 DOI: 10.1016/j.aca.2020.05.065] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/22/2022]
Abstract
Spatiotemporal manipulation of extracellular chemical environments with simultaneous monitoring of cellular responses plays an essential role in exploring fundamental biological processes and expands our understanding of underlying mechanisms. Despite the rapid progress and promising successes in manipulation strategies, many challenges remain due to the small size of cells and the rapid diffusion of chemical molecules. Fortunately, emerging microfluidic technology has become a powerful approach for precisely controlling the extracellular chemical microenvironment, which benefits from its integration capacity, automation, and high-throughput capability, as well as its high resolution down to submicron. Here, we summarize recent advances in microfluidics manipulation of the extracellular chemical microenvironment, including the following aspects: i) Spatial manipulation of chemical microenvironments realized by convection flow-, diffusion-, and droplet-based microfluidics, and surface chemical modification; ii) Temporal manipulation of chemical microenvironments enabled by flow switching/shifting, moving/flowing cells across laminar flows, integrated microvalves/pumps, and droplet manipulation; iii) Spatiotemporal manipulation of chemical microenvironments implemented by a coupling strategy and open-space microfluidics; and iv) High-throughput manipulation of chemical microenvironments. Finally, we briefly present typical applications of the above-mentioned technical advances in cell-based analyses including cell migration, cell signaling, cell differentiation, multicellular analysis, and drug screening. We further discuss the future improvement of microfluidics manipulation of extracellular chemical microenvironments to fulfill the needs of biological and biomedical research and applications.
Collapse
Affiliation(s)
- Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shunji Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yiran Guo
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xuemei Zeng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
3
|
Lembong J, Sabass B, Sun B, Rogers ME, Stone HA. Mechanics regulates ATP-stimulated collective calcium response in fibroblast cells. J R Soc Interface 2016; 12:20150140. [PMID: 26063818 DOI: 10.1098/rsif.2015.0140] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Cells constantly sense their chemical and mechanical environments. We study the effect of mechanics on the ATP-induced collective calcium response of fibroblast cells in experiments that mimic various tissue environments. We find that closely packed two-dimensional cell cultures on a soft polyacrylamide gel (Young's modulus E = 690 Pa) contain more cells exhibiting calcium oscillations than cultures on a rigid substrate (E = 36 000 Pa). Calcium responses of cells on soft substrates show a slower decay of calcium level relative to those on rigid substrates. Actin enhancement and disruption experiments for the cell cultures allow us to conclude that actin filaments determine the collective Ca(2+) oscillatory behaviour in the culture. Inhibition of gap junctions results in a decrease of the oscillation period and reduced correlation of calcium responses, which suggests additional complexity of signalling upon cell-cell contact. Moreover, the frequency of calcium oscillations is independent of the rigidity of the substrate but depends on ATP concentration. We compare our results with those from similar experiments on individual cells. Overall, our observations show that collective chemical signalling in cell cultures via calcium depends critically on the mechanical environment.
Collapse
Affiliation(s)
- Josephine Lembong
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Benedikt Sabass
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, USA
| | - Bo Sun
- Department of Physics, Oregon State University, Corvallis, OR, USA
| | | | - Howard A Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, USA
| |
Collapse
|
4
|
Nahavandi S, Tang SY, Baratchi S, Soffe R, Nahavandi S, Kalantar-zadeh K, Mitchell A, Khoshmanesh K. Microfluidic platforms for the investigation of intercellular signalling mechanisms. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:4810-26. [PMID: 25238429 DOI: 10.1002/smll.201401444] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 06/27/2014] [Indexed: 05/02/2023]
Abstract
Intercellular signalling has been identified as a highly complex process, responsible for orchestrating many physiological functions. While conventional methods of investigation have been useful, their limitations are impeding further development. Microfluidics offers an opportunity to overcome some of these limitations. Most notably, microfluidic systems can emulate the in-vivo environments. Further, they enable exceptionally precise control of the microenvironment, allowing complex mechanisms to be selectively isolated and studied in detail. There has thus been a growing adoption of microfluidic platforms for investigation of cell signalling mechanisms. This review provides an overview of the different signalling mechanisms and discusses the methods used to study them, with a focus on the microfluidic devices developed for this purpose.
Collapse
Affiliation(s)
- Sofia Nahavandi
- Faculty of Medicine, Dentistry, & Health Sciences, The University of Melbourne, VIC 3010, Australia
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Carette D, Gilleron J, Chevallier D, Segretain D, Pointis G. Connexin a check-point component of cell apoptosis in normal and physiopathological conditions. Biochimie 2014; 101:1-9. [DOI: 10.1016/j.biochi.2013.11.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 11/18/2013] [Indexed: 12/16/2022]
|
6
|
Guo F, French JB, Li P, Zhao H, Chan CY, Fick JR, Benkovic SJ, Huang TJ. Probing cell-cell communication with microfluidic devices. LAB ON A CHIP 2013; 13:3152-62. [PMID: 23843092 PMCID: PMC3998754 DOI: 10.1039/c3lc90067c] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Intercellular communication is a mechanism that regulates critical events during embryogenesis and coordinates signalling within differentiated tissues, such as the nervous and cardiovascular systems. To perform specialized activities, these tissues utilize the rapid exchange of signals among networks that, while are composed of different cell types, are nevertheless functionally coupled. Errors in cellular communication can lead to varied deleterious effects such as degenerative and autoimmune diseases. However, the intercellular communication network is extremely complex in multicellular organisms making isolation of the functional unit and study of basic mechanisms technically challenging. New experimental methods to examine mechanisms of intercellular communication among cultured cells could provide insight into physiological and pathological processes alike. Recent developments in microfluidic technology allow miniaturized and integrated devices to perform intercellular communication experiments on-chip. Microfluidics have many advantages, including the ability to replicate in vitro the chemical, mechanical, and physical cellular microenvironment of tissues with precise spatial and temporal control combined with dynamic characterization, high throughput, scalability and reproducibility. In this Focus article, we highlight some of the recent work and advances in the application of microfluidics to the study of mammalian intercellular communication with particular emphasis on cell contact and soluble factor mediated communication. In addition, we provide some insights into likely direction of the future developments in this field.
Collapse
Affiliation(s)
- Feng Guo
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA. Fax: 814-865-9974; Tel: 814-863-4209
| | - Jarrod B. French
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802 USA. Fax: 814-863-0735; Tel: 814-865-2973
| | - Peng Li
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA. Fax: 814-865-9974; Tel: 814-863-4209
| | - Hong Zhao
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802 USA. Fax: 814-863-0735; Tel: 814-865-2973
| | - Chung Yu Chan
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA. Fax: 814-865-9974; Tel: 814-863-4209
| | - James R. Fick
- Penn State Hershey Medical Group, 1850 East Park Avenue, Suite 112, State College, PA 16803 USA
| | - Stephen J. Benkovic
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802 USA. Fax: 814-863-0735; Tel: 814-865-2973
| | - Tony Jun Huang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA. Fax: 814-865-9974; Tel: 814-863-4209
| |
Collapse
|
7
|
Zhao X, Xu F, Tang L, Du W, Feng X, Liu BF. Microfluidic chip-based C. elegans microinjection system for investigating cell-cell communication in vivo. Biosens Bioelectron 2013; 50:28-34. [PMID: 23831644 DOI: 10.1016/j.bios.2013.06.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/09/2013] [Accepted: 06/10/2013] [Indexed: 11/30/2022]
Abstract
The propagation of intercellular calcium wave (ICW) is essential for coordinating cellular activities in multicellular organisms. However, the limitations of existing analytical methods hamper the studies of this biological process in live animals. In this paper, we demonstrated for the first time a novel microfluidic system with an open chamber for on-chip microinjection of C. elegans and investigation of ICW propagations in vivo. Worms were long-term immobilized on the side wall of the open chamber by suction. Using an external micro-manipulator, localized chemical stimulation was delivered to single intestinal cells of the immobilized worms by microinjection. The calcium dynamics in the intestinal cells expressing Ca(2+) indicator YC2.12 was simultaneously monitored by fluorescence imaging. As a result, thapsigargin injection induced ICW was observed in the intestinal cells of C. elegans. Further analysis of the ICW propagation was realized in the presence of heparin (an inhibitor for IP3 receptor), which allowed us to investigate the mechanism underlying intercellular calcium signaling. We expect this novel microfluidic platform to be a useful tool for studying cell-cell communication in multicellular organisms in vivo.
Collapse
Affiliation(s)
- Xingfu Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | | | | | | | |
Collapse
|
8
|
Mechanically induced intercellular calcium communication in confined endothelial structures. Biomaterials 2013; 34:2049-56. [PMID: 23267827 DOI: 10.1016/j.biomaterials.2012.11.060] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 11/29/2012] [Indexed: 12/12/2022]
Abstract
Calcium signaling in the diverse vascular structures is regulated by a wide range of mechanical and biochemical factors to maintain essential physiological functions of the vasculature. To properly transmit information, the intercellular calcium communication mechanism must be robust against various conditions in the cellular microenvironment. Using plasma lithography geometric confinement, we investigate mechanically induced calcium wave propagation in networks of human umbilical vein endothelial cells organized. Endothelial cell networks with confined architectures were stimulated at the single cell level, including using capacitive force probes. Calcium wave propagation in the network was observed using fluorescence calcium imaging. We show that mechanically induced calcium signaling in the endothelial networks is dynamically regulated against a wide range of probing forces and repeated stimulations. The calcium wave is able to propagate consistently in various dimensions from monolayers to individual cell chains, and in different topologies from linear patterns to cell junctions. Our results reveal that calcium signaling provides a robust mechanism for cell-cell communication in networks of endothelial cells despite the diversity of the microenvironmental inputs and complexity of vascular structures.
Collapse
|
9
|
Xia J, Yu Y, Liao Q, Cao Y, Lin B, Hu X, Wu J. Synthesis and application of intercellular Ca2+-sensitive fluorescent probe based on quantum dots. J Inorg Biochem 2013; 118:39-47. [DOI: 10.1016/j.jinorgbio.2012.09.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 09/12/2012] [Accepted: 09/12/2012] [Indexed: 01/08/2023]
|
10
|
Xiang X, Luo M, Shi L, Ji X, He Z. Droplet-based microscale colorimetric biosensor for multiplexed DNA analysis via a graphene nanoprobe. Anal Chim Acta 2012; 751:155-60. [DOI: 10.1016/j.aca.2012.09.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 09/07/2012] [Accepted: 09/10/2012] [Indexed: 01/11/2023]
|
11
|
Chen P, Chen P, Feng X, Du W, Liu BF. Analysis of intercellular communication by flexible hydrodynamic gating on a microfluidic chip. Anal Bioanal Chem 2012; 405:307-14. [PMID: 23052886 DOI: 10.1007/s00216-012-6447-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 08/31/2012] [Accepted: 09/21/2012] [Indexed: 01/09/2023]
Abstract
Intercellular Ca(2+) waves are propagation of Ca(2+) transients among cells that could be initiated by chemical stimulation. Current methods for analyzing intercellular Ca(2+) waves are difficult to realize localized chemical stimulations upon the target cell without interfering with adjacent contacting cells. In this paper, a simple and flexible microfluidic method was developed for investigating the intercellular communication of Ca(2+) signals. A cross-patterned microfluidic chip was designed and fabricated with polydimethylsiloxane as the structural material. Localized chemical stimulation was achieved by a new strategy based on hydrodynamic gating technique. Clusters of target cells were seeded at the location within 300 μm downstream of the intersection of the cross-shaped microchannel. Confined lateral molecular diffusion largely minimized the interference from diffusion-induced stimulation of adjacent cells. Localized stimulation of the target cell with adenosine 5'-triphosphate successfully induced the propagation of intercellular Ca(2+) waves among a population of adjacent contacting cells. Further inhibition studies verified that the propagation of calcium signals among NIH-3 T3 cells was dependent on direct cytosolic transfer via gap junctions. The developed microfluidic method provides a versatile platform for investigating the dynamics of intercellular communications.
Collapse
Affiliation(s)
- Peng Chen
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | | | | | | | | |
Collapse
|